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Abstract: This review article was developed based on the scientometric analysis of the evaluated
studies conducted on titanium−zirconium (TixZr) alloys from 2000 to the present. The scientometric
data obtained helped us to identify the most researched topics and these topics were further analyzed
and discussed. An increasing number of researchers are considering TixZr alloys as opposed to the
traditional ones because these alloys present improved mechanical properties and in some cases
improved corrosion resistance and biocompatibility. Due to the natural layer of oxides formed on
these alloys, multiple surface modification methods can be applied to solve some of the challenges
faced in the field of implantable materials. A significant number of studies are now focusing on
surface modifications at the nanometer scale or various coatings for improved corrosion resistance
and biological interactions. Although not yet commercially available, a TiZr alloy with a nanos-
tructured surface and embedded biologically active substances, such as antibiotics or coated with
hydroxyapatite, may become a future option.

Keywords: TiZr alloy; titanium zirconium alloy; surface modification; nanostructured surfaces;
scientometric analysis

1. Introduction

Due to the good biocompatibility of Ti, research on Ti alloys used as biomaterials is on
a continuous upward trend [1,2]. A radical increase in research related to zirconium dioxide
(ZrO2) has also been observed due to increased mechanical strength, biocompatibility, and
aesthetic properties in the case of dental work [1,3]. In this context, the titanium−zirconium
(TixZr) alloys have been intensively investigated in the last decade.

The mechanical properties, porosity, surface morphology, and implant design are the
determining factors for the evolution of osseointegration and longevity of an implant [4,5].

Implantable materials must have mechanical properties such as a modulus of elasticity,
yield strength, and ultimate tensile strength that can withstand various biomechanical
forces. Besides, biomaterials must be biocompatible, have low density and increased
resistance to corrosion and wear [6].

Commercially pure titanium (cpTi) was the most attractive alternative for implants [7,8].
However, the manufacture of implants with small diameters (≤3.5 mm) from cp-Ti is asso-
ciated with an increased risk of fracture due to insufficient mechanical strength. The aim is
to develop new alloys and coatings to solve this problem [8–14].

Zr as Ti is situated in Group IV of the periodic table of elements, therefore the two
elements have similar chemical properties and biocompatibilities [15,16]. Thus, TixZr type
alloys began to be studied more and more frequently, with the possibility to solve these prob-
lems, as both have satisfactory mechanical properties and good biocompatibility [10,17–20].

It is known that a new alloying strategy involving the combination of several principal
elements in high concentrations has been in development in the few years. The goal is to
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elaborate new materials named high entropy alloys with remarkable properties exceeding
those of conventional alloys. Some of them contain Ti and Zr [21–23] and have potential
implant applications [24].

Compared to other traditional biomaterials, some of the binary TixZr alloys have
a higher strength/weight ratio, lower modulus of elasticity and better corrosion resis-
tance [25–27]. Moreover, on the surface of alloys containing titanium and zirconium, a
layer of apatite is formed that is structurally similar to bone tissue, which improves the
bioactivity of these materials [28,29].

The present manuscript has a novel approach being a combined scientometric and
critical one in reviewing the behavior of TiZr alloys based on their composition, surface
and interface.

2. Methods

A bibliographic search was conducted in the ScienceDirect database using the terms
“titanium zirconium implants” and “TiZr implants”, choosing only the “research” and
“review” articles published in English from 2000 to the present (5 February 2021). Addi-
tionally, to ensure that most of the relevant studies regarding the chosen topic were taken
into consideration, multiple articles were selected manually.

The selected articles were carefully analyzed considering the purpose of this review
article. The inclusion criteria involved studies that examined binary TixZr alloys or those
that studied relevant characteristics related to the surface of this type of alloy. The aspects
monitored and evaluated were those related to changes at the micro and nanometric scale,
the methods used, mechanical properties, corrosion resistance and biological interactions.

The VOSviewer software (version: 1.6.16) was used for the scientometric analysis. The
evaluated aspects are co-authorship (unit of analysis: authors), co-occurrence of keywords
and terms from titles and abstracts. In all three cases, the maps created from the network
analysis were based on the selected bibliographic data.

For the authors to be included in the co-authorship analysis, a minimum number of
2 articles was selected for the keywords to be included in the co-occurrence analysis, a
minimum number of 2 occurrences was selected and for the terms from titles and abstracts,
a minimum number of 10 occurrences was selected.

3. Results and Discussions

The search identified 2508 articles in the ScienceDirect database. After reading the
titles and abstracts, 2344 were excluded. The remaining 164 articles were further evaluated,
from which 128 articles were selected based on the inclusion criteria. Another 35 articles
were selected manually. The selection process is illustrated in Figure 1.
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Figure 1. Evaluation process.

3.1. Scientometric Analysis

For the scientometric analysis we decided upon visual representations coupled with
some quantitative data. In the networks constructed, the link between two authors indicates
that they have co-authored publications, while the strength of a link indicates the number
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of co-authored publications. In the case of terms used (keywords or other terms), the link
indicates that the terms co-occur in the same publication, while the strength of the link
indicates the number of publications in which the terms co-occur.

3.1.1. Co-Authorship

From the total of 858 authors, 100 meet the threshold. The map is presented in Figure 2.
The highest number of publications for the analyzed data was 20 with a corresponding
total link strength of 70, while the lowest was two with zero total link strength.
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It can be observed from the obtained data that multiple, groups of authors are studying
metallic biomaterials and in particular titanium alloys, such as TixZr. Additionally, an
increasing trend can be observed in the last few years, compared with the starting period
considered.

3.1.2. Co-Occurrence

From the total of 586 keywords, 121 meet the threshold. The map is presented in
Figure 3, while the top 10 keywords based on total link strength are presented in Table 1.

Overall, the combined data suggest that the TixZr type of alloys are intensively studied
as an alternative for the conventional ones. Additionally, a trend is observed in the direction
of nanostructured surface modifications with antibacterial properties.
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Table 1. Top 10 keywords based on total link strength from the selected bibliography.

Keyword Occurrences Total Link Strength

Titanium 31 70
Mechanical properties 22 52

Dental implants 15 42
Osseointegration 15 38

Corrosion 10 36
Microstructure 12 30

Surface modification 10 28
Biocompatibility 11 25

Biomaterials 11 24
Zirconium 10 22

Some limitations regarding the quantitative data come from the different name at-
tributed to the same subject. As it can be seen in the visual representation, TixZr alloys
have been named “ti-zr alloy”, “tizr”, “tizr alloy”, which indicate a much higher value for
occurrences and the total link strength in this case.

The larger, central nodes indicate that the keywords were more frequently found,
which also implies that the research on that particular subject began a long time ago (e.g.,
titanium, dental implants, osseointegration). In contrast, the marginal nodes indicate either
that the topics have started to be studied more recently (e.g., antibacterial activity, bacterial
adhesion, bone-implant interface, nanostructures) or that the topics were studied in the
past. These aspects are also visible in the color of the nodes, which is based on the year
of publishing. Moreover, the links between the nodes highlight the correlation between
the subjects.
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3.1.3. Co-Occurrence (Terms from Titles and Abstracts)

From the total of 4947 terms, 128 meet the threshold. For each of the 128 terms the
software calculates a relevance score to eliminate the general terms that have no useful
information. Based on this score, 60% most relevant terms were selected, resulting in seven
terms. Even so, some usual terms such as “day”, “contact”, “week” etc. were included.
Therefore, these terms were excluded manually to obtain only the relevant terms. Finally,
several two terms were selected. The map is presented in Figure 4, while the top 15 terms
based on occurrences are presented in Table 2.
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Table 2. Top 15 terms from titles and abstracts based on occurrences from the selected bibliography.

Term Occurrences

Alloy 288
tizr 94

structure 78
mechanical property 65

biomaterial 60
corrosion resistance 59

implant surface 57
phase 57

osseointegration 57
metal 51
bone 47

technique 45
strength 39

ti zr 36
biomedical application 36

The co-occurrence of terms from titles and abstracts indicates furthermore the main
subjects of interest. By analyzing the data provided in the visual representation through
the size of nodes, the links between them and their color it can be concluded that different
alloys are increasingly studied as biomaterials. The mechanical properties and the corrosion
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resistance of these alloys appear to be mentioned more throughout time, but an interest
regarding surface modifications in relation to different biological aspects seems to emerge
in more recent studies.

The top terms combined with the visual representation helped us to establish the most
studied topics that are followed throughout this article such as type of alloy, mechanical
properties, surface modifications and biocompatibility.

3.2. Properties Related to the Composition of TixZr Alloys

Bone tissue is a type of connective tissue made up of cells and fibers. From the
perspective of mechanical properties, two types of bone tissue are differentiated, namely
cortical and trabecular. Cortical bone has a higher density and low porosity (10%), having a
modulus of elasticity between 4–30 GPa and a compressive strength between 20–193 MPa.
The trabecular bone has a low density, being composed in a proportion of 50–90% from
pores. This is also reflected in the modulus of elasticity which is between 0.2–2 GPa and
the compressive strength which is between 2–80 MPa [30]. The modulus of elasticity of
biomaterials should be close to that of the bones. If the biomaterial presents a significantly
higher modulus of elasticity, a phenomenon known as stress shield may occur, which is
characterized by a reduction in bone density (osteopenia) [28].

The interstitial elements, carbon (C), oxygen (O), nitrogen (N) and hydrogen (H)
have a hardening effect on transition metals due to the high suppression of dislocation
movements and network distortion [31]. Of these, O has the highest solubility in Ti and a
considerable hardening effect. In TixZr alloys, an increase in hardness has been reported
with an increase in O content [31,32]. Additionally, increasing the concentration of Zr
leads to finer grains, which together with the strengthening of the solid solution leads to
increased hardness, strength and plasticity. At the same time, an increased performance
regarding osteoinduction is obtained due to better adhesion of proteins [10].

Zirconium is considered an isomorphic stabilizer being completely soluble in Ti, it
can exist in both pure α and β phase [33]. In solid solution with another β stabilizer, Zr
can also act as a β stabilizer [34]. The α and α−β mix phases have good strength and creep
resistance, but β alloys have a better fatigue strength and lower Young’s modulus [33].
The Zr content in the allotropic form α′ (hexagonal martensite) increases the modulus
of elasticity [35]. While the α phase has small benefits at the temperature and stress
associated with implants, the β phase is especially beneficial for orthopedic implants and
any long-term implant [33,36].

As high entropy alloys (HEAs) have exceptional mechanical and corrosion behavior
new phases derived from the AlCoFeNiSmTiVZr [37] and from Ti−Nb−Ta−Zr after Al
addition have also been investigated [38] establishing the formation of the intermetallic
phase after annealing at 600–1200 ◦C.

A study performed on TixZr alloys (x = 10, 20, 30, 40 wt.%) shows that the microhardness
values, the bending strengths and the elastic recovery angles increase with the content of Zr,
being much higher compared to cpTi [2]. In the case of increasing the Zr content, in ZrxTi
alloys (x = 10, 20, 30, 40 wt.%) the properties no longer vary constantly with the Ti content.
Among the studied alloys, the best values of microhardness and bending modulus were
reported for Ti-40Zr wt.% [39]. TixZr binary alloys with high Zr content also present high
strength [40]. The hardness of Ti50Zr alloy (at.%) is 2.5 times higher than pure Ti or Zr [28,41].

Current information shows that TiZr alloys can also be manufactured to have a porous
structure and mechanical properties similar to those of bone tissue [29,42,43]. Wen et al.
report the manufacture of TiZr alloy foams with a density of approximately 0.3 and pores of
200–500 µm. The Young’s modulus for these is between 78.4 MPa and 15.3 GPa [29]. Porous
bulk metallic glass based on Ti-Zr has also been studied as an alternative to conventional
materials [44,45].

Comparative analysis regarding the mechanical properties between different studies
was difficult to perform for several reasons. On the one hand, different alloy manufacturing
techniques affect their structure and thus their mechanical properties, even if the composition
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of the alloys is the same. On the other hand, the evaluated characteristics and the evaluation
methods differ, which induces a greater variability. However, an attempt was made to
summarize the data and draw some conclusions. The observations are found in Table 3.

It can be seen that TixZr type alloys and especially Ti50Zr have improved mechanical
properties compared to the constituent metals.

In other studies, it is also remarked that the mechanical properties of Ti are superior
to Zr, as well as those of osseointegration, but Zr is superior to Ti regarding bacterial
adhesion [46]. The addition of Zr in Ti increases the hardness due to the transformation of
the structure from α (hexagonal) to α′ (orthorhombic) [47]. The microhardness, mechanical
strength and plasticity also increase with increasing Zr content [48]. Ti50Zr presents
significantly increased hardness due to solid solution strengthening, an effect caused by the
differences between the atomic radii of Ti and Zr [41] and increased corrosion resistance
compared to the individual metals (Zr or Ti) [49]. It is noted as well that the addition of
Zr significantly increases the corrosion resistance, but up to a maximum content of 50%
Zr [50]. In terms of biocompatibility, TixZr alloys present similar properties compared to
Ti [51] or even better [12].

Table 3. Comparative aspects Ti−TixZr−Zr.

Parameter Ti Ti15Zr
(Roxolid)

TixZr (x = 10,
20, 30, 40 wt.%)

TixZr (x = 5, 15,
25, 35, 45 wt%) Ti-50Zr ZrxTi (x = 10,

20, 30, 40 wt.%) Zr-30Ti Zr

Hardness 102–109
HV [52]

197 HV
[52] -

473
HV(Ti5Zr)-525

HV(Ti45Zr) [53]
- - 275–447

HV [54] -

Microhardness 186 HV
[2] -

266
HV(Ti10Zr)-350
HV(Ti40Zr) [2]

- -
275

HV(Zr30Ti)-291
HV(Zr10Ti) [39]

- 175 HV
[39]

Hardness 1630 MPa
[55] - - -

6.2 GPa (bulk)
2.01−3.00 GPa

(nanotubes) [19]
- - 700 Mpa

[55]

Modulus of
elasticity

103 GPa
[53] - - 53.5–59.3 GPa

[53] 44 GPa [28] - 68–130
Gpa [54] -

Bending
strength

844 Mpa
[2] -

989 MPa
(Ti10Zr)-1628

MPa (Ti40Zr) [2]
- - 1258–1738 MPa

[39] - 1142
Mpa [39]

3.3. Surface of TixZr Alloys

Material surface is of particular importance regarding the interaction with the body.
This should stimulate the integration with the surrounding tissue and prevent bacterial
adhesion and colonization. Obtaining these characteristics is a difficult task because the
surfaces of biomaterials that facilitate cell adhesion are also favorable for the adhesion of
bacteria, the mechanisms being similar [56,57].

The physicochemical properties of the implant surface directly influence the formation
of new bone tissue. This phenomenon is known as contact osteogenesis. Thus, over time,
several types of implants have been studied, from solid and macroporous to modified
surfaces at the micrometric, submicrometric and more recently, nanometric scale [58].

Surface characteristics are generally separated into two categories, topographic and
chemical. Topographic characteristics refer to the surface roughness, which can be evalu-
ated by several parameters, of which the most commonly used is Ra, the arithmetic mean
of deviations from the mean line. Three-dimensional parameters are also used, such as Sa,
which represents the arithmetic mean of deviations from the mean plane of analysis. A
problem in evaluating this parameter is that these measurement techniques are developed
for flat surfaces and are less suitable for threaded implants, such as screws [59].

As the surface is the only region that comes into contact with bone tissue, much of the
studies have focused on modifying certain properties such as chemical composition and
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roughness to promote osseointegration and mechanical fixation. The increase in roughness
leads to a larger contact surface for proteins and cells to interact with the material [60]. In
contrast, the metallic biomaterials that are designed to come into direct contact with whole
blood (heart valves, heart aid devices, heart pumps) must have low thrombogenicity [61]
and high surface roughness, as well as high surface energy, which is associated with high
thrombogenicity [9,62]. Thus, when designing the biomaterial surfaces multiple aspects
must be considered.

Surface chemistry is relevant through composition, biocompatible metals such as
Ti and Zr, being valve metals, form a natural layer of oxides that represent a barrier in
the corrosion process, but also through other properties such as surface energy or surface
charge. It is important to note that changes in topography often induce changes in chemistry,
or vice versa [59,63,64]. TixZr type alloys have a better wettability than cpTi, which leads to
a different biological behavior [17]. Studies suggest that surfaces with higher hydrophilicity
lead to better tissue integration, osseointegration and faster healing [65].

Surface modifications of metallic biomaterials mainly aim at increasing corrosion
resistance and improving bioactivity [30,66,67]. Additionaaly, because after surgery there
is an increased risk of developing a bacterial infection and oral antibiotics are generally
given, a more effective alternative could be to load implants with active substances that act
locally, over time [7,12,68–70].

The techniques used can be mechanical, chemical or physical. Mechanical methods
include grinding, polishing and blasting. Chemical methods include treatments with acids,
hydrogen peroxide, alkaline solutions, sol-gel techniques, anodic oxidation, micro-arc
oxidation (MAO) and chemical vapor deposition. Physical methods include physical vapor
deposition, femtosecond laser ablation in solution (FLAS) and several types of thermal
spraying methods [71–77].

The naturally formed oxide film on the surface of Ti is composed of several layers,
namely TiO (in contact with the metal), Ti2O3 (intermediate layer) and TiO2 (outer layer).
Oxidation processes can increase the concentration of TiO2 quite a lot so that the layers of
suboxides can no longer be detected, but the organization exists [74].

Oxidic compounds formed by the natural phenomenon of passivation may result
from the following oxidation reactions [25]:

Ti + H2O→ TiO + 2H+ + 2e− (1)

2TiO + H2O→ Ti2O3 + 2H+ + 2e− (2)

Ti2O3 + H2O→ TiO2 + 2H+ + 2e− (3)

2Zr + H2O→ Zr2O + 2H+ + 2e− (4)

Zr2O + H2O→ 2ZrO + 2H+ + 2e− (5)

2ZrO + H2O→ Zr2O3 + 2H+ + 2e− (6)

Zr2O3 + H2O→ 2ZrO2 + 2H+ + 2e− (7)

The Gibbs free energy for Zr oxidation (−1117.8 kJ/mol) is greater than that for Ti
oxidation (−890.5 kJ/mol), which suggests that Zr is preferentially oxidized [78]. However,
a study performed on the oxide film developed by Ti50Zr alloys (at.%) through anodization
(9 V) in different solutions shows that the mobility of Ti4+ ions is higher than that of Zr4+

ions, the outer layer being composed mostly of TiO2. The average reported composition
was 76% TiO2 and 24% ZrO2 [79]. This aspect is revealed in another study on TixZr alloys
(x = 23, 42, 62.5 at.%), showing that the outer layer is composed of TiO2 and that it decreases
in thickness with increasing Zr content. The reported composition of the inner layers was
(Ti0.74Zr0.26)O2, (Ti0.56Zr0.44)O2, and (Ti0.365Zr0.635)O2 [80].

The methods used to modify the surfaces of TixZr alloys mentioned in the literature,
as well as some relevant aspects are summarized in Table 4.
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Table 4. Methods for surface modifications.

Alloy Type Method Morphology Properties Surface Topography Biological Aspects Bibliographical
References

Zr20Ti
Zr40Ti Thermal oxidation at 500 ◦C (2 h) ZrO2

ZrTiO4

Hardness-1420–1480 HV
Adhesion force-51 N

Zr20Ti–14 µm
Zr40Ti–11 µm - [18]

Zr5Ti (wt.%)
Zr25Ti (wt.%)
Zr45Ti (wt.%)

Thermal oxidation at 500 ◦C (2 h) TiO2
ZrO2

-

-oxide layer composed of a compact
inner layer and a thicker but less

compact outer layer;
-the thickness of the outer layer

decreases with increasing titanium
content but has fewer defects and

higher density.

- [81]

Ti5Zr (wt.%)
Ti10Zr (wt.%)
Ti15Zr (wt.%)

Polished (a)
Acid etched with a mixture of

sulfuric and hydrochloric acid (1 h
50 min) (b)

-

Modulus of elasticity:
Ti5Zr–115 GPa
Ti10Zr–135 GPa
Ti15Zr–125 GPa

Stiffness:
Ti5Zr–78 µN/nm

Ti10Zr–97 µN/nm
Ti15Zr–82 µN/nm

The polished surface showed
longitudinal grooves (a) Acid

treatment resulted in a more rough
surface, but with different

characteristics between alloys,
probably depending on the

microstructural characteristics (b)

Pre-osteoblastic cell line
(MC3T3-E1):

-cell adhesion and proliferation
took place on both types of

surfaces;
-the surface treated in acids has

a slightly flatter and more
widespread morphology than

the polished one;

[82]

TixZr (x = 12–15 wt.%)

Anodization at 300 V, 60 mA/cm2

in DL-α-glycerophosphate
disodium salt hydrate and

calcium acetate solution (5 min,
room temperature)

TiO2
Contact angle: 52◦

Roughness: 0.286 nm

Uniform oxide layer that showed
numerous pores with a diameter

between 200 nm–6 µm.

Osteoblast-like cells (SaOS2):
-surface treatment has improved
cell adhesion and proliferation
-the surface seems to favor the
formation of new bone tissue

[83]

TixZr (x = 13–17%)

Sandblasting with Al2O3
(0.25–0.5 mm)→ acid etching
with a mixture of sulfuric and

hydrochloric acid at 125–130 ◦C
(5 min).

Handled under nitrogen
atmosphere and stored in 0.9%
NaCl (SlActive®)→ cathodic

polarization in 200 mL 2 M acetate
buffer, pH = 5 (21 ◦C)

TiH2 covered with a
thin layer of oxides-in

both polarized and
non-polarized samples

-

On the surfaces obtained by
sandblasting and acid etching,

nano-nodules with a diameter of
60–80 nm were observed.

Subsequent polarization caused only
small changes, increasing the

diameter of the nano-nodules to
80–100 nm.

- [84]
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Table 4. Cont.

Alloy Type Method Morphology Properties Surface Topography Biological Aspects Bibliographical
References

Ti15Zr (wt.%)

Polishing→ plasma electrolytic
oxidation (PEO). The electrolyte
solution was prepared from Ca
acetate and disodium glycerol

phosphate.

TiO2
ZrO2

Contact angle: 30◦ Rough surface with pores of
different diameters

Albumin adsorption and
adhesion of Streptococcus
sanguinis were evaluated:

-improved protein adsorption
-low adhesion of the biofilm

[85]

Ti20Zr (wt.%)
Polishing→ galvanostatic

anodization in 0.3 M and 1 M
phosphoric acid solution

TiO2
ZrO2

Phosphate ions
incorporated into the

oxide layer

-

The oxide layer increased in
thickness through anodization;

The incorporation of phosphate ions
increases corrosion resistance.

- [86]

TixZr (x = 10, 20, 30,
40 wt.%)

Heat treatment at 1000 ◦C (24 h) in
argon atmosphere→ polishing→

anodization in 1.0 M H3PO4 +
0.5wt.% NaF

TiO2
ZrO2

-

Nanotubes with an internal
diameter between 150–200 nm, wall

thickness-20 nm.
The distance between the nanotubes
increases with the Zr content (60 nm,

70 nm, 100 nm, 130 nm).
Nanotube length increases with Zr
content (800 nm, 1.25 µm, 1.7 µm,

1.9 µm)

- [87]

ZrxTi (x = 5, 25,
45 wt.%)

Polishing→ oxidation at 500 ◦C
(4h)→ coated with

hydroxyapatite (HAp)-ZrO2-Ag

TiO2
ZrO2

Presence of nanoparticles (70 nm
diameter) of Ca, P, Zr and Ag in the

deposited layer.
The integrity of the deposited layer

was best preserved in Zr45Ti

In vivo evaluation
-implantation in pig tibia:
-significantly increased

osteogenesis in the first month
after implantation

-Zr45Ti was covered by a larger
area of bone tissue formed,

ensuring better proliferation
and differentiation of

osteoblasts

[88]

Ti50Zr

Polishing→ two-step anodization
in glycerin + 15% H2O + 0.2 M

NH4F, with ultrasonication
between the two stages→

annealing at 450 ◦C

Ti0.67Zr0.33 (without
annealing)

ZrTiO4
(with annealing)

Contact angle—H2O: 29.2◦

Adhesion force: 12.4 nN
Hardness: 1.02–1.24 GPa

Modulus of elasticity:
28–43 GPa

Contact angle—H2O: 29.6◦

Adhesion force: 10.9 nN
Hardness: 0.90–0.97 GPa

Modulus of elasticity:
26–27 GPa

Nanotubes with a diameter between
46–120 nm

The antibacterial effect on
Staphylococcus aureus (S. aureus)

was studied:
-the nanotubular texture

inhibited growth by 65–69%

[89]
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Table 4. Cont.

Alloy Type Method Morphology Properties Surface Topography Biological Aspects Bibliographical
References

Ti50Zr

Polishing→ two-step anodization
in glycerin + 15% H2O + 0.2 M

NH4F, with ultrasonication
between the two stages→

application of gentamicin sulfate
solution→ coating with chitosan

(CS) by immersion (1)
Surfaces treated as described in (1)

were immersed in a mixture of
sulfuric acid-hydrogen peroxide

for 2 h (2).

-

(1) Contact angle: 30◦

(1) Roughness: 319 nm
(2) Contact angle: 52.5◦

(2) Roughness: 440 nm

(1) Nanotubes with internal
diameter 120 nm, external diameter
230 nm, wall thickness 30 nm and

length 10 µm
(2) Nanopores with a diameter of 70

nm and a depth of 100 nm.

(1) In the case of nanotubes, 68%
of gentamicin is released in a

first stage, faster, and the rest in
a slower stage up to 21 days.

(2) In the case of nanopores, 82%
of gentamicin is released in the
first 60 h, and the rest gradually

up to 10 days.

[68]

Ti50Zr (wt.%)

Polishing→ acid etching in
HNO3: HF: H2O mixture (3:1:2)

→ anodization in
K2HPO4/glycerol at 180 ◦C (2 h)

TiO2
ZrO2

(ZrxTiyOz)
Contact angle: 15◦ Nanochannels with a diameter of 35

nm and a length of 3.2 µm

RAW 264.7 macrophages:
-decreases the proliferation rate
-supports macrophage adhesion

but does not allow fusion

[90]

Ti50Zr (at.%)

Polishing→ treatment in 10 M
NaOH solution at 60◦ C (24 h)→
heat treatment at 600◦ C (1 h) (a)

Polishing→ hydrothermal
deposition in a supersaturated

solution of Ca(OH)2 at 200 ◦C (8 h)
(b)

TiO2
ZrO2

Na2Ti5O11
Na2ZrO3

TiO2
ZrO2

CaTiO3
CaZrO3

Ra-0.62 µm; Rs-3.02 µm
Ra-0.60 µm; Rs-2.70 µm

Porous network
-pore size: 0.4–1.0 um

-layer thickness: 12 µm
Porous network

-pore size: 50–100 nm
-layer thickness: 45 nm

In simulated body fluid (SBF),
the formation of a compact layer
of apatite was observed in the

case of treated surfaces.
SaOS2:

-surface treatment has improved
cell adhesion and proliferation
-Ca(OH)2 treatment proved to

be a more effective treatment for
initial cell growth

[91]

Ti50Zr (at.%)

Polishing→ Preparation of
colloidal solutions TiO2 and HAp
→ heating to 80 ◦C (2 h)→ spin
coating→ 600 ◦C heat treatment

TiO2
CaTiO3

Ca2Ti2O5

-

Dense, uniform surface, without
cracks.

Layer thickness: 50 µm (TiO2 (25
µm) and HAp (25 µm))

In SBF, the formation of an
apatite layer was observed that
increased in thickness with time.

[92]

Ti50Zr

Polishing→ acid etching in a
mixture 3:7 30 wt.% H2O2:
98 wt.% H2SO4 (1.5 h)→

dip-coating in poly(lactic acid)
solution→ electrospinning using
polycaprolactone solution with

dissolved silver nitrate→
immersion in 1 M NaOH (2 h)

- Contact angle: 52.45◦

Adhesion strength: 2.7 MPa

Fibers with a size between 180–700
nm and silver nanoparticles of

30–40 nm

Microbial inhibition:
Escherichia coli (E. coli): 74.27%

S. aureus: 66.02%
[93]
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Table 4. Cont.

Alloy Type Method Morphology Properties Surface Topography Biological Aspects Bibliographical
References

Ti50Zr
Polishing→ high voltage anodic
plasma deposition using Ag-C as

anode

ZrO2
TiO2

C
Ag

Contact angle:
75.85◦–108.79◦ (increases

with Ag content)
Roughness: 0.8–3.58 nm

(increases with Ag content)

Diamond like carbon film formed on
the natural layer of oxides with

silver nanoparticles in the form of
clusters of 200–400 nm

Layer thickness: 39–720 nm

- [8]

Ti50Zr

Polishing→ immersion in 10 M
NaOH (1 h, 60 ◦C)→ immersion

in 3% 3-aminopropyl
triethoxysilane (1 h, room

temperature) −30 min at 80 ◦C→
immersion in 6 mg/mL

3-maleimidopropionic acid
N-hydroxysuccinimide ester
(1.5 h, room temperature)→

immersion in 2 mM L-cysteine
(2 h)

- Contact angle: 42.28◦ Formation of a hydration layer with
a mean thickness of 50 nm

Gingival fibroblasts:
-good biocompatibility

-no cytotoxicity was observed
Microbial inhibition:

E. coli: 63.90%
S. aureus: 56.74%

[94]

Ti50Zr

Polishing→ acid etching in 12 M
HCl (1 h, 80 ◦C)→

electrodeposition in HAp-CS
solution at −1500 mV (1.5 h,

90 ◦C)

-
Contact angle: 42◦–50◦

(depending on the ratio of
HAp: CS)

A uniform layer of HAp: CS was
observed. - [95]
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3.3.1. Surface Chemistry

Even biomaterials such as TixZr, considered “inert”, degrade to some extent over
time, resulting in increased concentrations of metal ions. The release of metal ions from
the implant takes place through the dissolution of the passive layer, mechanical wear
and electrochemical corrosion. Metal ions can exist as such, but also in organometallic
complexes, metal oxides or even nanoparticles [96]. Zirconium is considered an anodic
alloying element for Ti, which reduces anodic activity [97].

Implant corrosion leads to a decrease in their resistance and the release of metal ions
in the surrounding tissues [98]. Valve metals, which develop a layer of oxide on the surface
through exposure to air, have good corrosion resistance [30,99]. If the oxide layer is affected,
the metal ions are released continuously until repassivation takes place [30].

Despite the fact that the passive layer functions as a physical barrier responsible for
corrosion resistance that significantly hinders the release of metal ions into the surrounding
tissues, small amounts of metal ions are still released from the metallic material. This pro-
cess is a part of transient breakdown and reforming events of this film and to metal debris
with acidification as a detriment to the stability of the passive regime. The breakdown
of the titanium oxide layer by nucleation of corrosion pits occurs in bioliquids such as
Ringer’s solution at electrode potentials, well below the pitting potential. The frequency of
breakdown increases significantly with pH value decrease, with temperature increase and
in particular in the presence of chloride anions [100–103].

A study evaluating the corrosion resistance of Ti, TixZr (x = 30, 50, 70%) and Zr in
a lactic acid + NaCl solution and artificial saliva solution shows that the addition of Zr
significantly increases the corrosion resistance, but up to a maximum content of 50% [50].

Although the oxide layer forms naturally on the surface of TixZr alloys, it is thin and
weak. To improve Zr20Ti and Zr40Ti implants, oxidation at temperature (500 ◦C, 2 h) was
proposed, which led to the formation of an oxide layer of ZrO2 and ZrTiO4 with a thickness
of 11–14 µm. The oxide layer formed had both increased corrosion resistance and better
wear resistance, the wear rate being almost 10 times lower in the case of Zr20Ti and almost
20 times in the case of Zr40Ti [18].

Regarding the electrochemical stability of TixZr implants, it was observed that the
presence of fluoride anions can have a negative impact, favoring corrosion. Given that
these implants are frequently used as dental implants and that fluoride is introduced
into toothpaste and mouthwash to prevent cavities, solutions must be found. It has been
observed that the oxide film reacts with these anions, resulting in titanium fluoride or
sodium titanium fluoride. The thermal oxidation of TixZr alloys in air at 500 ◦C for two
hours appears to significantly reduce the effect of fluoride [104] (pp. 7–8). Another study
regarding the corrosion resistance of Zr−Ti alloys shows too that the thermal oxidation in
air at 500 ◦C does improve the corrosion resistance and suggests that prior to the use of
such alloys as implant materials, a treatment consisting of thermal oxidation in air followed
by exposure to a physiological solution should be applied [105].

The fluoride effect was tested on Zr5Ti, Zr25Ti and Zr45Ti alloys in acidic artificial
saliva, Ph = 3 with a NaF concentration of 0.2 wt.%, 0.5 wt.% and 1 wt.%. The alloys
were tested as such and after thermal oxidation in air at 500 ◦C for two hours. The results
showed that although acidic artificial saliva with fluoride is a very aggressive medium
for ZrxTi alloys, thermal oxidation is an effective method of surface treatment. The oxide
layers formed by TiO2 and ZrO2 provided a good corrosion resistance [106].

Another study performed on Zr5Ti, Zr25Ti and Zr45Ti in artificial saliva solution, in
the presence of NaF (0.05 wt.%, 0.1 wt.% and 0.2 wt.%) and albumin (0.6 wt.%) showed
that Zr45Ti has better corrosion resistance [107]. The same alloys were tested in Ringer’s
solution (pH = 6.8) [108] and physiologically acidified Ringer’s solution at pH = 3, also
evidencing that Zr45Ti has the highest corrosion resistance. Moreover, it was observed that
after thermal oxidation at 500 ◦C, the oxide layers became thicker and more stable [81]. The
higher Ti content (45%) seems to lead to the suppression of pitting corrosion [109].
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The evaluation of the oxide layer and its corrosion resistance on Ti20Zr alloy showed
that the passivation takes place more easily and that the oxide layer has better corrosion
resistance in Ringer’s solution at acidic, neutral and alkaline pH compared to Ti. It was also
observed that at acidic pH, calcium and phosphate ions were deposited on the surface, and
at neutral and alkaline pH a protective layer of hydroxyapatite (HAp) was formed [110].

The surface degradation of commercial Ti, Zr, and ZrO2 caused by bacterial adhesion
(in particular, the Streptococcus species) has been discussed in several papers in the litera-
ture [111–113] concluding more recently that dental implant surfaces of TiZr and ZrO2 are
not more susceptible to colonization than commercially pure Ti implants [114,115].

In addition to surface composition, the internal characteristics of metallic biomaterials,
such as allotropic phase and defects, also influence the initiation and propagation of
corrosion [116].

3.3.2. Surface Topography

Comparing the results reported on the surface roughness of biomaterials is difficult
to achieve because there are variations regarding the analytical techniques and how the
results are reported. Moreover, the terminology used is not harmonized and the same
terms may refer to different procedures. However, it is generally accepted that surfaces
with higher roughness favor osseointegration compared to smoother ones [117,118].

In addition to the modification techniques, which determine the properties of the cre-
ated surfaces, the methods of investigating them are also of major importance. Techniques
such as nanoindenting and scratching techniques are used to characterize submicrometric
surfaces. Nanoindentation allows for the evaluation of hardness and Young’s modulus.
The scratch test allows for the evaluation of coating adhesion to the substrate [19,66].

Rough surfaces can be differentiated into two categories: modified surfaces by coating
(e.g., HAp) or without coating (e.g., sandblasting, acid etching). Electrochemical changes,
such as anodic oxidation or NaOH treatment lead to the formation of biomimetic surfaces
by promoting the formation of apatite [119].

Obtaining structured surfaces on a micrometric scale is generally carried out by acid
etching, sandblasting (SB) or oxidation. Sandblasting involves the use of abrasive particles
(Al2O3, TiO2, SiO2) at high pressure. This technique can lead to the incorporation of the
particles used in the material and thus to the modification of chemical properties and
reduced corrosion resistance. To solve this problem, a subsequent acid etching step is
generally used to dissolve at least some of the projected particles. Acid etching produces
similar results to sandblasting. The results obtained vary depending on the exposure time,
type of acids used and temperature [117].

There is a TixZr alloy marketed under the name Roxolid-SLA® (Straumann, Basel,
Switzerland) [11,13,120–123]. This alloy contains 13–17% zirconium and is beginning to
be considered the first choice in medical procedures [124]. The smaller grains of 1–2 µm,
compared to 20–30 µm in cpTi lead to increased overall strength [125]. Another variant
also produced by Straumann is RXD-SLActive® this implant is hydrophilic and has a
nanostructured surface compared to Roxolid-SLA® [126].

The surface named SLA® is obtained by sandblasting with corundum (particle size
250–500 µm) followed by etching with a concentrated mixture of hydrochloric acid and
sulfuric acid. The implant is then cleaned with nitric acid, rinsed with deionized water and
dried in an ambient atmosphere. For the SLActive® surface, the difference lies in rinsing
with an NaCl solution in a nitrogen atmosphere and storage in 0.15 M saline solution. This
change, apparently minor, leads to a hydrophilic surface with better properties in terms
of osseointegration. The formation of nanostructures was also observed on the SLActive®

surface [127].
To highlight the differences between mechanical processing and acid etching, the

properties of TixZr alloys (x = 5, 10, 15 wt.%) with these two types of surface treatments
were evaluated. The mechanically prepared samples were polished with an automatic
polisher, and the etched ones were immersed in a mixture of sulfuric and hydrochloric acid
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for 1 h and 50 min. Acid etching treatment produced a rougher surface and better overall
properties [82].

The comparative study of the surface Ti, TixZr after sandblasting and acid etching
respectively, showed that in the case of TixZr, the hydrogen concentration is 1.9 times
higher. The formation of hydrides favored by the presence of Zr increases the roughness by
the appearance of nanostructures, which in the case of the Ti surface was not observed. It
was also observed that the hydride layer is below the oxide layer, which can be explained
in the case of sandblasting-acid etching (SBAE) by the fact that the oxide layer is formed
after the formation of hydride, but also by the fact that oxygen could replace hydrogen in
the outer layer [128].

3.4. Coatings with TiZr

To obtain the advantages of TixZr alloys, several studies have been developed that
aimed to cover other substrates with these metals.

Through the plasma surface alloying technology, Zr ions were implanted in the
surface of a Ti material, thus creating a TixZr alloy only in the surface layer. The alloys thus
created had a Zr content of 1.09 at.%, 1.77 at.% and 3.68 at.%. The surface hardness and
corrosion resistance proved to be better than that of cpTi. Good biocompatibility was also
observed [17].

A TixZr surface was also obtained on Ti alloy by ion-assisted arc-plasma deposition in
vacuum. The deposition was made by using two cathodes, one of Ti and one of Zr, which
were arc evaporated in Ar atmosphere, at 0.2 Pa. The thickness of the obtained layer was
5 µm, with a Zr content of 11 wt.% and 22 wt.%. The material thus obtained showed a low
modulus of elasticity, of 77–98 GPa, compared with the Ti substrate which had 110 GPa.
Moreover, nanoindentation showed an increase in resistance to plastic deformation with
increasing Zr content from 11 wt.% to 22 wt.% [129].

The use of a layer of TixZr deposited on a steel material, SS304, also led to a significant
improvement in corrosion resistance [130].

The explosive spraying of Ti−Zr coating could help as well by reducing the Young’s
modulus of the materials used as substrate (cpTi or Ti6Al4V), therefore reducing stress
shielding [131].

Ti−Zr films were also deposited on Ti substrates by MAO, obtaining a porous crys-
talline layer of titanium and zirconium oxides. It has been observed that this approach
leads to increased biocompatibility and that cell development increases proportionally
with Zr content [132].

The incorporation of zirconium oxide into the oxide layer of Ti by plasma electrolytic
oxidation (PEO) is another possible approach. A rougher surface was thus obtained, which
by immersion in simulated body fluid (SBF) led to the formation of an apatite layer [133].
It was also shown that through this approach, the oxide layer formed favored osteoblast
adhesion and could even decrease the bacterial adhesion [134]. Besides this, it was shown
that nano-ZnO have antibacterial properties [135].

A possible coating that could lead to improved properties would be that with ZrTiO4
by the sol-gel method. The synthesis method has been developed but has not yet been
applied to biomaterials [136].

3.5. Nanostructured Coatings

The design of nanometer-scale biomaterial surfaces is a subject of continuous re-
search [137–140]. Nanostructured surfaces influence the chemical reactivity of materials
and implicitly the biomolecular interactions [141,142]. It has been observed that nanoscale
changes promote osteoinduction and biomaterial–tissue interaction and that implants with
nanotubular surfaces show a significant improvement in bone creation and gene expression
compared to implants without nanostructured surfaces [143–147].
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3.5.1. Nanotubes

Anodizing may lead to self-ordered nanotubes, with certain dimensions (diameter,
length) by varying the anodizing conditions. Nanostructures created in this way may have
a partially crystalline structure. Their morphology influences electrochemical stability,
wettability and biocompatibility [124].

The formation of nanotubes on TiZr substrate can be accomplished by a two-step
anodizing procedure. They can be annealed in air or reduced in the atmosphere by Ar/H2.
By annealing, the mixed oxide tubes are converted to zirconium titanate (ZrTiO4), and by
reduction to (Zr0.333Ti0.666)O2 [124].

Nanotubes were reported to be obtained by two-step anodizing using an electrolyte
solution with glycerin, 15% water and 0.2 M NH4F. The first anodization was performed at
55 V for 4 h, and then the samples were ultrasonicated to remove the formed structures.
The second anodization was performed at 75 V for 1 h. The formation of nanotubes is the
result of a competition between the electrochemical formation of oxides and the chemical
dissolution of oxides by the fluoride anion. Reactions can be described as follows [68]:

Me + 2H2O → MeO2 + 4H+ + 4e− (8)

MeO2 + 4H+ + 6F− → [MeF6]
2− + 2H2O (9)

In the case of nanotubes formed on TiZr type alloys, the diameter of the nanotubes
decreases with increasing Zr content. Nanotubes with a diameter of approximately 50 nm
and a length of 17 nm were obtained. Regarding the heat treatment, fluorine can be removed
at 300 ◦C, and at 800 ◦C crystallization occurs, but also the collapse of nanotubes [148].

The formation of TiO2 nanotubes by anodization at 10 V in 1.0 M phosphoric acid and
0.5% NaF for 2 h was also studied on TixZr alloys (x = 10, 20, 30, 40%). The nanotubes had
an average diameter of 150–200 nm and a wall thickness of 20 nm. The distance between
the nanotubes increased with increasing Zr content of the alloy, being 60, 70, 100 and
130 nm [87].

Nanotubes were also obtained on Ti50Zr substrate by two-step anodizing at different
voltages (15, 30, 45 V) in glycol with 15% H2O and 0.2 M NH4F. The layer formed in the
first anodization was removed by ultrasonic treatment, thus obtaining a prepared surface
so that in the second stage of anodization nanotubular structures with a high degree of
organization were obtained [149].

The zirconium titanate (ZrTiO4) nanotubes formed on such alloys have increased
structural flexibility compared to pure TiO2 nanotubes. The diameter and length of the
formed tubes can vary depending on the anodizing potential used without damaging the
structural configuration, at higher potentials the amorphous structure predominates over
the crystalline one [145,150]. Another important aspect, less studied, is that nanotubes
formed in this way can have an antibacterial role [150].

3.5.2. Other Nanostructured Surfaces

It was observed that nanopores were obtained on Ti50Zr by anodizing at 5 V and 10 V
in a solution of 1 M (NH4)2SO4 and 0.5 wt% NH4F. The diameter of the nanopores was
increasing with the applied potential. The material was subsequently annealed at 500 ◦C
for three hours. The surfaces thus formed had an antibacterial effect, even if smaller than
in the case of nanotubes [150].

The formation of nanopores was also observed by immersing an alloy of Ti50Zr with
nanotubular surface obtained by two-step anodizing in a solution of H2SO4 (37 N)/H2O2
(30%) for two hours at room temperature [68] and when using spark anodization in a
solution of glycerophosphate and calcium acetate on TixZr (x = 12–15 wt.%) [83].

The surface of a Ti20Zr alloy was galvanostatically anodized in phosphoric acid
solution to increase the corrosion resistance. The current density was 10 mA/cm2, the
concentration of phosphoric acid was 1 M, and the anodizing time was 45 min. It has been
observed that this approach results in a nanometric layer consisting mostly of crystalline
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TiO2 with incorporated phosphorus ions. The corrosion resistance was 10 times higher in
the case of the anodized sample [86].

Anodization in a hot solution of glycerol-phosphate of a Ti50Zr alloy led to one-
dimensional nanostructures in the form of channels [90,151]. As a result of this treatment,
better corrosion resistance and higher hydrophilicity were obtained. Additionally, in vitro
studies on RAW 264.7 macrophages showed a reduced reaction in the inflammatory re-
sponse [90].

In a study on the cathodic polarization of some TiZr materials (13–17% Zr) with a
surface previously processed by sandblasting with aluminum oxide particles (0.25–0.5 mm),
the acid etching treatment with a mixture of hydrochloric acid and sulfuric acid at 125–130 ◦C
for 5 min produced nano-nodules [84].

Another type of nanostructured coating was made with two biopolymers, poly(lactic
acid) and polycaprolactone. The methods used were dip coating and electrospinning,
respectively, thus obtaining nanofibers [93].

3.6. Biomimetic Coatings

On a Ti15Zr alloy, obtained by mechanical processing (Straumann AG), a biofunctional
coating was formed by PEO. As the control, the same unmodified alloy was used, and
some were SLA®-treated (sandblasting and acid etching). The samples were used as an
anode, while the cathode was a steel tank equipped with a cooling system. The electrolyte
solution contained calcium acetate and disodium glycerol phosphate. The samples were
immersed in 500 mL of solution for 10 min, using a voltage of 290 V and a frequency of
250 Hz. During the electrochemical treatment, pores appeared in the places where the
micro-discharge took place, thus obtaining molten oxides which were quickly cooled in
the presence of electrolytes when the spark was extinguished. This phenomenon led to
the incorporation of Ca and P, resulting in a Ca/P ratio close to that of HAp. This aspect
combined with the increased surface roughness significantly influenced the biological
properties of the implant. In terms of stability, the PEO-treated alloy showed the highest
corrosion resistance compared to control ones [85].

Two other ways to modify the surface of a Ti50Zr at.% alloy have been proposed. One
of the methods involved immersing the sample in 10.0 M NaOH at 60 ◦C for 24 h. The
samples were dried at room temperature in air for another 24 h. They were then heat
treated at 600 ◦C for one hour in an electric high vacuum furnace. The other method
involved the hydrothermal storage in a supersaturated solution of 0.2 M calcium hydroxide
in an autoclave at 200 ◦C for eight hours. In the first case, a 12 µm oxide layer composed of
TiO2, ZrO2, Na2Ti5O11 and Na2ZrO3, and in the second case a 45 nm layer composed of
TiO2, ZrO2, CaTiO3 and CaZrO3 was formed. When immersed in SBF, a layer of apatite
was observed in the case of both treated surfaces, but not in the untreated ones [91].

In the case of alkaline treatment, the native layer partially dissolves in the alkaline
solution, forming HTiO3-H2O anions, which combine with the cations to form a hydrogel
layer. During the heat treatment, this layer is dehydrated resulting in an amorphous or
crystalline form of alkali titanate [152].

The deposition of a HAp/TiO2 layer on TiZr alloy has been reported by the sol-gel
method at 3000 rpm for 15 s, followed by heat treatment at 600 ◦C for 20 min. Subsequent
heat treatment at 600 ◦C for another 20 min resulted in HAp crystallization. The obtained
layer had a total thickness of 50 µm, being formed in equal proportion of TiO2/HAp [92].
Regardless of the sol-gel method used, cracks may occur due to contractions caused by
the evaporation of a large volume of solvent [153]. In the case of TiO2 coating, the formed
cracks were subsequently coated with HAp. The mechanism of apatite formation in SBF
can be explained by the release of Ca2+, Na+, K+, ions from the HAp deposited layer and
their exchange with hydronium ions from the SBF solution, forming Ti−OH, Zr−OH
groups. These functional groups can react with water molecules in the environment by
inducing nucleation. Once formed, apatite nuclei can grow spontaneously by consuming
ions from the SBF solution [92].
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The coating of TiZr with HAp was also performed in combination with chitosan (CS),
obtaining coatings with different porosities and contact angles depending on the HAp/CS
ratio used [20,95,154].

Another type of biomimetic coating used on TixZr type alloys (Ti5Zr, Ti25Zr and Ti45Zr)
can be the coating with HAp-ZrO2-Ag, which favors the formation of bone tissue [88,155].
Silver nanoparticles (AgNPs) are effective, in very low concentrations (0.5–1.0%), in prevent-
ing the formation of bacterial biofilm. They interact with proteoglycans on the membrane of
bacterial cells and inside them. Silver ions can also interact with sulfuryl groups preventing
the replication of bacterial DNA [156–158].

Moreover, the development of bioinductive surfaces could increase the healing capac-
ity of bone tissue and is a solution for patients with risk factors [70,159]. The implantation
of a biologically active molecule (parathyroid hormone fragment 1−34) in the natural oxide
layer was performed on a TiZr implant (Straumann AG) [70].

3.7. Biological Aspects

The interactions between cells and biomaterial are determined by the surface proper-
ties [160,161]. Cells do not interact directly with the surface of the biomaterial, but with
the protein layer adsorbed on the surface. The transcriptomic and proteomic technologies
used to create gene and protein expression profiling can be used for a more thorough
understanding and to predict the biocompatibility of the researched materials [162–165].

The interaction between human gingival fibroblasts and TixZr materials with surfaces
treated in different ways shows that cell adhesion and differentiation are influenced by
surface properties [166,167]. Another study that looked at the expression of several genes
involved in the process of cell adhesion shows that high surface energy positively influences
the adhesion of osteoblasts [168].

Microbial infections and in particular infections with multidrug resistant microbes are
a major problem that must be considered in the development of all biomaterials [169–171].
Recent research focuses on the use of nanotechnology in solving this problem, nanometri-
cally structured materials having characteristics far superior to conventional ones (bulk
form). Additionally, the reactive oxygen species produced by the use of nanocomposite
oxide metals or nanoparticles cause the inhibition of bacterial growth [170].

Bacterial adhesion can lead initially to mucositis and later to periimplantitis, which can
cause implant loss. Thus this aspect is approached and studied in many studies [172–174].
Surface properties, such as roughness, free energy (wettability) and chemical composition
are the determining factors in terms of cell adhesion and microbial colonization [173,175,176].

Surface roughness, chemical composition, wettability and surface charge also influence
the structure and size of the biofilm. Although it is a subject often studied, the results
obtained in vitro may differ from those obtained in vivo. The differences appear because
it is difficult to imitate the biologically complex environment. In vivo studies show that
bacterial adhesion increases with increasing roughness and hydrophobic surfaces promote
the accumulation of proteins, which serve as a binding site for bacteria [177].

In a time with more aggressive bacteria and viruses, for the success of dental implants,
besides the incorporation of efficient antibacterial agents inside implants, loading of the anti-
inflammatory drugs to reduce inflammation and bone forming proteins/peptides/growth
factors (bone morphogenetic protein-2/BMP-2, parathyroid hormone, Zn/Ag/Sr/Mg
ions/nanoparticles) to enhance new bone formation at the implant–bone interface have
been applied [178–180]. More recently, creating composite structures with graphene and
nanotubes on the implant surface proved to have efficient dual antibacterial and osteogenic
properties [181].

Another important aspect is related to the tribocorrosion of metallic materials. The
released metal nanoparticles (metal wear debris) can migrate to any part of the body (except
the brain), depositing in the lymph nodes, the liver, spleen and bone marrow. They also
have a genotoxic potential, which can affect the genetic material, which could lead to cancer
or birth defects [182].
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The dissolution of the oxide layers is relatively low in vitro because the potential
changes are small, but in the body, this process can be accelerated by the presence of
amino acids and proteins. Another process that can accelerate this phenomenon is the
generation of reactive oxygen species by macrophages. Superoxide dismutase catalyzes
O2− producing H2O2 that hyperoxidize the surface of the material. The process that
takes place simultaneously with the dissolution is the reprecipitation, the two being in
equilibrium. Phosphate ions are adsorbed on the outer oxide layers of Ti alloys, and
subsequently, calcium ions are adsorbed by them forming an apatite layer. In addition to
these, proteins, sulfites and sulfates have also been observed [183,184].

3.7.1. The Influence of Surfaces In Vitro

TixZr alloys (x = 5, 10, 15, 20 wt.%) were studied, proving that they do not show
cytotoxicity [185]. Moreover, compared to other commercial Ti-based alloys, cells on
TiZr implants expressed a decrease in pro-inflammatory markers and an increase in anti-
inflammatory markers, especially in the case of nanostructured alloy [126].

The formation of nanotubes, mechanical properties and inhibition of bacterial growth
of S. aureus was studied on pure Ti and Zr alloys, as well as on several TixZr binary alloys
(x = 10, 30, 50, 70 at.%), noting that nanotubular formations inhibit bacterial growth [89]. In
the case of TiO2 nanotubes, it has been observed that annealing can increase the inhibitory
effect on S. aureus and Pseudomonas aeruginosa and even that it increases depending on the
temperature used [186].

The properties of nanotubes formed on Ti50Zr by two-step anodizing were also evalu-
ated, in vitro, on E. coli culture. It was observed that the antibacterial efficacy depends on
the diameter of the tubes formed, a size that can be controlled by the potential used for
anodizing. Tubes with a diameter of less than 20–30 nm demonstrated a better bacteriostatic
and bactericidal effect than those with a larger diameter of 50–70 nm [187].

Nanotubes can also be loaded with therapeutic agents, either as such or embedded
in a polymer, by electrospray, lyophilization, immersion or vacuum impregnation tech-
niques [188]. On a Ti50Zr alloy two types of nanostructures were formed, nanopores and
nanotubes, that were loaded with gentamicin and coated with a layer of CS. It was ob-
served that gentamicin was released from nanopores in 10 days, and from nanotubes in
21 days [68].

Another coating with a zwitterionic cysteine drug was investigated recently, reporting
better performance in terms of stability, biocompatibility and antibacterial effect. The ob-
tained structure evidenced large bands due to hydroxylic groups which formed a hydration
layer and determined the increase in hydrophilic character. This layer was responsible
for an antibacterial effect as well. The electrochemical tests performed in NaCl 0.9% as
bioliquid confirmed the improved stability of the coated sample. The cell behavior in
the presence of cysteine coating was determined with gingival fibroblasts, by measuring
lactate dehydrogenase activity, concentrations of nitric oxide and the level of reactive
oxygen species. The results obtained indicated that the coating is biocompatible, and no
cytotoxicity was evidenced [94].

The cell morphology of MG63 cells (osteoblast-like cells) on Ti50Zr with a nanostruc-
tured surface also showed good biocompatibility [149], while the studies performed on
RAW 264.7 macrophages showed a reduced reaction in inflammatory response in the case
of unidimensional nanochannels [90].

The incorporation of Ag into Ti50Zr showed strong antibacterial activity on S. au-
reus [189] and coating a Ti50Zr alloy with poly (lactic acid), polycaprolactone and silver
nanoparticles showed good inhibitory activity in E. coli and S. aureus [93].

Amorphous biomaterials such as Zr46Ti40Ag14 have been studied too as an alternative
to conventional crystalline ones [189]. They do not have structural deficiencies characteristic
of crystalline structures (dislocation, vacancy, twinning, grain boundary), which can lead
to better mechanical properties and increased corrosion resistance, as well as antibacterial
properties due to the Ag [190].



Coatings 2021, 11, 392 20 of 28

In the case of surfaces treated in alkaline solution, and subsequently, heat treated,
better cell adhesion and proliferation were observed for SaOS2 [91]. Coating a Ti-based
alloy with CaTiZr3(PO4)6 also showed that the coating promoted cell proliferation and
bone formation [191].

3.7.2. The Influence of Surfaces In Vivo

TixZr implants (x = 13–17%) prepared by sandblasting and acid etching evaluated for
12 weeks in a study in rabbits show biocompatibility as good as in the case of cpTi [192]. In
another study on titanium−zirconium (SLActive surface treatment) implants in rabbits, an
increased quality was shown regarding bone formation in the case of TiZr compared with
Ti. The evaluation was carried out through the removal of torque values [193].

Additonally, a better response in the case of SLActive® (nanostructured surface)
highlighted in a study on human bone mesenchymal stem cells (hBMSCs) [194] is confirmed
by a retrospective evaluation in another study of 154 Roxolid implants with SLActive® in
107 patients that showed high survival rates [122]. TiZr implant alloys, in general, proved
positive outcomes in numerous studies [120,121,123,195–197]. Despite the success rate
of dental TiZr implants, avoiding the acute surgical site infections in some patients is
still challenging [198] due to several unsuccessful events [199] and researchers suggested
coating therapeutic drugs on the biomaterials surface to locally release antibiotics in a
controlled manner [200].

By using a cathodic polarization setup, a doxycycline loading of a TiZr alloy with a
Zr content of 13–17% was performed. The method of preparation of the sample was that
used for the preparation of Roxolid SLActive®, namely grit blasted and etching in sulfuric
and hydrochloric acid. Samples were handled in a nitrogen atmosphere and stored in
0.9% NaCl. The coating was made by connecting the samples to the cathode, the anode
being Pt. A constant current of 0.65 mA was used for each sample. The electrolyte was a
2 M acetate buffer solution in which doxycycline was dissolved to obtain 1 mg/mL. The
process took 75 min and was performed at room temperature. The samples were further
dried and stored in a nitrogen atmosphere. The coated surface evaluated in a rabbit tibial
model showed increased markers related to bone formation [201].

Following the idea that coating implantable metal alloys with active substances could
be a solution for controlling inflammation and post-interventional infections, the use
of a doxycycline-coated TixZr alloy compared to the same doxycycline-free alloy was
studied as well in dogs and rabbits. The coating did not produce different histological and
histomorphometrical results compared to the control group [200].

Three binary TiZr alloys (Ti5Zr, Ti25Zr and Ti45Zr) coated with a layer of HAp-ZrO2-
Ag were tested after implantation in pig tibia. It was observed that osseointegration was
influenced both by the interaction between the tissue and the coating and by the chemical
composition of the bulk alloy. The Ti45Zr alloy showed a better organizational structure
of newly formed bone tissue, as well as increased proliferation and differentiation of
osteoblasts [88].

Another in vivo study in mice shows that Ti materials with a nanostructured coating
of TiO2 or ZrO2 have a positive influence on cell differentiation [202], while another study
performed on sheep shows that the anodizing of both Ti and TixZr (x = 12–15 wt.%)
improves osseointegration [203].

4. Conclusions

The critical approach decided upon in this review has led to the clear conclusion that
TixZr alloys have all the characteristics of a good biomaterial. Not only do they exhibit
great biocompatibility, but the mechanical properties are improved up to 2.5 times in
Ti50Zr compared to Ti or Zr. Moreover, the surface modification methods described in the
reviewed studies suggest that with the right combination of chemical and instrumental
techniques, many characteristics and properties can be molded.
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The alloys are naturally protected against corrosion through a layer of oxides, that can
be easily further improved through thermal oxidation. More complex methods such as
anodizing or sol-gel coatings can be used to obtain different nanostructures that improve
cellular interaction, being similar in size. Of course, the risk of bacterial biofilm formation
increases too, but besides the antibacterial effect of some of the nanostructures, antibiotic
substances or other nanoparticles that inhibit bacterial growth may be used in the coating
as well. Furthermore, coatings with hydroxyapatite can improve cell differentiation and
proliferation. Additionally, all the studies performed in vivo, that we know of, showed
promising results.

Taking into consideration all the above-mentioned aspects, we believe that TiZr may
become one of the most used metallic biomaterials in the future.
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of pulsed electromagnetic field (PEMF) on osteoblast-like cells cultured on titanium and titanium-zirconium surfaces. J. Craniofac.
Surg. 2013, 24, 2127–2134. [CrossRef]

52. Pérez, R.A.; Gargallo, J.; Altuna, P.; Herrero-Climent, M.; Gil, F.J. Fatigue of narrow dental implants: Influence of the hardening
method. Materials 2020, 13, 1429. [CrossRef] [PubMed]

53. Wang, B.; Ruan, W.; Liu, J.; Zhang, T.; Yang, H.; Ruan, J. Microstructure, mechanical properties, and preliminary biocompatibility
evaluation of binary Ti–Zr alloys for dental application. J. Biomater. Appl. 2019, 33, 766–775. [CrossRef]

54. Hsu, H.C.; Wu, S.C.; Hsu, S.K.; Sung, Y.C.; Ho, W.F. Effects of heat treatments on the structure and mechanical properties of
Zr-30Ti alloys. Mater. Charact. 2011, 62, 157–163. [CrossRef]

55. Byeli, A.V.; Kukareko, V.A.; Kononov, A.G. Titanium and zirconium based alloys modified by intensive plastic deformation and
nitrogen ion implantation for biocompatible implants. J. Mech. Behav. Biomed. Mater. 2012, 6, 89–94. [CrossRef]

56. Jones, F.H. Teeth and bones: Applications of surface science to dental materials and related biomaterials. Surf. Sci. Rep. 2001, 42,
75–205. [CrossRef]
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