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Abstract: This work aimed to produce bionanocomposites of chitosan incorporated with zinc oxide
nanoparticles (ZnO NPs) synthesized using food industry by-products and to characterize them.
Such nanoparticles are highlighted due to their low cost, antimicrobial activity, accessibility, and
sustainability synthesis. Four different levels of ZnO NPs (0, 0.5, 1.0, and 2.0% w/w of chitosan) were
tested, and the bionanocomposites were characterized in terms of their hydrophobicity, mechanical,
optical, and barrier properties. Overall, the incorporation of ZnO NPs changed the composites
from brittle to ductile, with enhanced elongation at break and reduced Young Modulus and tensile
strength. Thus, ZnO NPs acted as plasticizer, turning the films more flexible, due to the presence of
organic compounds on the NPs. This also favored permeability of oxygen and of water vapor, but
the good barrier properties were maintained. Optical properties did not change statistically with
the ZnO NPs incorporation. Thus, the characterization presented in this paper may contribute to
support a decision on the choice of the material’s final application.

Keywords: apple; zinc oxide; biopolymer; bionanocomposites; physical characterization

1. Introduction

Zinc oxide (ZnO) has attracted intensive research efforts due to its unique properties
that gives to ZnO a wide range of applicability, among which is being an antimicrobial
agent [1]. Among the several methods used for ZnO synthesis, metallurgical or chem-
ical methods, within the last ones, mechanochemical process, controlled precipitation,
sol-gel method, solvothermal and hydrothermal method, method using emulsion and
microemulsion environment, among others have been used to synthesize nanoparticles
(NPs) [2]. Inside the chemical methods, green synthesis has been the preferred synthesis
method as this is an environment-friendly, cost-effective, biocompatible, and safe approach,
especially when aiming applications in the food industry [3]. The use of green synthesis
supported by the use of plant extracts opens a wide range of possibilities for the synthesis
of NPs with unique properties. This technique, when compared with other physicochem-
ical methods [2], provides stable NPs with well-defined sizes and morphologies. Fruit
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extracts, well-known to reduce metal ions [4], depending on the source will confer unique
characteristics to the NPs translating into a broad domain for novel nanomaterials [4].
This inexpensive and easily scaled-up method has a reduced environmental impact, that
together with the use of food industry waste potentiate the entrance of ZnO NPs synthesis
into the concept of circular economy, in particular when using apple (Malus domestica) peels,
the fruit that is third place in world fruit production in 2017, only after watermelon and
banana [5].

An extensive piece of research on the green-synthesis of ZnO NPs using fruits extracts
yielded the production of NPs with average sizes of 10 to 200 nm, and the majority of NPs
presenting a broad antimicrobial activity [6-10]. To the authors’ best knowledge, from those
studies, none report the synthesis with a common apple variety Golden Delicious. This
is a commercial variety, thus, its peels are not limited as raw material, and its application
on the NPs production will contribute to the circular economy and to reduce this food
waste. Moreover, this variety is among the five top varieties produced in the European
Union [11] and one of the varieties with higher polyphenol content in peels [12], to which
an antibacterial activity has been associated [13].

Currently, the food industry has a great demand for new packaging materials, such as
biopolymers as an alternative for the synthetic ones, which leads to a whole new field of
research towards finding novel alternatives to fossil-based polymers [14-17].

Chitosan, a polysaccharide derived from the deacetylation of chitin, is the second most
abundant biopolymer in nature and due to its properties can be used in food packaging as
film or coating material [18-20]. Among these properties are included the biodegradability,
non-toxicity, film-forming capacity, antimicrobial and antifungal efficacy, and the ability
to act as a carrier for other substances [14,21]. Despite these excellent properties, chitosan
has poor mechanical and barrier properties, which can limit its use, thus reinforcement
materials, such as nanomaterials, are generally used to enhance these properties and
overcome this drawback [22,23]. Chitosan pursues in its structure amine (-NH;) and
hydroxyl (-OH) groups, which are able to form complexes with multiple nanomaterials,
such as metal nanoparticles and oxide agents, resulting in a reinforced material [18,19,24].
ZnO NPs are one of those nanomaterials that could be used to enhance not only mechanical
but also chemical properties and enhance bioactivity [18,19]. ZnO NPs are also reported to
increase antibacterial activity, mechanical strength, and barrier properties when added to
food packaging materials [24,25]. The improvements on the barrier properties of chitosan
films with the incorporation of ZnO NPs is related to the complex paths created, which
make difficult the transport of the water or oxygen through the polymeric chain once
the NPs fill the porous spaces within the macromolecule structure [23]. In the recent
study of Yadav et al. [26], chitosan film was prepared with the incorporation of 1.5, 2.5,
and 3.5 wt% of ZnO NPs loaded with gallic acid, and the bionanocomposites presented
decreased water vapor permeability (WVP) and oxygen permeability (OP) proportionally
to the amount of NPs added. The WVP reported was 66, 77, and 87% lower than the
WVP of the pristine chitosan film for 1.5%, 2.5%, and 3.5% of ZnO NPs, respectively. The
reduction in the OP was less effective, but still bionanocomposites presented a decrease
from 7.5% to 41% in OP in comparison to neat chitosan film [26]. In terms of mechanical
properties, this study obtained films with enhanced tensile strength and elongation at
break when ZnO NPs incorporated concentration increased, which was attributed to
the establishment of strong interfacial interactions with the chitosan matrix because of
the NPs’ large surface area that effectively filled the spaces in the polymer [26]. ZnO
NPs are commonly incorporated in biodegradable bio-based polymers [25] to reinforce
mechanical and barrier properties, but also to enhance/add antimicrobial activity, such
as in carboxymethyl-chitosan [27], carboxymethyl cellulose (CMC) and chitosan [28],
gelatin [29,30], PLA (poly-lactic acid) [31], CMC and okra mucilage [32], PLA-ZnO NPs
nanocomposite coated paper [33], and chitosan [1,18,22,26,34-36]. Nevertheless, most
of the papers use ZnO NPs synthesized using the traditional chemical methods. In our
work, the ZnO NPs followed an eco-friendly production method that enriches the NPs
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also with active compounds (phenolic compounds), differentiating the type of ZnO NPs.
In this eco-friendly process, the synthesis of ZnO NPs was done using peels of apples,
thus, contributing to reduce food industry waste in a circular bio-economy concept. In
our previous work [1], bionanocomposites based on chitosan incorporated with these eco-
friendly ZnO NPs were produced and their bioactivity characterized by in vitro and in situ
studies. Fresh poultry meat was used as the food matrix, once the thin films were produced
as an alternative for food packaging material. The results obtained were promising, once
the films were efficient in the extension of the shelf-life of the fresh poultry meat, and
the incorporation of ZnO NPs enhanced the material’s antimicrobial and antioxidant
properties. Given the good results with these new bionanocomposites, the aim of this study
was to evaluate the physical, morphological, and antibacterial properties of these chitosan
films incorporated with these ZnO NPs to use them in food packaging, and therefore, to
understand better how these ZnO NPs interact with the chitosan polymeric matrix, and its
effect on the characteristics of the bionanocomposite.

2. Materials and Methods
2.1. Chemicals

ZnO nanoparticles were synthesized using zinc nitrate (Zn(NO3)2.6H,O, Sigma-
Aldrich, Steinheim, Germany) and potassium hydroxide (KOH, Sigma-Aldrich). Bio-
nanocomposites were produced using chitosan (Poly(D-glucosamine), Sigma-Aldrich) with
75% of deacetylation and high molecular weight (31-37 kDa), glacial acetic acid (Alfa Aesar,
Kandel, Germany) and glycerol (Alfa Aesar). Sodium bromide (NaBr), potassium acetate
(CH3COOK—99% purity) were purchased from Alfa Aesar, while sodium chloride (NaCl),
was obtained from PanReac (Barcelona, Spain). Pure oxygen (99.999% purity) (Praxair,
Madrid, Spain) was used in the oxygen permeability assay. All chemicals were of analytical
reagent grade and the water purified using Milli-Q system (Millipore, Billerica, MA, USA).

2.2. ZnO Nanoparticles (NPs) Synthesis

Apple extract was prepared using commercial apples (Malus domestica) variety Golden
Delicious. To ensure minimal variation from batch-to-batch extract production, only apples
at commercial maturity were selected [37]. Once properly washed, fresh apples were peeled
off and an extract of 0.2 g of fresh weight (FW)/mL of peels was obtained after boiling
in water for 20 min. This extract was then filtered with gauze followed by a Whatmann
(Maidstone, UK) No. 1 filter. For the synthesis of the NPs, zinc nitrate 2% (w/v) was
added to the extract; upon its complete dissolution a KOH 1M solution was added (1:6
(v/v)) at room temperature. The synthesized NPS were filtered with a PM UC500 filter
(Microdyn Nadir, Wiesbaden, Germany). The collected particles were dried overnight in a
conventional oven (WTB binder, Munich, Germany) at 70 °C [1,38].

2.3. ZnO NPs Characterization
2.3.1. Morphological and Chemical Studies

The morphology and chemical composition of the NPs were characterized by scanning
electron microscopy (SEM) using a JEOL-JSM7001F (Tokyo, Japan) apparatus correspond-
ing X-ray energy dispersive spectrometer (EDS). The conductivity of the samples was
improved with a thin coating of conductive gold/palladium (Polaron E-5100). For the
transmission electron microscopy (TEM) studies, a Hitachi (Tokyo, Japan) H-9000-NA
microscope operating at 200 kV with supporting copper-carbon grids was used. The crys-
tallinity was evaluated by X-ray diffraction (XRD) using a D8 Advance Bruker AXS 0-20
diffractometer (Karlsruhe, Germany) with a copper radiation source (Cu Ka, A = 1.5406 A)
and a secondary monochromator operating at 40 kV and 40 mA. For the characterization
of the organic groups present in the NPs, attenuated total reflectance (ATR) spectra were
acquired with a Nicolet (Thermo Electron, Waltham, MA, USA) spectrometer.
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2.3.2. Antibacterial Activity

Antimicrobial activity of ZnO NPs was assessed towards Staphylococcus aureus (ATCC®
25923™) and Escherichia coli (ATCC® 25922™). The Kirby-Bauer assay was performed
and NPs disks with 18.6 £ 0.8 mg of ZnO NPs (~6 mm diameter) were used. This assay
was conducted according to the guidelines of the Clinical and Laboratory Standards
Institute (CLSI) [39,40]. Briefly, aliquots from bacterial frozen stocks were used to culture
microorganisms in Tryptic Soy Agar (Biokar Diagnostics, Allone, France) for 24 h at 37 °C.
To prepare the inoculum, few colonies of each strain cultured in Tryptic Soy Agar were
resuspended in Mueller Hinton Broth (Biokar Diagnostics) and further diluted in order
to achieve 0.5 McFarland units at a 600 nm wavelength, using a spectrophotometer (U-
2000, Hitachi). The inoculum was swabbed on Mueller Hinton Agar (Biokar Diagnostics)
plates and the ZnO NPs disks were placed on the agar surface as well as 6 mm filter disks
containing 5 ug of levofloxacin (control). Petri dishes were further incubated (Ultima,
Revco) at 37 °C for 20 h. After the incubation period, the inhibition zone diameters
were measured using a vernier caliper. Assays were performed in three independent
experiments [40].

2.4. Bionanocomposites Film Preparation

Films were produced by casting method with a film-forming dispersion (FFD) ob-
tained by the dissolution of chitosan (1.5%, w/v) in 1% (v/v) glacial acetic acid solution with
constant stirring during 24 h at room temperature [1]. The plasticizer used was glycerol at
the level of 30% (w/w of chitosan), and ZnO NPs were incorporated in three different pro-
portions based on literature review and our previous work [1], namely 0.5, 1, and 2% w/w
of chitosan. The amount of ZnO NPs generally incorporated in biopolymers is in the range
between 0.1 [22] and 10% [35]; however, concentrations higher than 2-3% tend to diminish
the reinforcement capacity of the NPs due to agglomerations of the nanoparticles [35,36,41].
However, an extra bionanocomposite incorporated with more nanoparticles (10% w/w of
chitosan) was produced just to verify the chemical distribution on SEM. Films without NPs
were used as control. The system was homogenized for 5 min with ultraturrax (15,000 rpm)
(IKA® T18, Staufen, Germany) and degassed in an ultrasound bath (Selecta, Barcelona,
Spain) for 5 min (360 W). Subsequently, the resulting dispersion was casted in glass molds
(18 cm x 25 cm) and naturally dried at room temperature for about 72 h. Dried films were
peeled and stored, protected from light at 25 °C until evaluation.

2.5. Film’s Characterization
2.5.1. Morphological and Chemical Studies

Surface and cross-section of the films were observed by SEM and EDS, as previously
described. To improve the film conductivity, a thin coating of conductive gold/palladium
was previously applied to the specimens (Polaron E-5100).

2.5.2. Thickness and Mechanical Properties

The thicknesses of the films were determined on ten random points of each sample
using a digital micrometer (0.001 mm, Mitutoyo, Kawasaki, Japan). Mechanical properties
were determined according to ASTM D882-12 [42], the parameters studied were elastic
modulus (EM), tensile strength (TS), and percentage of elongation at break (EAB). Briefly,
five strips of each film (150 mm wide and 25.4 mm long) were mounted in the tensile grips
with a 0.5 kN load cell (Autograph Shimadzu, Sydney, Australia), and an initial gauge
length of 50 mm. The system was then stretched at a cross-head speed of 50 mm/min
until breakage.

2.5.3. Water Vapor Permeability (WVP)

To calculate the WVP (mol-m~1-s~1.Pa~1), disks with 45 mm diameter of each sample
were cut and sealed on the top of glass cells containing 8 mL of saturated NaCl solution
(Relative Humidity (RH) = 76.9%), subsequently the system was placed inside a desiccator
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containing saturated potassium acetate solution (RH = 22.5%), periodically (regular time
during approximately 24 h) the cells were weighted (precision 0.0001 g) to determine the
water vapor flux. The assay was carried out at 30 °C, and to promote air circulation and
maintain the driving force during the test, the desiccator was equipped with a fan. WVP
was calculated by following Equation (1) [43]:

wa5

WVP =
APy ff

M

where Nw (mol-m~2-s71) is the water vapor flux, 6 (m) is the film thickness, and APy o
(Pa) is the effective driving force. Results are the average £ standard deviation of the three
replicates analyzed.

2.5.4. Oxygen Permeability (OP)

Oxygen permeability was determined according to the methodology described by
Ferreira et al. [43]. Previously to the test the specimens were equilibrated at 30 °C and
relative humidity of 55% =+ 5% (desiccator containing saturated sodium bromide solution).
The OP was assessed by the measurement of the pressure change in both chambers over
time, using two pressure transducers (Jumo, Model 404327, Fulda, Germany). A thermo-
static bath (Julabo, Model EH, Seelbach, Germany) was used to maintain the temperature
at 30 °C. The OP was calculated using Equation (2):

1 Apo\
sin(50) = p; @
where Ap (mbar) is the pressure difference between feed and permeate compartment, P

(mol'm~1-s71.Pa~1) is the gas permeability,  (s) is the time, & (m) is the film thickness, and
B is the geometric parameter of cell [44].

2.5.5. Optical Properties

CIE-L*a*b* coordinates were measured from the film samples using a colorimeter CR
410 (Minolta Co., Tokyo, Japan) with a 10 mm diameter window, using D65 illuminant/10°
observer. Chroma (c*) and hue angle (hue) were calculated according to Equations (3) and
(4), respectively. Measurements were taken on standard white backgrounds [45].

1/2

cf = (u*z + b*Z) (3)
hue = arctan <z*> X %, fora* >0and b* >0 4)

The opacity was calculated by direct reading of the absorbance of rectangular samples
at 600 nm using UV/VIS spectrophotometer (Model Spekol 1500, Analytikjena, Jena,
Germany) according to Equation (5) [46].

absorbance 600 nm
sample thickness (mm)

Opacity (mm”) = (5)

Film transparency was evaluated through a spectrum scan (wavelengths between
190 and 900 nm) of each film specimen using UV /VIS spectrophotometer. Results are
expressed as percentage of transmittance, and air was used as reference [47].

2.5.6. Solubility and Swelling Degree

Solubility and swelling degree were calculated using Equations (6) and (7), respec-
tively [48]. Briefly, film specimens were cut (2 cm X 2 cm) and weighted (precision 0.0001 g),
obtaining the initial weight (M;); subsequently, the samples were dried in a conventional
oven at 70 °C for 24 h to get the initial dry mass (M;). Then, samples were placed in
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a Petri dish containing 30 mL of water for 24 h at room temperature (25 °C %+ 2 °C), to
allow the samples to swell the water. After this time, the water not absorbed by the
film was discarded and the specimens were gently superficially dried with paper and
weighted (M3). Finally, the residual film specimens were dried again in the oven at the
same conditions used before to obtain the final dry mass (M4). For each film sample, two
measurements were taken, and results were expressed in percentage of the average of the
two determinations.

% Solubility = (MzM;M‘*) « 100 ©)
2

%Swelling degree = %_ZMZ) x 100 7)

2.5.7. Contact Angle (CA)

Contact angle was determined at room temperature (25 °C + 2 °C) using a goniometer
(KSV Instruments Ltd., CAM 100, Helsinki, Finland) with the software KSV CAM 100. The
material’s surface hydrophilicity was evaluated from water drops contact angles with their
upper surface and expressed as the average on both sides of the drop [43].

2.6. Statistical Analysis

Film characterization was conducted using three replications. Statistical analysis of
data was performed through a one-way analysis of variance (ANOVA) using the Software
OriginLab, version 8.5 (OriginLab Corporation, Northampton, MA, USA). The differences
among mean values were processed by the Tukey test. The significance was defined at
p < 0.05 and the results were expressed as the means of the replicates + standard deviation.

3. Results
3.1. Characterization of the Green-Synthesized ZnO Nanoparticles

Zinc oxide (ZnO) crystals are typically formed by a top hexagonal polar zinc face,
symmetric nonpolar planes directions, and a basal polar oxygen face [49,50]. Depending
on the binding compounds present in the apple extract specific crystal faces growth can
occur. As depicted in Figure 1a, the synthesized ZnO nanoparticles formed nanosphere-like
agglomerates, which result from the agglomeration of lamina-like nanostructures with
square and oval nano-morphologies (Figure 1b). To confirm the successful synthesis of ZnO
crystals, the presence of Zn and of O was confirmed by EDS. Moreover, the metallic zinc
ion was also measured by atomic absorption spectrometry (Zeenit 700, Analytikjena, Jena,
Germany) after dissolving the ash residue of the mineralized ZnO NPs with nitric acid [51],
and the concentration of this metal was around 41.3% (w/w of ZnO NPs). Furthermore,
the ZnO NPs produced were rich in phenolic compounds from the apple peel used in
the synthesis, a total phenolic content of 7.4 mg Gallic acid equivalent/g of ZnO NPs [1]
determined by the Folin-Ciocalteu method [52]. The typical crystalline structure of ZnO
with the SAED pattern (Figure 1c) and XRD diffractogram (Figure 1d). In the SAED pattern
(Figure 1c), the typical crystallographic planes assigned to ZnO were identified, namely
(100),(002),(101),(102),(110),(103),and (11 2). The XRD diffractograms besides
confirming the presence of the peaks assigned to ZnO, coincident with the JCPDS card
036-1451, gave information relating the average crystallite size of the NPs. By using the
well-known Debye-Scherrer’s equation, a crystallite size of 22.2 nm was estimated along
(0 0 2) orientation (Figure 1d), confirming the nanoscale dimensions of the synthesized
ZnO NPs. This result agrees with the average crystallite size of other ZnO NPs synthesized
with fruit extracts of Citrus aurantifolia and Malus domestica with sizes ranging from 50 to
200 nm [5-10,38,53-60].
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Figure 1. Green-synthesized ZnO nanoparticles using the peel extract of apple var. Golden, (a) scanning electron microscopy
(SEM) and (b) transmission electron microscopy (TEM) images, with (c) the corresponding electron diffraction pattern
(SAED), (d) X-ray diffraction (XRD) diffractogram with the crystallographic planes identified according with JCPDS data
card 036-1451, (e) attenuated total reflection—Fourier transform infrared (ATR-FTIR) spectrum, and (f) antibacterial activity
against Escherichia coli and Staphylococcus aureus.

To characterize the organic compounds bounded to the as-synthesized ZnO particles,
attenuated total reflection-Fourier transform infrared (ATR-FTIR) analysis was performed.
As observed in Figure le, a broad band at 3349 cm ! can be assigned to O-H stretching,
and that at 2947 cm ! to the stretching of C-H bond. The peak at 1578 cm~! can be related
to the stretching vibration modes of C-C and C=C, C-O including those within aromatic
rings. A peak at 1378 cm ™! relates with the stretching mode of C-H bond. The bands in the
region below 1300 cm ™! correspond to C-O and C-C stretching modes and/or to C-O, O-H
and C-H bending modes. Finally, a sharp band at 827 cm ™! can be identified as the Zn-O
stretching mode [26]. Overall, the presence of chemically bonded organic molecules was
confirmed for the as-synthesized particles [61]. Similarly, in ZnO NPs loaded with gallic
acid [23], the formation of ZnO loaded with phenolic acids was inferred by the spectral
band appearing at 736 cm ! due to Zn-O stretching vibration.

To assess the antibacterial potential of the synthesized NPs, relevant food pathogen
species were tested (Figure 1f). Thus, ZnO NPs activity was evaluated against Gram
negative and positive bacteria, E. coli and S. aureus, respectively. An inhibition zone was
clearly visible for both stains (Figure 1f), although smaller than that of the antibiotic,
these data indicate the antibacterial potential of the as-synthesized ZnO NPs against both
bacterial strains. This behavior agrees with the antibacterial activity reported for other
green-synthesized ZnO NPs [62].

Moreover, the inhibition zone observed for the antibiotic control (5 pg of levofloxacin) was
in accordance with the expected results for E. coli (29-37 mm) and S. aureus (25-30 mm) [63].

3.2. Characterization of Chitosan Films Functionalized with the ZnO Nanoparticles

To functionalize the film, the as-synthesized NPs were embedded in chitosan in
different percentages. A pure chitosan film was morphologically compared with those
having 0.5, 1, 2, and 10% (w/w) of ZnO NPs (Figure 2). The top view (Figure 2a,e) and the
cross-section (Figure 2fj) images revealed that minor changes were depicted due to ZnO
NPs addition. The top view images (Figure 2a—e) show that the percentages of ZnO NPs
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used in this study caused no morphological differences at the surfaces of the biocomposites.
A deeper analysis of the cross-section images showed that the addition of ZnO NPs was not
significantly changing the chitosan film thickness (Figure 2f-j). To assess the distribution of
the NPs along the film, Zn content was analyzed by energy dispersive X-ray spectroscopy
(EDS). The percentage of Zn in the film with 10% (w/w) of ZnO NPs has 6.7 At. % of Zn and
40.2 At. % of C, which came from the contribution of particles and chitosan, respectively.
The presence of O, both from ZnO NPs and chitosan is of 53.1 At. %. The distribution
of these elements, in the film with 10% (w/w) of ZnO NPs (Figure 2e)j), revealed that a
homogeneous distribution of the NPs was attained within the polymeric matrix, with
no detectable NPs agglomeration. This result clearly shows that the procedure used is
adequate for the fabrication of this bionanocomposite.

10 um 10pm

Figure 2. Scanning electron microscopy (SEM) images of the top (a—e) and cross-section view (f-j) of chitosan films

functionalized with the green-synthesized ZnO NPs; film of (a,f) pure chitosan, films of chitosan with (b,g) 0.5% (w/w),
(¢,h) 1% (w/w), (d,i) 2% (w/w), and (e,j) 10% (w/w) of ZnO NPs; insets represent the elemental distribution of Zn and C in
the film depicted by energy dispersive X-ray spectroscopy (EDS).

Bionanocomposites incorporated with 10% ZnO NPs were not fully characterized
because in our previous study, where the films were tested in contact with fresh poultry
meat [1], the amount of zinc that diffused toward the food packaged almost reached the
maximum limit regulated by the European Food Safety Authority [64] for the films with
2% ZnO NPs, i.e., superior percentages of nanoparticles would exceed the regulation,
not fulfilling the requirements to be a food contact material, thus excluding the material
final purpose.

3.3. Thickness and Mechanical Properties

Table 1 indicates the thickness and mechanical properties of the films. Pristine chitosan
film exhibited 42 pm thickness, whereas for the bionanocomposites it was 49.4, 49.6, and
59.3 um with 0.5, 1, and 2% ZnO NPs incorporated, respectively. Despite the differences,
the increment observed on the thickness with the incorporation of ZnO NPs was only
statistically significant for the highest percentage tested (p < 0.05). Similar results were
previously reported to soluble soybean polysaccharide films incorporated with ZnO NPs
from 5-15% [65], the authors attributed the changes to the increase in the roughness and
the solid content of the nanocomposites. Other films based on polysaccharide and ZnO
NPs also presented the same behavior of increase in the thickness with the incorporation of
ZnO NPs [25], in this study, the polymeric matrices evaluated were agar, carrageenan, and
carboxymethylcellulose (CMC), and the thickness of the nanocomposites were up to 81%
higher than the control film. In comparison to our results, the maximum increment was
only 42%. Chitosan film incorporated with ZnO NPs loaded with gallic acid (ZnO@gal) at
three levels (1.5, 2.5, and 3.5 wt%) also presented increased thickness, except for the sample
with 3.5 wt% ZnO@gal, which presented a 9% reduction on this attribute in comparison to
pristine chitosan film, contrary to what was observed in this work [26]. Moreover, in this
study, the influence of ZnO@gal on the thickness was less significant than in our results,
presenting a deviation on the thickness of 9% in comparison to the control.
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Table 1. Thickness and mechanical properties characterization.

Film Thickness (um) Tensile Strength (MPa) EAB (%) Elastic Modulus (MPa)
Control 420+478 467 +£214 179+ 158 2046 + 236 A
Ch + 0.5% ZnO NPs 494 + 3.1 AB 323+178B 459+ 594 254 + 121 B
Ch + 1.0% ZnO NPs 49.6 + 5.3 4B 362+ 658 471 +3.84 250 4+ 180 B
Ch + 2.0% ZnO NPs 593 +£2.84 304 +148 464 +234 227 +21B

(AB): Different superscripts within the same column indicate significant differences among samples (p < 0.05). Ch: chitosan; ZnO NPs: zinc
oxide nanoparticles; EAB: Elongation at break.

The mechanical properties studied measure the stretch ability prior to break, film
strength, and stiffness, which are important characteristics for food packaging materi-
als [66]. Overall, the incorporation of ZnO NPs, regardless of the percentage incorporated,
completely changed the mechanical properties of the films in comparison to control sam-
ples (p < 0.05). Films went from brittle to ductile; however, within the bionanocomposites,
the differences were not statistically significant (p > 0.05) (Table 1). Pristine chitosan film
presented a tensile strength of 46.7 MPa, the addition of NPs reduced this value in 30.8%,
22.5%, and 34.9% for 0.5%, 1%, and 2% ZnO NPs, respectively, but differences among
biocomposites with ZnO NPs were not statistically significant. Elongation at break as
expected presented a contrary behavior, once it is inversely related to tensile strength [66].
Finally, similarly to the tensile strength, elastic modulus also diminished with the incor-
poration of ZnO NPs, which means that a decrease in the material stiffness was observed.
It is important to highlight that the synthesized NPs also have present phytochemicals
(phenolic compounds) from the apple peels used in the synthesis, which chemically bond
with the polymeric chain, changing the material’s properties.

Our results are in good agreement with results previously reported for chitosan/methy
Icellulose oleic acid and ZnO NPs [67], for agar, carrageenan, and CMC incorporated
with ZnO NP [25], and for chitosan with ZnO NPs [41]. Noshirvani et al. [67] studied
bionanocomposites incorporated with the same amount of ZnO NPs, and observed a
reduction in tensile strength of 18%, 41%, and 74% in comparison to control films when
0.5%, 1%, and 2% of ZnO NPs were incorporated, respectively. This behavior is similar to
what was verified in this work; however, in our study, the maximum difference was 35%
for the highest amount of ZnO NPs incorporated. According to those authors, this phe-
nomenon is probably due to the weak interfacial interaction between the polymer matrix
and ZnO NPs [25,67], but also the presence of ZnO NPs did not interrupt the movement of
polymer chains [25], suggesting a plasticizing effect of ZnO NPs [67]. Indeed, the presence
of phenolic compounds in the synthesized NPs could also have acted as plasticizers, and
contributed to this change in the film’s mechanical behavior, reflecting a similar trend that
was also observed for bionanocomposites of chitosan/montmorillonite incorporated with
rosemary essential oil [68,69] and ginger essential oil [48]. The incorporation of phenolic
compounds associated with the ZnO NPs into the polymeric matrix of films may have
affected the mechanical resistance of the polymers by the partial replacement of the strong
polar chemical bonds chitosan—chitosan (between the chitosan molecules) by weaker inter-
actions between chitosan—phenolic compounds (active molecules present in the ZnO NPs).
In addition, contrary to our results, the incorporation of other types of ZnO NPs increased
TS and EM and reduced EAB, in studies with soluble soybean polysaccharide- [65] and
chitosan-based [36] films. These different results show that mechanical properties depend
on many factors such as the type of polymer, shape and concentration of NPs, distribution
and the amount of inter and intermolecular interactions between chains of polymer and
the organic compounds on the surface of the NPs, film forming conditions, and casting
procedure, to mention a few [66,67].
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3.4. Gas Barrier Properties (WVP and OP), Contact Angle, Solubility in Water, and
Swelling Degree

Polysaccharides are characterized to have good barrier properties to oxygen and lower
to water vapor [70]. Pristine chitosan film presented an OP of 0.18 x 10~'® mol m/m?-s-Pa
(Table 2), which is smaller than the permeability previously reported to EVOH (0.24 x 10716
mol m/m?s-Pa [71]), the packaging material considered as one of the best hydrophilic
gas barriers used in the industry [72]. The incorporation of ZnO NPs, contrary to most of
the results in literature, increased the oxygen barrier properties of the material (p < 0.05),
except for 1% ZnO NPs, where the OP was statistically the same as control films (p > 0.05).
This result must be related to the presence of organic compounds bounded to the NPs
(Figure le) which plasticized the materials, changing them to a more flexible/relaxed
matrix, contributing to higher permeation of the gas, which corroborates the results of
the mechanical properties. It is possible that the phenolic compounds in the ZnO NPs
acted as a plasticizer of the chitosan films, as it increased the elongation capacity of
the material (%EAB, as previously discussed), thus increasing both the permeability to
oxygen and also to water vapor. The plasticizers act as an internal lubricant, reducing
the frictional forces between the polymer chains, and increasing the intermolecular space,
thus allowing a greater mobility of the polymer chains and consequently facilitating the
transport of gases [46—48]. At the lowest amount tested (0.5%), the amount of ZnO NPs were
probably not sufficient to enhance the barrier against oxygen, thus leading the phenolic
compounds to play the plasticizer role, which increased the OP. When 1% ZnO NPs were
incorporated, more NPs were available to counterbalance the plasticizer effect of the
phenolic compounds by reinforcing the barrier properties, which may explain the smaller
OP within the bionanocomposites studied. Finally, with 2% of ZnO NPs, a slight increase
in the OP can be explained by a possible agglomeration of the NPs within the chitosan
chain, which resulted in a lower reinforcement, in comparison to the 1% ZnO NPs films,
although between the two bionanocomposites, the OP results did not differ significantly.

Table 2. Barrier and hydrophobicity properties.

. OP (1016 WYVP (10— 11 . Solubility in N

Film mol/m-s-Pa) mol/m-s-Pa) Contact Angle (°) Water (%) Swelling (%)
Control 0.18 + 0.05€ 154 +0.18 B 71+54 25+ 0 AB 110 +£24
Ch + 0.5% ZnO NPs 0.98 +0.134 221+0.034 82 +54 2428 140 +£ 304
Ch + 1.0% ZnO NPs 0.42 +0.12 BC 240 +£0244 82 +24 2+18 162 + 314
Ch + 2.0% ZnO NPs 0.61 £0.13B 1.64 +0.02 B 80 + 84 26+14 171 £ 354

(A=0). Different superscripts within the same column indicate significant differences among samples (p < 0.05). Ch: chitosan; ZnO NPs: zinc
oxide nanoparticles. OP—Oxygen permeability; WVP—Water vapor permeability.

In the literature, studies addressing the determination of OP were not as abundant
as those with WVP [23], probably due to the more complex methods or the demand
for equipment to determine OP. However, in comparison to the data reported by Yadav
et al. [26], our results presented the opposite pattern, once bionanocomposites slightly
increased OP with the incorporation of ZnO NPs, while reductions of 7.5 and 10.9% in the
OP of chitosan incorporated with 1.5 and 2.5% of ZnO@gal [26], respectively, were observed.
Despite this behavior, overall, the material maintained the good barrier properties of
the original chitosan film, and the nanoparticles did not drastically change this positive
characteristic. Furthermore, the OP results also corroborate with our previous work, where
these bionanocomposites were used to preserve fresh poultry meat [1], and the samples
protected with the Ch + 1% ZnO NPs showed the smallest oxidation over the refrigerated
storage, which might have been associated to this superior oxygen barrier of the films that
helped to prevent the oxidation to occur.

Water vapor permeability measures the rate of moisture that crosses the film, being
an important property to be accounted for in packaging applications [36]. In general,
WVP of chitosan film tends to diminish with the incorporation of ZnO NPs, as previously
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reported in Rahman et al. [36], Yadav et al. [26], which is generally explained by the physical
crosslinking of the nanocomposite, which will diminish the diffusion of water vapor [26].
As aforementioned, in our work the increased WVP with the incorporation of ZnO NPS was
unexpected, and it is probably related to the presence of the phenolic compounds, which
reduced the amount of nanoparticles to crosslink within the chitosan chain and act as a
reinforce material. As already stated, it is possible that the phenolic compounds in the ZnO
NPs acted as a plasticizer of the chitosan films, as it increased the elongation capacity of the
material, thus increasing both the permeability to gases and water vapor. Yet, the highest
level tested 2% and presented a WPV statistically equal to pristine chitosan film (p > 0.05)
(Table 2). At 2%, the films were more capable to bind with the water, once they presented
the highest swelling index, which can explain this diminishing on the WVP due to the
decrease in the water vapor diffusion through the films. However, it should be stressed
that overall, the incorporation of ZnO NPs did not drastically change the material’s barrier
properties, suggesting that well organized bonding between the polymer and the organic
groups on the NPs surface was achieved. Results obtained are also in agreement with
another study [36], where chitosan films were also reinforced with ZnO NPs at 4 different
levels, 0.5, 1, 1.5, and 2%. In this study, it was observed that films incorporated with 1%
also presented the highest water vapor transmission rate, which corroborates to what was
observed in our study. The authors attributed this result to the unique feature of the films
with 1% ZnO NPs as revealed by mechanical property analysis.

Contact angle and swelling index did not statistically change (p > 0.05) with the incor-
poration of ZnO NPs, a result that agrees with the minor morphological changes previously
described on these bionanocomposite surfaces (Figure 2), while the solubility in water
decreased around 10% for 0.5 or 1% of ZnO (p < 0.05), and did not statistically change when
2% was incorporated (p > 0.05) (Table 2). The contact angle of the films depends on surface
hydrophobicity and roughness, high CA is characteristic of hydrophobic surfaces [67].
Once hydrophobic surfaces are suitable for food packaging, the results presented are fa-
vorable for the purpose this material was produced for. Similar results were presented for
agar ZnO bionanocomposites, whereas the NPs slightly increased the water contact angle,
but with no statistical significance [73].

The stability of food packaging material in the presence of solvent molecules present
on the surface of the foodstuff packaged is measured by water solubility index [18]. Overall,
the percentage of solubility in water decreased with the incorporation of ZnO NPs up to
1%, and with 2% of ZnO NP the difference was not significant in comparison to the control
film. In the polymer chain, NPs have probably decreased the availability of hydrophilic
groups for interaction with water, once cross link bonds between the NPs and chitosan
chains are made through the polymer hydrophilic functional groups [18].

The water adsorption capacity of the films was studied by measuring their swelling
index. Chitosan ability to swell water is related to the presence of a large number of
hydrophilic groups in the polymer chain [74,75]. The incorporation of ZnO NPs, despite
the differences not being statistically significant, increase the adsorption capacity of the
bionanocomposites proportionally to the amount of ZnO NPs incorporated. Our findings
are in good agreement with the results presented in the study of Rahman et al. (2017) [18].
According to these authors, this increment on the swelling index is due to the increase on
the heterogeneity of the composite films created by the incorporation of ZnO NPs onto the
chitosan matrix together with the formation of cavities in the films which pave the way
for more adsorption of water molecules. Moreover, as this material was already used as
primary packaging for fresh poultry meat [1], the water molecules in the surface of meat
pose a risk to the product as they are highly vulnerable to microbial contamination, thus,
this ability of the packaging to quickly adsorb water molecules has an important role in
extending the shelf life of fresh meat [18].
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3.5. Optical Properties

Optical property characterization is depicted in Table 3. Food packaging material
must keep their transparency once it is a desirable characteristic to assure the good ap-
pearance of the food packaged, which may interfere on the product’s acceptance by the
consumers [76,77]. Overall, the transparency was not interfered by the incorporation of
ZnO NPs (Figure 3), in fact the opacity was slightly enhanced (Table 3); however, with no
statistical significance (p < 0.05). A similar trend was also reported in the recent study of
Yadav et al. [26] that developed chitosan films incorporated with ZnO NP loaded with
gallic acid. The material became more opaque with the nanoparticles incorporation. From
the UV-Vis absorption spectra (Figure 3), it is also possible to point out a peak at 322 nm
for all films incorporated with ZnO NPs. According to Dananjaya et al. [34], ZnO NPs
present an absorption maxima around 365 nm, which is assigned to the intrinsic band-gap
absorption of ZnO NPs due to the electron transitions from the valence band to the con-
duction band (Ozp—Zn34). However, this absorption maximum underwent a blue-shift to
around 322 nm in the bionanocomposites due to the interaction with the chitosan [34]. The
material showed yellowish color, hue around 110°, characteristic of chitosan films, and the
incorporation of ZnO NPs slightly increased this value, but only with statistical significance
for 0.5% ZnO NPs (p < 0.05) (Table 3). The increase on Hue* means that the composite
showed a tendency to a greener color. The nanoparticles also influenced the Chroma by
reducing the color saturation of the composites (p < 0.05), the coordinates L*, a*, and b*
reduced with the incorporation of the nanoparticles (data not shown), resulting in this
decrease on Chroma parameter. Contrary to what was observed in this work, in general
the incorporation of ZnO NPs reduces the transparency of the composite, especially at UV
wavelength, due to the light scattering through the film with a heterogeneous network
of undissolved inorganic material within the polymer [28,30]. However, the composites
maintained the good UV light barrier properties characteristic of neat chitosan film without
sacrificing its transparency, which enables these composite films to be used as an active
food packaging material to prevent UV light-induced oxidation of foods [30].

100
80
<
8 604
c
]
=
£
2
@ 40
|_
20 — Chi
—— Chi + 0.5% ZnO NPs
——Chi + 1% ZnO NPs
——Chi + 2% Zn0O NPs
0 - T T T T T T
200 300 400 500 600 700 800 900

Wavelength (nm)

Figure 3. Bionanocomposites transparency. Chi: chitosan; ZnO NPs: zinc oxide nanoparticles.
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Table 3. Optical properties characterization.
Film Opacity (mm~1) Chroma Hue (°)
Control 0.96 £0.114 6.22 + 0424 111 +28B
Ch + 0.5% ZnO NPs 1.03 + 0.09 & 431+ 059€ 117 £ 34
Ch + 1.0% ZnO NPs 1.00 +0.19 4 449 + .42 BC 114 + 1 AB
Ch + 2.0% ZnO NPs 1.01 +£0.194 547 + 0.19 AB 112+18

References

(A=O). Different superscripts within the same column indicate significant differences among samples (p < 0.05).
Ch: chitosan; ZnO NPs: zinc oxide nanoparticles.

4. Conclusions

Functionalized bio-based films with ZnO NPs were successfully casted and the
nanoparticles’ synthesis using a by-product from the food industry demonstrated to pro-
duce particles in a nanometer scale, with antimicrobial properties. The incorporation of
ZnO NPs into chitosan films did not drastically change the material’s properties, except for
the mechanical behavior, that switched from brittle to ductile, with reductions between
22-35%, and 88-89% on tensile strength and elastic modulus, respectively. The presence
of phenolic compounds residues in the ZnO NPs produced may also have contributed to
the results, once those compounds can also interact with chitosan chain. The nanoparticles
produced did not present a reinforcement characteristic. Thus, if the incorporation of
ZnO NPs aims to reinforce the polymer material, the nanoparticles produced with this
method did not satisfactory accomplish this task. However they can enhance the material’s
bioactivity by adding their antimicrobial property and a further antioxidant capacity due
to the phenolic compounds present, as reported in our previous work [1]. Moreover, the
good barrier properties are maintained, and the nanoparticles do not drastically change
this positive characteristic, allowing these films to be used in food packaging.
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