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Abstract

:

The purpose of this study was to evaluate the effect of an active gelatin coating containing eugenol and vacuum on the microbial diversity of Chinese seabass (Lateolabrax maculatus) during cold (−0.9 °C) storage. The bacterial sequences in Chinese seabass were observed using a high-throughput sequencing technique targeting the V3–V4 region of the 16S Ribosomal DNA (rDNA) on 0, 12th, and 24th day, which showed a more comprehensive estimate of the microbial diversity in seabass samples compared with microbial enumeration. The results revealed that the species diversity of fresh seabass was rich, mainly including Carnobacterium, Glutamicibacter, and Pseudomonas, with abundance ratios of 0.286, 0.160, and 0.130, respectively. Pseudomonas and Shewanella were the primary contaminants in the spoiled control samples, where the abundance ratios increased from 0.220 and 0.174 on the 12th day to 0.802 and 0.163 on the 24th day, respectively. Vacuum treatment could inhibit the growth of Pseudomonas and Shewanella such that when stored on the 12th day, Brochothrix became the superior genus. However, Pseudomonas and Shewanella dominated the storage until the 24th day, where their abundance ratios were 0.343 and 0.279, respectively. The inhibition of Pseudomonas and Carnobacterium was gradually enhanced with increasing concentrations of eugenol. Furthermore, an active gelatin coating containing eugenol and vacuum treatment was more effective at inhibiting the increase of the total volatile basic nitrogen. This study confirmed that an active gelatin coating containing eugenol and vacuum could reduce the species of bacteria, inhibit the growth and reproduction of the main dominant spoilage bacteria, and delay the spoilage of seabass.
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1. Introduction


Chinese seabass (Lateolabrax maculatus) is one of the most economically significant cultured fish with a high yield in China [1,2]. The seabass has tasty meat and is rich in protein (21%) [3,4]. However, fresh seabass is perishable due to the growth of spoilage organisms and endogenous enzymes that promote the hydrolysis of muscle protein [5,6,7]. Therefore, it is necessary to search for new preservation methods to improve the quality of fresh seabass. Given that the shelf life of vacuum-packaged aquatic products is relatively short because of the activity of spoilage microorganisms, research on new preservation methods that can inhibit the growth of these microorganisms is required [8].



Active coatings with antimicrobial properties have been extensively studied and are applied in food preservation to inhibit the growth of microorganisms, thereby extending the shelf life [9,10,11]. Active coatings are usually composed of polysaccharides, proteins, and lipids, and can act as a carrier for natural antioxidants and antimicrobial agents to improve the quality of fresh food [12,13,14]. Among biopolymers, proteins possess a good film-forming ability and have been used as edible food packaging materials [15]. In particular, fish gelatin is an excellent material with good film-forming ability and oxygen barrier properties [16].



In recent years, many studies have focused on the properties of fish gelatin films, emphasizing that the properties depend on the species of fish and differ from those of mammals [17]. Since fish gelatin has low or no significant antimicrobial or antioxidant activity, the inclusion of bioactive ingredients into the fish gelatin film, including plant extracts [18,19], essential oils [20,21], and phenolic compounds [22,23], has been explored with satisfactory results [24]. Eugenol (4-allyl-2-methoxyphenol) is the main component in clove oil and is used as a flavoring agent in various food and cosmetic industries. Many studies have shown that eugenol has biological properties, including antioxidant, antimicrobial, and antifungal activities [25,26]. To enhance the antimicrobial activity of gelatin-based films, eugenol has been added. Apart from acting as an antimicrobial agent, eugenol can also serve as a protein cross-linker [27]. High-throughput sequencing technology has been extensively utilized to analyze the microbial diversity and microbial community changes due to its superiority regarding identifying both unculturable microorganisms and low-abundance microorganisms [28]. Total DNA is extracted directly from the test sample for analysis, avoiding traditional methods of microbial isolation and culture [29,30]. At present, the high-throughput sequencing technology has been used in determining the microbial diversity of fish during storage, such as catfish [31], grass carp [32], snakehead [33], silver carp [34], and others [35,36]. Therefore, the high-throughput sequencing technology, combined with a traditional microbial culture method, could help us accurately explore the dominant microorganism at the genus and species levels.



Earlier studies have focused on the effect of active gelatin coatings containing eugenol on the extension of the shelf life of Chinese seabass in terms of their organoleptic properties, chemical analysis, and microbiological enumeration [37,38]. However, there is limited information on how active gelatin coatings containing eugenol affects the microbial diversity of vacuum-packaged Chinese seabass, although this knowledge may contribute to the development of eugenol as a preservative. In the current study, we aimed to assess the effect of active gelatin coatings containing eugenol on the bacterial communities and shelf life of vacuum-packaged Chinese seabass fillets stored at −0.9 °C in terms of the total volatile basic nitrogen (TVB-N) and spoilage organisms. A combination of high-throughput sequencing and traditional microbial culture method was applied to characterize the variations in bacterial communities and the dominant microbiota in Chinese seabass fillet samples during cold (−0.9 °C) storage.




2. Materials and Methods


2.1. Materials and Reagents


Chinese seabass with an average weight of 800 ± 10 g were purchased from a local market in Luchao Port town (Shanghai, China) and transported to the lab within 1 h. After being treated with crushed ice for 15 min, they were killed and the gills and viscera of the seabass were removed and washed with running tap water.



Food grade gelatin (Bloom value: 240–270), β-cyclodextrin (β-CD), and glycerol were purchased from Sangon Biotech Co., Ltd., Shanghai, China. Eugenol (purity > 98%) was purchased from Aladdin Reagent Co., Ltd., Shanghai, China. Plate counting agar was purchased from Haibo Biotechnology Co., Ltd., Qingdao, China.




2.2. Preparation of the Active Gelatin–Eugenol Coating Solution


An active gelatin coating containing eugenol solution was prepared as described by Sun et al. [39] with some modifications. Eugenol (75, 150, and 300 μL) and 750 mg β-cyclodextrin (β-CD) were stirred mechanically once in a beaker. Then, 5 g Tween 80 was added and 40 mL ultrapure water was subsequently added to a final emulsion volume of 100 mL and the dispersion was homogenized with a rotor-stator homogenizer (HR-6, Huxi Industrial Co., Ltd., Shanghai, China) at 15,000 rpm for 5 min. Gelatin (6.0% w/w, Bloom value at 240–270, BBI Life Science, Shanghai, China) and glycerol (1.5% v/w) were dissolved in prepared microencapsulated eugenol emulsions (3 L) at 50 °C and stirred at 15,000 rpm for 4 h. Then, the mixture was treated with an ultrasonic homogenizer (XEB-1000-P, Xiecheng Ultrasonic Equipment Co. Ltd., Jining, Shandong, China) at 20 kHz with a power of 800 W for 10 min to obtain homogeneous coating solutions containing 0.075%, 0.15%, and 0.30% of eugenol, which were degassed under vacuum.




2.3. Preparation of the Seabass and Sample Treatments


The prepared seabass fillet samples were thoroughly washed with sterilized 1% NaCl solutions and randomly divided into five batches for: (1) CK (uncoated), (2) VP (vacuum packaged), (3) G-0.075E + VP (coated with the active gelatin coating containing 0.075% eugenol and vacuum packaged), (4) G-0.15E + VP (coated with the active gelatin coating containing 0.15% eugenol and vacuum packaged), and (5) G-0.30E + VP (coated with the active gelatin coating containing 0.30% eugenol and vacuum packaged). Different batches of seabass samples were immersed in the corresponding freshly prepared coating solutions for 10 min at 4 °C with a solution ratio of 1:3 (w/v); then, the seabass samples were taken out and put into a sterile biochemical incubator with air flow at 4 °C for 60 min to form the coating. After that, the seabass fillet samples were packaged individually under a vacuum using 80-μm-thick plastic bags (Garcia de Pou, Girona, Spain) and stored at −0.9 ± 0.1 °C in a refrigerator (BPS-250CB, Yiheng Thermostatic Chamber, Shanghai, China). The seabass fillet samples were randomly selected for analysis on days 0, 12, and 24.




2.4. Determination of the Total Volatile Basic Nitrogen


The TVB-N was measured according to the semi-trace Kjeldahl method [40]. Briefly, 5 g of minced dorsal muscle of seabass was mixed with 5 mL magnesium oxide (10 g·L−1), and then distilled using a Kjeldahl analyzer (Kjeltec8400, Foss, Denmark). The distillate was collected with 20 mL of boric acid solution (0.02 g·L−1) containing an indicator comprising methyl red and methylene blue. Then, the absorption solution was titrated with a 0.01 M HCl solution. The TVB-N was expressed as milligrams of nitrogen per 100 grams of sea bass sample.




2.5. Characterization of the Microbiota Based on Culture-Dependent Methods


Compositions of microbiota were determined on days 0, 12, and 24 for all samples. Following total viable counts (TVC) counting, all colonies were isolated from the PCA (principal component analysis) plates that contained 30–100 colonies [41], cultivated in tryptic soy broth (TSB) at 30 ± 1 °C for 24–36 h, and then purified by scribing on a PCA plate. The purified communities were cultivated in TSB for additional multiplication, and then the cells were collected by centrifuging 2 mL of TSB culture. Bacterial DNA was extracted according to the procedure used for the Bacterial Genomic DNA Extraction Kit (Personal Biotechnology Co., Ltd., Shanghai, China). A fragment (about 1400 bp) of the 16S Ribosomal DNA (rRNA) bacterial gene was amplified using forward primer 27f (5’-GAGATTTGATCCTGGCTCAG-3’) and reverse primer 1495r (5’-CTACGGCTACCTTGTTACGA-3’). The details of the PCR reaction have been described previously [42]. PCR products were submitted to Biomed Biological Technology Co. Ltd. (Beijing, China) for sequencing. Preliminary identification was performed via a similarity search using the Eztaxon-e database (http://www.eztaxon.org/) [43], where sequences with more than 97% identity were recognized as the same species.




2.6. Characterization of the Microbiota Based on Culture-Independent Methods


2.6.1. DNA Extraction and PCR Amplification


The V3–V4 region of the bacteria’s 16S rRNA genes were amplified via PCR using primers 338f (5’-barcode-ACTCCTACGGGAGGCAGCAG-3TC) and 907r (5AGGCAGCAG). PCR reactions were carried out in triplicate in a 20 μL mixture containing 4 μL of 5 × FastPfu Buffer (Miozyme, Shanghai, China), 0.8 μL of each primer (5 μM), 2 μL of 2.5 mM dNTPs, 0.4 μL of FastPfu Polymerase, 10 ng of template DNA, and double-distilled water. PCR amplicons were extracted from 2% agarose gels and purified using the AxyPrep DNA Gel Extraction Kit (Axygen Biosciences, Union City, CA, USA) and they were quantified using QuantiFluor™-ST (Promega, Madison, WI, USA).




2.6.2. Illumina MiSeq Sequencing and Data Processing


Purified amplicons were pooled in equimolar amounts and they were paired-end sequenced (2 × 300 bp) on an Illumina MiSeq platform (Illumina Inc, San Diego, CA, USA). The raw reads were deposited into the NCBI Sequence Read Archive (SRA) database. Raw fastq files were demultiplexed and quality-filtered using QIIME (version 1.17). UPARSE was used to cluster the operation unit (OTU) with a similarity cut-off value of 97% (version 7.1, http://drive5.com/uparse/) [44] and chimeric sequences were identified and removed using UCHIME version 4.1. Based on the silva (SSU115) 16S rRNA database, each 16S rRNA gene sequence was classified using RDP Classifier (http://rdp.cme.msu.edu/) [45] with a credibility threshold of 70%.





2.7. Data Processing and Taxonomic Classification


The raw sequencing data were analyzed and refined through the quality clinic process chart provided by the QIIME 1.6.0 software to ensure a greater degree of accuracy regarding OTU detection. Briefly, the final effective tags were obtained after the detection and removal of chimeric sequences.



OTUs defined by a 97% similarity were selected by applying the UPARSE software and the representative sequences were sent to RDP Classifier to get the taxonomy assignments on the levels of phylum, class, order, family, and genus, separately.




2.8. Statistical Analysis


Data of the TVB-N values were analyzed using SPSS 20.0 software and expressed as means ± standard deviation. According to the results of the species annotation and their abundance information, the top 20 genera were picked out for the cluster analysis on microbial species. Fast-tree software (http://www.microbesonline.org/fasttree) [36,46] and R-languages were used for the heat map drawing. The alpha diversity was evaluated through QIIME to generate Good’s coverage, Chao1 richness, Simpson richness, Shannon diversity indices, and so on. The formulas used were as follows:


   S  ACE   =        S  abund   +    S  rare      C  ACE     +    n 1     C  ACE        γ ^    ACE  2  ,   f o r     γ ^   ACE   < 0.80        S  abund   +    S  rare      C  ACE     +    n 1     C  ACE       γ ˜   ACE  2  ,   f o r     γ ^   ACE   ≥ 0.80        



(1)







In the formula,


   N  rare   =   ∑   i − 1   abund   i n    i  ,    C  ACE   = 1 −    n 1     N  rare      



(2)






    γ ^   ACE  2  = max      S  rare      C  ACE         ∑   i = 1   abund   i   i − 1    n i     N  rare        N  rare   − 1       − 1 ,   0    



(3)






    γ ˜   ACE  2  = max     γ ^   ACE  2    1 +    N  rare     1 −    C  ACE       ∑   i − 1   abund   i   i − 1    n i       N  rare      N  rare   −  C  ACE         ,   0    



(4)




where ni means the number of OTUs with i sequences, Srare means the number of OTUs with “abund” or less sequences, Sabund means the number of OTUs with more than “abund” sequences, and abund means the threshold value of OTU, which is 10 by default.


   S  chao 1   =  S  obs   +    n 1     n 1  − 1     2    n 2  + 1      



(5)




where SChao1 means the Chao1 index, Sobs means the number of OTUs, n1 means the number of OTUs with only one sequence, and n2 means the number of OTU with two sequences.


   H  shannon   = −   ∑   i = 1    S  obs        n i   N  ln    n i   N   



(6)




where Hshannon means the Shannon index, ni means the number of OTUs with a corresponding sequence, and N means the number of sequences.


   D  simpson   =     ∑   i = 1    S  obs      n i     n i  − 1     N   N − 1      



(7)




where Dsimpson means the Simpson index.





3. Results and Discussions


3.1. TVB-N Values


TVB-N is mainly comprised of ammonia, methylamine, dimethylamine, and trimethylamine, and is produced by the bacterial degradation of protein and non-protein nitrogen compounds [47]. TVB-N analysis has traditionally been used as an indicator of fish quality [48] and a value higher than 25 mg N/100 g indicates that a fish is unfit for human consumption [49]. The changes in TVB-N values in the seabass fillets during cold (−0.9 °C) storage are displayed in Table 1. The TVB-N values of seabass fillet samples on day 0 was 9.11 mg N/100 g, which indicates the good quality of the fish used in this study [50]. The TVB-N value in all samples increased slowly during the first 12 days of storage at −0.9 °C. This was because the microorganisms need to acclimate to the new environment for a long time and the reproduction is slow [51]. In addition, due to the increase in endogenous enzymes and bacterial activity, the TVB-N values in all samples increased sharply on the 12th day [52].



The TVB-N value of CK was higher than that of other samples and exceeded the upper limit on the 24th day (p > 0.01). However, the seabass fillet samples treated with vacuum packaging and the active gelatin coating containing eugenol were still below the limit at that time because eugenol possesses strong antimicrobial and antioxidant capacity [53]. The protective effect of eugenol and vacuum packing could inhibit the growth of Gram-negative aerobic bacteria (Pseudomonas spp. and H2S-producing bacteria), which produce volatile compounds [54]. The TVB-N values were decreased correspondingly for all treated seabass fillet samples during cold storage (Table 1), indicating that vacuum packaging delays the decomposition of proteins and nucleic acids into trimethylamine, amines, and other nitrogen-containing substances [55]. Meanwhile, the inhibition effect of the active gelatin coating containing eugenol on the growth of microorganisms increased linearly with the concentration of eugenol. The combination of vacuum packaging and the active gelatin coating containing eugenol blocked the contact between the seabass meat and air-oxidizable substances and delayed the degradation of proteins and nucleic acids by microorganisms. Similarly, Zhao et al. [56] indicated that tilapia fillets treated with a fish gelatin coating containing grape seed and then vacuum packaged could inhibit the growth of microorganisms and the increase of TVB-N values.




3.2. Analysis of High-Throughput Sequencing Data


The sequencing on the Illumina MiSeq platform resulted in 513,249 sequences: 44,432 sequences originated from all 0 d samples, 86,051 sequences from all CK samples, 101,213 sequences from all VP samples, 85,700 sequences from all G-0.075E + VP samples, 101,928 sequences from all G-0.15E + VP samples, and 93,925 sequences from all G-0.30E + VP samples (Table 2). The average length of these sequences was 426, 427, 427, 427, and 427 bp for the CK, VP, G-0.075E + VP, G-0.15E + VP, and G-0.30E + VP samples, respectively. All these sequences were delineated into OTUs with a minimum sequence similarity threshold of 97%. The coverage of all samples was 99.9%, indicating that this level of sequencing identified almost all the bacterial phylotypes in the seabass samples (Table 2). Chao1 and ACE indicators provide other estimates of OTU richness, whose values were higher than the OTUs observed in each corresponding sample. The results showed that there might be a small number of microbial system types in all samples. The Shannon index reflects the diversity of a bacterial community; the highest Shannon indices were observed in CK on the 12th day. The species diversities of the other treatment samples decreased at first and then tended to be flat, indicating that the microbial communities in seabass treated with vacuum packaging and the active gelatin coating containing eugenol had lower bacterial diversities.



Principal component analysis is commonly used to classify and cluster samples. At the genus level, the variation of bacterial diversity in the different samples was 63.15% (the first part PC, PC1 40.21% and the second part PC, PC2 22.94%, Figure 1), implying a good separation by region. An obvious region discrepancy between the vacuum packaging combined with the active gelatin coating containing eugenol and the CK samples revealed the different microbial communities, which may have been related to the antimicrobial activity of the active gelatin coating containing eugenol and the vacuum packaging.




3.3. Bacterial Diversity Analysis


Figure 2 shows the rarefaction curve of the seabass fillet samples. The rarefaction curve is used to randomly select a certain number of individuals from the sample, count the number of species represented by these individuals, and construct the curve based on the number of individuals and species to evaluate whether the sequencing depth is sufficient [57,58]. Figure 2a shows the rarefaction curve of the Sobs index, where its ordinate represents species number. The number of OTUs of the CK sample on the 12th day was the most, that is, the number of species was the most (Figure 2a). The number of OTUs in samples of G-0.075E + VP on 0 day and 12th day were similar, the curve finally flattened, indicating that there were enough sample readings to ensure the rationality of sequencing amount, and the sequencing depth almost covered all species information [59]. Figure 2b shows the rarefaction curve of the Shannon index, whose ordinate represents the species diversity. The highest Shannon index samples were CK on 12th day, G-0.75E + VP on 0d, and 12th day. The species diversity of the CK sample first increased to the highest and then decreased to the lowest, while that of other samples decreased first and then tended to be flat, indicating that the vacuum packaging combined with the active gelatin coating containing eugenol inhibited the growth and reproduction of some bacteria and reduced the bacterial diversity.




3.4. Analysis of the Species Community Composition


High-throughput sequencing based on the Illumina MiSeq platform quantified the compositions and relative abundances of the bacterial communities in the seabass fillets during cold storage. The relative abundances of the top 19 genera in all samples at different times of storage are shown in Figure 3. With the increase in storage time, the bacterial diversity gradually decreased, which was consistent with the effect of glycooligosaccharide studied by Jia [60] on the microbial community of silver carp under cold storage. This is because the specific low-temperature environment and fish nutrients can promote the growth and reproduction of dominant putrefactive bacteria while inhibiting the growth of other bacteria [59]. Carnobacterium, Glutamicibacter, and Pseudomonas were the predominant bacterial genera (with abundance ratios of 0.286, 0.160, and 0.130, respectively) in the seabass fillet samples on 0 day. With increased storage time, the dominance of Shewanella was most apparent (0.220) in the stored CK samples on the 12th day, followed by Pseudomonas (0.174). At the end of the seabass fillets’ shelf life, Pseudomonas (0.802) dominated the microbiota of spoiled seabass fillets, which was significantly higher than that of other genera (p > 0.01), followed by Shewanella (0.163). The same predominant bacterial phyla were also found in VP samples on the 24th day. Thus, Pseudomonas and Shewanella were the dominant spoilage bacteria during the low-temperature storage of seabass, which was similar to the effect of ethanolic coconut husk extract and modified atmospheric packaging (MAP) studied by Olatunde et al. [61] regarding the microbial community of Asian sea bass slices during storage at 4 °C. The rapid propagation of Pseudomonas makes it decompose and utilize proteins. With the production of metabolic compounds (aldehydes, ketones, biogenic amines, volatile sulfides, etc.), the odor, texture, and flavor of seabass deteriorated rapidly [62].



In the VP samples on the 12th day, more than half of the sequences represented Brochothrix (58.2% of the sequences), followed by the genus Macrococcus (11.9% of the sequences), Shewanella (7.5% of the sequences), Carnobacterium (7.4% of the sequences), and Pseudomonas (5.9% of the sequences) in the microbiota. Therefore, the vacuum treatment inhibited the growth of Shewanella and Pseudomonas. Höll et al. [63] also found that Brochothrix and Pseudomonas were the dominant spoilage bacteria in refrigerated chicken in a high-oxygen environment. When the storage time reached 24 days, the bacteria genera in the samples of seabass were mainly Pseudomonas, Shewanella, Carnobacterium, and Vagococcus, with abundance ratios of 0.343, 0.279, 0.204, and 0.126, respectively. Therefore, vacuum packaging could effectively inhibit the growth of the spoilage bacteria abundances in the seabass at low temperatures. Li et al. also came to a similar conclusion by analyzing the degree of putrefaction in packed yellow croaker pieces under a vacuum at 4 °C [64].



The abundance ratios of the bacteria in the seabass samples after vacuum packaging combined with the active gelatin coating containing different concentrations of eugenol treatment showed great differences. The increase in eugenol concentration resulted in the decrease of the number of species of bacteria in the seabass, which may be attributed to the damage of some bacterial cell membranes caused by eugenol and the death of cells due to the leakage of internal solutes, such as protein and nucleic acid [65]. Therefore, a small number of bacteria with a weak resistance to eugenol will be killed by a high concentration of eugenol [66]. After the seabass fillet samples were stored for 24 days, the relative abundances of Pseudomonas in the G-0.075E + VP, G-0.15E + VP, and G-0.30E + VP samples were 0.343, 0.379, and 0.081, respectively; the relative abundances of the Carnobacterium were 0.547, 0.447, and 0.044, respectively; the relative abundances of Shewanella were 0.006, 0.157, and 0.579, respectively. These results indicated that vacuum packaging combined with the active gelatin coating containing high concentrations of eugenol can effectively inhibit the growth of Pseudomonas and Carnobacterium. Without the rapid propagation of the competing genera, the abundance of Shewanella gradually increased and became the predominant bacterial genus. The facultative anaerobic Shewanella is a kind of bacteria that can utilize lactic acid in seafood as a carbon source to grow and reproduce and produce trimethylamine and the peculiar smelling dimethylamine. Hydrogen sulfide can be produced by Shewanella, Shewanella putrefaciens and Shewanella proteamaculans at low temperatures, which leads to the spoilage of marine products [67].




3.5. Microbial Community Succession Heat Map


In order to analyze and compare the compositions and dynamic changes of the bacterial communities in different seabass samples during cold storage, a heat map reflecting the relative abundances of the top 20 genera in all seabass samples for different storage periods was constructed (Figure 4). Among the top 20 genus-level phylotypes, the color intensity and the corresponding numbers are proportional to the relative abundances in each row of the heat map [68,69]. On 0 day, the predominant populations were Carnobacterium (0.286), followed by Glutamicibacter (0.160), and Pseudomonas (0.130) in the seabass fillet samples. After the fillets were coated with the active gelatin coating containing eugenol and vacuum packaged, less diverse microbial communities were observed in the seabass fillets. In addition, more than half of the top 20 bacterial genera were relatively more abundant only in the CK samples on 0 and 12th day (Figure 4). The highest relative abundance was observed for genus Pseudomonas in G-0.15E + VP samples on the 12th day compared with that of other samples. At the end of storage, there was a lower diversity of genera in the seabass fillet samples. Although the bacterial genera in each sample were different due to different treatments, the main bacteria genera were Pseudomonas, Shewanella, Brochothrix, and Carnobacterium in the red aggregation area. Pseudomonas accounted for the largest proportion among them. These results were consistent with the results of the above analysis of species community compositions.




3.6. Culture-Dependent Analyses of the Microbiota


Fish spoilage is mainly due to microbial growth. A change in microbial diversity can lead to a change in fish spoilage mode and process. Therefore, it is necessary to characterize the composition of microbiota during fish cold storage, analyze the pattern and mechanisms of fish spoilage, and then target screening for effective food preservation techniques to maintain the quality during cold storage. Characterization of dominant bacteria in fish spoilage is the basis for analyzing the spoilage potential of these bacteria [47]. Thus, the microbiota composition of seabass fillets on 0, 12th, and 24th day were analyzed in this study.



A total of 47 single colonies were isolated and purified on 0, 12th, and 24th day of five different treatment samples. Seventeen typical colonies were obtained after colony morphology observation, classification, and counting. The comparison results of the 16S rDNA gene fragment sequencing are shown in Table 3. There were eight genera of bacteria, including nine species of Pseudomonas. The highest bacterial diversity was detected using culture-dependent methods in seabass fillet samples on 0 day (Table 4), which was consistent with the results of the analysis of the species community composition on 0 day. As the storage time progressed, the number of strains on the 12th day of each sample was greater than that on the 24th day, and the bacterial diversity gradually became lower with the growth and reproduction of dominant strains.



The bacterial diversity gradually became lower as the storage time progressed. There were four bacteria genera in the CK sample on the 12th day of storage, which reduced to only two bacteria genera on the 24th day, namely Pseudomonas and Shewanella. The results demonstrated that Pseudomonas and Shewanella were the dominant bacterial samples of the seabass fillets during the cold storage. Compared with the gelatin coating treatment sample containing different concentrations of eugenol, the VP sample had a higher species abundance. Microbacterium and Staphylococcus disappeared after the gelatin coating treatment with different concentrations of eugenol, which may have been due to the strong antimicrobial activity of eugenol against Microbacterium and Staphylococcus. Liu et al. and Ghosh et al. also found the excellent antimicrobial activity of eugenol against Staphylococcus aureus and Escherichia coli [70,71]. According to Figure 3, Staphylococcus grew and propagated fastest under vacuum packaging, accounting for 18.6% of the total bacterial abundance on the 24th day. Vacuum packaging can delay the growth of microorganisms by reducing the contact between the samples and oxygen, though facultative anaerobic or specific anaerobic Staphylococcus will have an advantage since it is easier to reproduce [72,73].



In the treatment using gelatin coatings containing eugenol after storage for 12 days, as the concentration of eugenol increased, the number of bacterial samples gradually decreased such that the concentration of eugenol was directly proportional to the antimicrobial effect. It can be inferred that the antimicrobial effect of eugenol on Agrobacterium was better than that on Brevibacterium. Shewanella was not detected in the high-concentration treatment sample, but it was detected on the 24th day. Combined with the analysis of the species community composition in Figure 3, it can be seen that eugenol had a strong inhibitory effect on Shewanella and Pseudomonas in the initial stage, while the inhibitory effect on Pseudomonas in the later stage was better than that of Shewanella. Vacuum packaging was responsible for hindering the growth of microorganisms through reducing the exposure of the sample to oxygen [74]. Moreover, eugenol had satisfactory antibacterial activity [75]. The results demonstrated that treatment with vacuum packaging combined with the active gelatin coating containing eugenol altered the composition of the microbiota in the seabass fillets, which caused the pattern and process of spoilage to change during cold storage.





4. Conclusions


As a preservative, eugenol has the potential to maintain good quality and to prolong the shelf life of seabass fillets during cold storage. Treatments with vacuum packaging combined with an active gelatin coating containing eugenol inhibited the naturally occurring microorganisms in seabass fillets and then altered the composition of the microbiota of seabass fillets, which modified their patterns and spoilage processes. Carnobacterium, followed by Glutamicibacter and Pseudomonas, were dominant in the spoiled seabass fillet samples. The abundance ratios of Pseudomonas and Shewanella increased from 0.220 and 0.174 on the 12th day to 0.802 and 0.163 on the 24th day, respectively. However, vacuum treatment also inhibited the growth of Shewanella and Pseudomonas. Brochothrix became the dominant bacteria in the middle of the storage period, while Pseudomonas and Shewanella dominated at the end of the storage period. In the active gelatin coating treatment with different concentrations of eugenol, with increasing concentrations of eugenol, the species abundances progressively decreased, the number of genera decreased, and the inhibitory effect on Pseudomonas and Carnobacterium gradually increased. Therefore, vacuum packaging combined with an active gelatin coating containing eugenol reduced the number of species of bacteria, inhibited the growth and reproduction of the main dominant spoilage bacteria, and delayed the spoilage of seabass. In addition, an unavoidable problem is that eugenol possesses an intense smell. Therefore, the use of eugenol may have some effect on the smell of fish. At present, the specific migration of eugenol and the effect of eugenol on the smell of fish fillets have not been studied. This will be a direction that will be investigated by researchers in the future.







Author Contributions


Conceptualization, X.M. and Q.Z.; methodology, W.Q.; software, J.M.; validation, X.M., Q.Z. and J.X.; formal analysis, X.M.; investigation, Q.Z.; resources, J.X.; data curation, Q.Z.; writing—original draft preparation, X.M.; writing—review and editing, X.M., Q.Z., and J.M.; visuali-zation, W.Q.; supervision, J.M.; project administration, J.X.; funding acquisition, J.X. All authors have read and agreed to the published version of the manuscript.




Funding


This research was funded by the China Agriculture Research System (CARS-47); the Shanghai Science and Technology Key Project on Agriculture from the Shanghai Municipal Agricultural Commission (2019-02-08-00-10-F01143); the National Key Research and Development Program (2016YFD0400106); and the Shanghai Science and Technology Commission Platform Capacity Construction Project (19DZ2284000).




Institutional Review Board Statement


Not applicable.




Informed Consent Statement


Not applicable.




Data Availability Statement


The data presented in this study are available in article. Data available in a publicly accessible repository.




Conflicts of Interest


The authors declare no conflict of interest.




References


	



Wang, W.H.; Dong, H.B.; Sun, Y.X.; Cao, M.; Duan, Y.F.; Li, H.; Liu, Q.S.; Gu, Q.H.; Zhang, J.S. The efficacy of eugenol and tricaine methanesulphonate as anaesthetics for juvenile Chinese sea bass (Lateolabrax maculatus) during simulated transport. J. Appl. Ichthyol. 2019, 35, 551–557. [Google Scholar] [CrossRef]

	



Chaijan, S.; Panpipat, W.; Panya, A.; Cheong, L.Z.; Chaijan, M. Preservation of chilled Asian sea bass (Lates calcarifer) steak by whey protein isolate coating containing polyphenol extract from ginger, lemongrass, or green tea. Food Control 2020, 118, 107400. [Google Scholar] [CrossRef]

	



Martínez, O.; Salmerón, J.; Epelde, L.; Vicente, M.S.; de Vega, C. Quality enhancement of smoked sea bass (Dicentrarchus labrax) fillets by adding resveratrol and coating with chitosan and alginate edible films. Food Control 2018, 85, 168–176. [Google Scholar] [CrossRef]

	



Cai, L.; Cao, A.; Bai, F.; Li, J. Effect of ε-polylysine in combination with alginate coating treatment on physicochemical and microbial characteristics of Japanese sea bass (Lateolabrax japonicas) during refrigerated storage. LWT Food Sci. Technol. 2015, 62, 1053–1059. [Google Scholar] [CrossRef]

	



Teixeira, B.; Fidalgo, L.G.; Mendes, R.; Costa, G.D.; Cordeiro, C.; Marques, A.; Saraiva, J.A.; Nunes, M.L. Effect of high pressure processing in the quality of sea bass (Dicentrarchus labrax) fillets: Pressurization rate, pressure level and holding time. Innov. Food Sci. Emerg. Technol. 2014, 22, 31–39. [Google Scholar] [CrossRef]

	



Qiu, X.; Chen, S.; Liu, G.; Yang, Q. Quality enhancement in the Japanese sea bass (Lateolabrax japonicas) fillets stored at 4 °C by chitosan coating incorporated with citric acid or licorice extract. Food Chem. 2014, 162, 156–160. [Google Scholar] [CrossRef]

	



Sun, L.; Sun, J.; Thavaraj, P.; Yang, X.; Guo, Y. Effects of thinned young apple polyphenols on the quality of grass carp (Ctenopharyngodon idellus) surimi during cold storage. Food Chem. 2017, 224, 372–381. [Google Scholar] [CrossRef]

	



Zhang, Y.; Li, D.; Lv, J.; Li, Q.; Kong, C.; Luo, Y. Effect of cinnamon essential oil on bacterial diversity and shelf-life in vacuum-packaged common carp (Cyprinus carpio) during refrigerated storage. Int. J. Food Microbiol. 2017, 249, 1–8. [Google Scholar] [CrossRef]

	



Yu, D.; Wu, L.; Regenstein, J.; Jiang, Q.; Yang, F.; Xu, Y.; Xia, W. Recent advances in quality retention of non-frozen fish and fishery products: A review. Crit. Rev. Food Sci. Nutr. 2019, 60, 1–13. [Google Scholar] [CrossRef]

	



Carrión-Granda, X.; Fernández-Pan, I.; Rovira, J.; Maté, J. Effect of antimicrobial edible coatings and modified atmosphere packaging on the microbiological quality of cold stored hake (Merluccius merluccius) fillets. J. Food Qual. 2018, 2018, 1–12. [Google Scholar] [CrossRef]

	



Zhao, J.; Lv, W.; Wang, J.; Li, J.; Liu, X.; Zhu, J. Effects of tea polyphenols on the post-mortem integrity of large yellow croaker (Pseudosciaena crocea) fillet proteins. Food Chem. 2013, 141, 2666–2674. [Google Scholar] [CrossRef] [PubMed]

	



Alotaibi, S.; Tahergorabi, R. Development of a sweet potato starch-based coating and its effect on quality attributes of shrimp during refrigerated storage. LWT Food Sci. Technol. 2018, 88, 203–209. [Google Scholar] [CrossRef]

	



Alparslan, Y.; Baygar, T.N. Effect of chitosan film coating combined with orange peel essential oil on the shelf life of deepwater pink shrimp. Food Bioprocess. Technol. 2017, 10, 842–853. [Google Scholar] [CrossRef]

	



Alparslan, Y.; Yapici, H.H.; Metin, C.; Baygar, T.; Gunlu, A.; Baygar, T. Quality assessment of shrimps preserved with orange leaf essential oil incorporated gelatin. LWT Food Sci. Technol. 2016, 72, 457–466. [Google Scholar] [CrossRef]

	



Nilsuwan, K.; Benjakul, S.; Prodpran, T.; Caba, K.D.I. Fish gelatin monolayer and bilayer films incorporated with epigallocatechin gallate: Properties and their use as pouches for storage of chicken skin oil. Food Hydrocoll. 2019, 89, 783–791. [Google Scholar] [CrossRef]

	



Nilsuwan, K.; Guerrero, P.; Caba, K.D.I.; Benjakul, S.; Prodpran, T. Properties and application of bilayer films based on poly (lactic acid) and fish gelatin containing epigallocatechin gallate fabricated by thermo-compression molding. Food Hydrocoll. 2020, 105, 105792. [Google Scholar] [CrossRef]

	



Suderman, N.; Isa, M.I.N.; Sarbon, N.M. The effect of plasticizers on the functional properties of biodegradable gelatin-based film: A review. Food Biosci. 2018, 24, 111–119. [Google Scholar] [CrossRef]

	



Kan, J.; Liu, J.; Yong, H.; Liu, Y.; Qin, Y.; Liu, J. Development of active packaging based on chitosan-gelatin blend films functionalized with Chinese hawthorn (Crataegus pinnatifida) fruit extract. Int. J. Biol. Macromol. 2019, 140, 384–392. [Google Scholar] [CrossRef]

	



Staroszczyk, H.; Kusznierewicz, B.; Malinowska-Pańczyk, E.; Sinkiewicz, I.; Gottfried, K.; Kołodziejska, I. Fish gelatin films containing aqueous extracts from phenolic-rich fruit pomace. LWT Food Sci. Technol. 2020, 117, 108613. [Google Scholar] [CrossRef]

	



Yeddes, W.; Djebali, K.; Wannes, W.A.; Horchani-Naifer, K.; Hammami, M.; Younes, I.; Tounsi, M.S. Gelatin-chitosan-pectin films incorporated with rosemary essential oil: Optimized formulation using mixture design and response surface methodology. Int. J. Biol. Macromol. 2020, 154, 92–103. [Google Scholar] [CrossRef]

	



Jamróz, E.; Juszczak, L.; Kucharek, M. Investigation of the physical properties, antioxidant and antimicrobial activity of ternary potato starch-furcellaran-gelatin films incorporated with lavender essential oil. Int. J. Biol. Macromol. 2018, 114, 1094–1101. [Google Scholar] [CrossRef] [PubMed]

	



Bermúdez-Oria, A.; Rodríguez-Gutiérrez, G.; Vioque, B.; Rubio-Senent, F.; Fernández-Bolaños, J. Physical and functional properties of pectin-fish gelatin films containing the olive phenols hydroxytyrosol and 3,4-dihydroxyphenylglycol. Carbohydr. Polym. 2017, 178, 368–377. [Google Scholar] [CrossRef] [PubMed]

	



Roy, S.; Rhim, J.W. Preparation of antimicrobial and antioxidant gelatin/curcumin composite films for active food packaging application. Colloids Surf. B 2020, 188, 110761. [Google Scholar] [CrossRef] [PubMed]

	



Neira, L.M.; Martucci, J.F.; Stejskal, N.; Ruseckaite, R.A. Time-dependent evolution of properties of fish gelatin edible films enriched with carvacrol during storage. Food Hydrocoll. 2019, 94, 304–310. [Google Scholar] [CrossRef]

	



Ashrafudoulla, M.; Mizan, M.F.R.; Ha, A.J.; Park, S.H.; Ha, S.D. Antibacterial and antibiofilm mechanism of eugenol against antibiotic resistance Vibrio parahaemolyticus. Food Microbiol. 2020, 91, 103500. [Google Scholar] [CrossRef]

	



Qian, W.; Sun, Z.; Wang, T.; Yang, M.; Liu, M.; Zhang, J.; Li, Y. Antimicrobial activity of eugenol against carbapenem-resistant Klebsiella pneumoniae and its effect on biofilms. Microb. Pathog. 2020, 139, 103924. [Google Scholar] [CrossRef]

	



Wang, Q.; Zhang, L.; Ding, W. Eugenol nanocapsules embedded with gelatin-chitosan for chilled pork preservation. Int. J. Biol. Macromol. 2020, 158, 837–844. [Google Scholar] [CrossRef]

	



Cai, L.; Dai, Y.; Cao, A.; Cao, M. The effects of CS@Fe3O4 nanoparticles combined with microwave or far infrared thawing on microbial diversity of red seabream (Pagrus major) fillets based on high-throughput sequencing. Food Microbiol. 2020, 91, 103511. [Google Scholar] [CrossRef]

	



Jagadeesan, B.; Gerner-Smidt, P.; Allard, M.W.; Leuillet, S.; Winkler, A.; Xiao, Y.; Chaffron, S.; Vossen, J.V.D.; Tang, S.; Katase, M.; et al. The use of next generation sequencing for improving food safety: Translation into practice. Food Microbiol. 2019, 79, 96–115. [Google Scholar] [CrossRef]

	



Parlapani, F.F.; Michailidou, S.; Pasentsis, K.; Argiriou, A.; Krey, G.; Boziaris, I.S. A meta-barcoding approach to assess and compare the storage temperature-dependent bacterial diversity of gilt-head sea bream (Sparus aurata) originating from fish farms from two geographically distinct areas of Greece. Int. J. Food Microbiol. 2018, 278, 36–43. [Google Scholar] [CrossRef]

	



Huang, H.; Sun, W.; Xiong, G.; Shi, L.; Jiao, C.; Wu, W.; Li, X.; Qiao, Y.; Liao, L.; Ding, A.; et al. Effects of HVEF treatment on microbial communities and physicochemical properties of catfish fillets during chilled storage. LWT Food Sci. Technol. 2020, 131, 109667. [Google Scholar] [CrossRef]

	



Huang, Z.; Liu, X.; Jia, S.; Zhang, L.; Luo, Y. The effect of essential oils on microbial composition and quality of grass carp (Ctenopharyngodon idellus) fillets during chilled storage. Int. J. Food Microbiol. 2018, 266, 52–59. [Google Scholar] [CrossRef] [PubMed]

	



Balti, R.; Mansour, M.B.; Zayoud, N.; Balc’h, R.L.; Brodu, N.; Arhaliass, A.; Massé, A. Active exopolysaccharides based edible coatings enriched with red seaweed (Gracilaria gracilis) extract to improve shrimp preservation during refrigerated storage. Food Biosci. 2020, 34, 100522. [Google Scholar] [CrossRef]

	



Jia, S.; Huang, Z.; Lei, Y.; Zhang, L.; Li, Y.; Luo, Y. Application of Illumina-MiSeq high throughput sequencing and culture-dependent techniques for the identification of microbiota of silver carp (Hypophthalmichthys molitrix) treated by tea polyphenols. Food Microbiol. 2018, 76, 52–61. [Google Scholar] [CrossRef]

	



Zang, J.; Xu, Y.; Xia, W.; Yu, D.; Gao, P.; Jiang, Q.; Yang, F. Dynamics and diversity of microbial community succession during fermentation of Suan yu, a Chinese traditional fermented fish, determined by high throughput sequencing. Food Res. Int. 2018, 111, 565–573. [Google Scholar] [CrossRef]

	



Rong, C.; Ling, Z.; Huihui, S.; Qi, L. Characterization of microbial community in high-pressure treated oysters by high-throughput sequencing technology. Innov. Food Sci. Emerg. Technol. 2018, 45, 241–248. [Google Scholar] [CrossRef]

	



Zhou, Q.; Li, P.; Fang, S.; Mei, J.; Xie, J. Preservative effects of gelatin active coating containing eugenol and higher CO2 concentration modified atmosphere packaging on Chinese sea bass (Lateolabrax maculatus) during superchilling (−0.9 °C) storage. Molecules 2020, 25, 871. [Google Scholar] [CrossRef]

	



Zhou, Q.; Li, P.; Fang, S.; Liu, W.; Mei, J.; Xie, J. Preservative effects of gelatin active coating enriched with eugenol emulsion on Chinese seabass (Lateolabrax maculatus) during superchilling (−0.9 °C) storage. Coatings 2019, 9, 489. [Google Scholar] [CrossRef]

	



Sun, X.; Guo, X.; Ji, M.; Wu, J.; Zhu, W.; Wang, J.; Cheng, C.; Chen, L.; Zhang, Q. Preservative effects of fish gelatin coating enriched with CUR/βCD emulsion on grass carp (Ctenopharyngodon idellus) fillets during storage at 4 °C. Food Chem. 2019, 272, 643–652. [Google Scholar] [CrossRef]

	



Wang, W.; Li, M.; Li, H.; Liu, X.; Guo, T.; Zhang, G.; Xiong, Y. A renewable intelligent colorimetric indicator based on polyaniline for detecting freshness of tilapia. Packag. Technol. Sci. 2018, 31, 133–140. [Google Scholar] [CrossRef]

	



Liu, X.; Li, D.; Li, K.; Luo, Y. Monitoring bacterial communities in ε-Polylysine-treated bighead carp (Aristichthys nobilis) fillets using culture-dependent and culture-independent techniques. Food Microbiol. 2018, 76, 257–266. [Google Scholar] [CrossRef] [PubMed]

	



Liu, X.; Zhang, Y.; Li, D.; Luo, Y. Characterization of the microbiota in lightly salted bighead carp (Aristichthys nobilis) fillets stored at 4 °C. Food Microbiol. 2017, 62, 106–111. [Google Scholar] [CrossRef] [PubMed]

	



EzBioCloud Database Home Page. Available online: http://www.eztaxon.org (accessed on 28 January 2021).

	



UPARSE OTU Clustering. Available online: http://drive5.com/uparse (accessed on 28 January 2021).

	



RDP Classifier Home Page. Available online: http://rdp.cme.msu.edu/ (accessed on 28 January 2021).

	



Fast Tree-Comparison Tools. Available online: http://www.microbesonline.org/fasttree (accessed on 28 January 2021).

	



Liu, X.; Huang, Z.; Jia, S.; Zhang, J.; Li, K.; Luo, Y. The roles of bacteria in the biochemical changes of chill-stored bighead carp (Aristichthys nobilis): Proteins degradation, biogenic amines accumulation, volatiles production, and nucleotides catabolism. Food Chem. 2018, 255, 174–181. [Google Scholar] [CrossRef] [PubMed]

	



Aponte, M.; Anastasio, A.; Marrone, R.; Mercogliano, R.; Peruzy, M.F.; Murru, N. Impact of gaseous ozone coupled to passive refrigeration system to maximize shelf-life and quality of four different fresh fish products. LWT Food Sci. Technol. 2018, 93, 412–419. [Google Scholar] [CrossRef]

	



Ojagh, S.M.; Rezaei, M.; Razavi, S.H.; Hosseini, S.M.H. Effect of chitosan coatings enriched with cinnamon oil on the quality of refrigerated rainbow trout. Food Chem. 2010, 120, 193–198. [Google Scholar] [CrossRef]

	



Cai, L.; Wu, X.; Li, X.; Zhong, K.; Li, Y.; Li, J. Effects of different freezing treatments on physicochemical responses and microbial characteristics of Japanese sea bass (Lateolabrax japonicas) fillets during refrigerated storage. LWT Food Sci. Technol. 2014, 59, 122–129. [Google Scholar] [CrossRef]

	



Mallon, C.A.; Elsas, J.D.V.; Salles, J.F. Microbial invasions: The process, patterns, and mechanisms. Trends Microbiol. 2015, 23, 719–729. [Google Scholar] [CrossRef]

	



Li, P.; Peng, Y.; Mei, J.; Xie, J. Effects of microencapsulated eugenol emulsions on microbiological, chemical and organoleptic qualities of farmed Japanese sea bass (Lateolabrax japonicus) during cold storage. LWT Food Sci. Technol. 2020, 118, 108831. [Google Scholar] [CrossRef]

	



Zheng, K.; Xiao, S.; Li, W.; Wang, W.; Chen, H.; Yang, F.; Qin, C. Chitosan-acorn starch-eugenol edible film: Physico-chemical, barrier, antimicrobial, antioxidant and structural properties. Int. J. Biol. Macromol. 2019, 135, 344–352. [Google Scholar] [CrossRef]

	



Veeck, A.P.D.L.; Daniel, A.P.; Klein, B.; Quatrin, A.; Rezer, A.P.D.S.; Milani, L.I.G.; Zeppenfeld, C.C.; Cunha, M.A.D.; Heldwein, C.G.; Heinzmann, B.M. Chemical, microbiological, and sensory parameters during the refrigerated storage of silver catfish (Rhamdia quelen) exposed in vivo to the essential oil of Lippia alba. J. Food Sci. Technol. 2018, 55, 1416–1425. [Google Scholar] [CrossRef]

	



Volpe, M.G.; Siano, F.; Paolucci, M.; Sacco, A.; Sorrentino, A.; Malinconico, M.; Varricchio, E. Active edible coating effectiveness in shelf-life enhancement of trout (Oncorhynchusmykiss) fillets. LWT Food Sci. Technol. 2015, 60, 615–622. [Google Scholar] [CrossRef]

	



Zhao, X.; Wu, J.E.; Chen, L.; Yang, H. Effect of vacuum impregnated fish gelatin and grape seed extract on metabolite profiles of tilapia (Oreochromis niloticus) fillets during storage. Food Chem. 2019, 293, 418–428. [Google Scholar] [CrossRef] [PubMed]

	



Mukherjee, A.; Rodiles, A.; Merrifield, D.L.; Chandra, G.; Ghosh, K. Exploring intestinal microbiome composition in three Indian major carps under polyculture system: A high-throughput sequencing based approach. Aquaculture 2020, 524, 735206. [Google Scholar] [CrossRef]

	



Huyben, D.; Vidaković, A.; Werner Hallgren, S.; Langeland, M. High-throughput sequencing of gut microbiota in rainbow trout (Oncorhynchus mykiss) fed larval and pre-pupae stages of black soldier fly (Hermetia illucens). Aquaculture 2019, 500, 485–491. [Google Scholar] [CrossRef]

	



Odeyemi, O.A.; Burke, C.M.; Bolch, C.C.J.; Stanley, R. Spoilage microbial community profiling by 16S rRNA amplicon sequencing of modified atmosphere packaged live mussels stored at 4 °C. Food Res. Int. 2019, 121, 568–576. [Google Scholar] [CrossRef]

	



Jia, S.; Liu, X.; Huang, Z.; Li, Y.; Zhang, L.; Luo, Y. Effects of chitosan oligosaccharides on microbiota composition of silver carp (Hypophthalmichthys molitrix) determined by culture-dependent and independent methods during chilled storage. Int. J. Food Microbiol. 2018, 268, 81–91. [Google Scholar] [CrossRef]

	



Olatunde, O.O.; Benjakul, S.; Vongkamjan, K. Combined effect of ethanolic coconut husk extract and modified atmospheric packaging (MAP) in extending the shelf life of asian sea bass slices. J. Aquat. Food Prod. Technol. 2019, 28, 689–702. [Google Scholar] [CrossRef]

	



Singh, S.; Lee, M.; Gaikwad, K.K.; Lee, Y.S. Antibacterial and amine scavenging properties of silver-silica composite for post-harvest storage of fresh fish. Food Bioprod. Process. 2018, 107, 61–69. [Google Scholar] [CrossRef]

	



Höll, L.; Behr, J.; Vogel, R.F. Identification and growth dynamics of meat spoilage microorganisms in modified atmosphere packaged poultry meat by MALDI-TOF MS. Food Microbiol. 2016, 60, 84–91. [Google Scholar] [CrossRef]

	



Li, Y.; Huang, J.; Yuan, C.; Ding, T.; Chen, S.; Hu, Y. Developing a new spoilage potential algorithm and identifying spoilage volatiles in small yellow croaker (Larimichthys polyactis) under vacuum packaging condition. LWT Food Sci. Technol. 2019, 106, 209–217. [Google Scholar] [CrossRef]

	



Jeyakumar, G.E.; Lawrence, R. Mechanisms of bactericidal action of Eugenol against Escherichia coli. J. Herb. Med. 2020, in press. [Google Scholar] [CrossRef]

	



Zhang, Y.; Wang, Y.; Zhu, X.; Cao, P.; Wei, S.; Lu, Y. Antibacterial and antibiofilm activities of eugenol from essential oil of Syzygium aromaticum (L.) Merr. & L. M. Perry (clove) leaf against periodontal pathogen Porphyromonas gingivalis. Microb. Pathog. 2017, 113, 396–402. [Google Scholar] [PubMed]

	



Odeyemi, O.A.; Burke, C.M.; Bolch, C.C.J.; Stanley, R. Seafood spoilage microbiota and associated volatile organic compounds at different storage temperatures and packaging conditions. Int. J. Food Microbiol. 2018, 280, 87–99. [Google Scholar] [CrossRef] [PubMed]

	



Mallappa, R.H.; Singh, D.K.; Rokana, N.; Pradhan, D.; Batish, V.K.; Grover, S. Screening and selection of probiotic Lactobacillus strains of Indian gut origin based on assessment of desired probiotic attributes combined with principal component and heatmap analysis. LWT Food Sci. Technol. 2019, 105, 272–281. [Google Scholar] [CrossRef]

	



Huang, Z.; Liu, X.; Jia, S.; Luo, Y. Antimicrobial effects of cinnamon bark oil on microbial composition and quality of grass carp (Ctenopharyngodon idellus) fillets during chilled storage. Food Control 2017, 82, 316–324. [Google Scholar] [CrossRef]

	



Liu, M.; Liu, Y.; Cao, M.J.; Liu, G.M.; Chen, Q.; Sun, L.; Chen, H. Antibacterial activity and mechanisms of depolymerized fucoidans isolated from Laminaria japonica. Carbohydr. Polym. 2017, 172, 294–305. [Google Scholar] [CrossRef]

	



Ghosh, V.; Mukherjee, A.; Chandrasekaran, N. Ultrasonic emulsification of food-grade nanoemulsion formulation and evaluation of its bactericidal activity. Ultrason. Sonochem. 2013, 20, 338–344. [Google Scholar] [CrossRef] [PubMed]

	



Sangare, L.; Chen, W.B.; Wang, C.L.; Chen, X.B.; Wu, M.H.; Zhang, X.; Zang, J.Y. Structural insights into the conformational change of Staphylococcus aureus NreA at C-terminus. Biotechnol. Lett. 2020, 42, 787–795. [Google Scholar] [CrossRef]

	



Baptista, R.F.; Lemos, M.; Teixeira, C.E.; Vital, H.C.; Carneiro, C.S.; Mársico, E.T.; Conte, C.A.; Mano, S.B. Microbiological quality and biogenic amines in ready-to-eat grilled chicken fillets under vacuum packing, freezing, and high-dose irradiation. Poult. Sci. 2014, 93, 1571–1577. [Google Scholar] [CrossRef]

	



Silbande, A.; Adenet, S.; Chopin, C.; Cornet, J.; Smith-Ravin, J.; Rochefort, K.; Leroi, F. Effect of vacuum and modified atmosphere packaging on the microbiological, chemical and sensory properties of tropical red drum (Sciaenops ocellatus) fillets stored at 4 °C. Int. J. Food Microbiol. 2018, 266, 31–41. [Google Scholar] [CrossRef]

	



Zhao, R.; Rong, S.; Sun, G.; Liu, S.; Li, B.; Cao, Y.; Li, Y. Cutoff Ostwald ripening stability of eugenol-in-water emulsion by co-stabilization method and antibacterial activity evaluation. Food Hydrocoll. 2020, 107, 105925. [Google Scholar] [CrossRef]








[image: Coatings 11 00147 g001 550] 





Figure 1. Results of principal component analysis at the genus level for each sample. 
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Figure 2. Rarefaction curve of each sample: (a) Sobs index; (b) Shannon index. 
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Figure 3. Relative abundances at the genus level based on the classification of partial 16S rRNA gene sequences of microbiota from various seabass fillet samples during cold storage. 
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Figure 4. Relative abundance of microbiota at the genus level. Rows in the heat map represent different genus-level phylotypes, while columns represent different common carp samples. The color intensity is proportional to the abundance of OTUs in each row. 
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Table 1. The total volatile basic nitrogen (TVB-N) value of seabass in different storage periods.
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TVB-N (mg N/100 g)

	
CK

	
VP

	
G-0.075E + VP

	
G-0.15E + VP

	
G-0.30E + VP




	
Time

	






	
0 day

	
9.11 ± 0.31

	
9.11 ± 0.31

	
9.11 ± 0.31

	
9.11 ± 0.31

	
9.11 ± 0.31




	
12th day

	
13.24 ± 0.44

	
12.29 ± 0.50

	
11.84 ± 0.29

	
11.46 ± 0.17

	
11.08 ± 0.30




	
24th day

	
26.61 ± 0.60

	
22.69 ± 0.58

	
19.73 ± 0.41

	
16.54 ± 0.35

	
14.28 ± 0.37








CK: uncoated, VP: vacuum packaged, G-0.075E + VP: coated with the active gelatin coating containing 0.075% eugenol and vacuum packaged, G-0.15E + VP: coated with the active gelatin coating containing 0.15% eugenol and vacuum packaged, G-0.30E + VP: coated with the active gelatin coating containing 0.30% eugenol and vacuum packaged.
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Table 2. Alpha diversity estimation of each sample.
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	Sample\Estimators
	Total Tags
	OTUs
	Average Length
	ACE
	Chao1
	Coverage
	Shannon
	Simpson
	Sobs





	0 day
	44,432.00
	146.70
	424.00
	236.20
	239.20
	1.00
	2.93
	0.11
	229.00



	12th day CK
	40,338.00
	12.15
	424.00
	686.62
	687.79
	1.00
	3.91
	0.06
	684.00



	24th day CK
	45,713.00
	6.57
	429.00
	44.99
	37.50
	1.00
	0.85
	0.62
	30.00



	12th day VP
	50,269.00
	10.45
	429.00
	98.49
	104.00
	1.00
	1.66
	0.36
	74.00



	24th day VP
	50,944.00
	6.00
	429.00
	48.18
	67.00
	1.00
	1.76
	0.22
	39.00



	12th day G-0.075E + VP
	37,492.00
	35.68
	427.00
	223.20
	222.12
	1.00
	2.15
	0.29
	220.00



	12th day G-0.15E + VP
	50,858.00
	22.22
	429.00
	148.84
	159.20
	1.00
	1.02
	0.46
	134.00



	12th day G-0.30E + VP
	44,114.00
	15.61
	429.00
	119.78
	85.77
	1.00
	1.39
	0.39
	68.00



	24th day G-0.075E + VP
	48,208.00
	8.85
	429.00
	110.16
	99.12
	1.00
	1.24
	0.41
	89.00



	24th day G-0.15E + VP
	51,070.00
	7.93
	429.00
	106.28
	84.25
	1.00
	1.52
	0.28
	46.00



	24th day G-0.30E + VP
	49,811.00
	7.11
	429.00
	56.68
	46.25
	1.00
	1.50
	0.37
	41.00







OTUs (operational taxonomic units).
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Table 3. The result of the sequence alignments of gene fragments.






Table 3. The result of the sequence alignments of gene fragments.





	
Number

	
Results

	
Similarity

	
Accession No.






	
1

	
Pseudomonas

	
Pseudomonas fragi

	
99.58%

	
NR_024946.1




	
2

	
Pseudomonas

	
Pseudomonas lactis

	
100.00%

	
NR_156986.1




	
3

	
Pseudomonas

	
Pseudomonas psychrophila

	
99.31%

	
NR_028619.1




	
4

	
Brochothrix

	
Brochothrix thermosphacta

	
100.00%

	
NR_113587.1




	
5

	
Pseudomonas

	
Pseudomonas migulae

	
99.52%

	
NR_024927.1




	
6

	
Brachybacterium

	
Brachybacterium rhamnosum

	
99.93%

	
NR_042109.1




	
7

	
Shewanella

	
Shewanella baltica

	
98.57%

	
NR_025267.1




	
8

	
Pseudomonas

	
Pseudomonas libanensis

	
99.51%

	
NR_024901.1




	
9

	
Pseudomonas

	
Pseudomonas weihenstephanensis

	
99.31%

	
NR_148764.1




	
10

	
Pseudomonas

	
Pseudomonas helleri

	
99.37%

	
NR_148763.1




	
11

	
Carnobacterium

	
Carnobacterium divergens

	
99.45%

	
NR_113798.1




	
12

	
Pseudomonas

	
Pseudomonas veronii

	
99.51%

	
NR_028706.1




	
13

	
Carnobacterium

	
Carnobacterium maltaromaticum

	
98.31%

	
NR_044710.2




	
14

	
Agrobacterium

	
Agromyces indicus

	
99.65%

	
NR_108908.1




	
15

	
Microbacterium

	
Microbacterium trichothecenolyticum

	
98.72%

	
NR_044937.1




	
16

	
Pseudomonas

	
Pseudomonas paralactis

	
99.86%

	
NR_156987.1




	
17

	
Staphylococcus

	
Staphylococcus edaphicus

	
99.80%

	
NR_074999.2
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Table 4. Identification of bacteria isolated from various seabass fillet samples during cold storage at −0.9 °C using culture-dependent 16S rRNA gene sequencing analysis.






Table 4. Identification of bacteria isolated from various seabass fillet samples during cold storage at −0.9 °C using culture-dependent 16S rRNA gene sequencing analysis.





























	0d

Species identification
	Number
	12th day CK

Species identification
	Number
	24th day CK

Species identification
	Number
	12th day VP

Species identification
	Number
	24th day VP

Species identification
	Number
	12th day G-0.075E + VP

Species identification
	Number
	12th day G-0.15E + VP

Species identification
	Number
	12th day G-0.30E + VP

Species identification
	Number
	24th day G-0.075E + VP

Species identification
	Number
	24th day G-0.15E + VP

Species identification
	Number
	24th day G-0.30E + VP

Species identification
	Number





	Pseudomonas
	1
	Pseudomonas
	2
	Pseudomonas
	1
	Pseudomonas
	5
	Pseudomonas
	5
	Pseudomonas
	10
	Pseudomonas
	2
	Pseudomonas
	2
	Pseudomonas
	2
	Pseudomonas
	2
	Pseudomonas
	8



	–
	5
	–
	16
	–
	2
	Shewanella
	7
	Shewanella
	7
	Shewanella
	7
	–
	8
	–
	10
	–
	8
	–
	8
	–
	12



	–
	10
	Shewanella
	7
	–
	3
	Carnobacterium
	11
	Carnobacterium
	11
	Carnobacterium
	11
	–
	9
	–
	12
	Carnobacterium
	13
	–
	9
	Shewanella
	7



	Brochothrix
	4
	Brochothrix
	4
	–
	9
	–
	13
	–
	13
	Brochothrix
	4
	–
	10
	Brochothrix
	4
	Brochothrix
	4
	Shewanella
	7
	Brochothrix
	4



	Shewanella
	7
	Brachybacterium
	6
	–
	10
	Brochothrix
	4
	Staphylococcus
	17
	Brachybacterium
	6
	Brochothrix
	4
	Carnobacterium
	11
	–
	–
	Carnobacterium
	11
	Carnobacterium
	13



	Staphylococcus
	17
	–
	–
	Shewanella
	7
	Brachybacterium
	6
	Microbacterium
	15
	Agrobacterium
	14
	Carnobacterium
	11
	–
	13
	–
	–
	–
	13
	–
	–



	Carnobacterium
	11
	–
	–
	–
	–
	Microbacterium
	15
	–
	–
	–
	–
	–
	13
	–
	–
	–
	–
	–
	–
	–
	–



	–
	13
	–
	–
	–
	–
	Staphylococcus
	17
	–
	–
	–
	–
	Brachybacterium
	6
	–
	–
	–
	–
	–
	–
	–
	–



	Microbacterium
	15
	–
	–
	–
	–
	
	
	–
	–
	–
	–
	–
	–
	–
	–
	–
	–
	–
	–
	–
	–



	Brachybacterium
	6
	–
	–
	–
	–
	
	
	–
	–
	–
	–
	
	–
	–
	–
	–
	–
	–
	–
	–
	–



	Agrobacterium
	14
	–
	–
	–
	–
	
	
	–
	–
	–
	–
	
	–
	–
	–
	–
	–
	–
	–
	–
	–
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