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Abstract: Surface-nitrided layers of Ti–6Al–4V alloy were fabricated using a diode laser in pure and mixed
gas atmospheres of nitrogen and argon. The surface morphology, microstructure, hardness, and cracks
of the nitrided layers were investigated. In all gas atmospheres, the layers showed smooth and
humped regions, and consisted of planar nitrogen titanium (TiN), dendrites, and acicular martensite.
The surface roughness was improved dramatically as the nitrogen concentration of the atmosphere
was diluted with argon. Overall, the hardness of the nitrided layer was greatest for pure nitrogen and
it tended to decrease as the concentration of argon in the atmosphere increased. However, the hardness
of the layer for pure nitrogen also decreased rapidly, from the surface to matrix, in comparison to the
diluted nitrogen atmospheres. It was shown that the number and size of dendrites, which determine
hardness, are controlled by the nitrogen concentration. The dendrites of the nitrided layer were denser
and smaller in a pure nitrogen atmosphere, than in diluted nitrogen atmospheres. Longitudinal and
transverse cracks were observed in the nitrided layers. These two types of cracks were decreased
or even eliminated as the argon concentration of the nitrogen–argon atmosphere was increased.
Therefore, by diluting the nitrogen atmosphere with argon, the nitrided layer properties, in terms
of surface roughness and cracks, can be improved, but this may also cause a reduction in the
layer hardness.
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1. Introduction

Commercially pure titanium and titanium alloys are receiving increased attention due to their
high strength (to low weight) properties, high corrosion resistance, structural stability (at moderate
or low temperatures), and some more unique characteristics (e.g., superconductivity and memory
function) [1–3]. These metals are utilized in the aerospace, chemical and bio-medical, maritime,
and military industries. They usually function as structural materials; however, due to the intrinsic
low hardness and poor wear resistance of titanium (and its alloys) in conditions of friction and contact
loads, their applications in engineering can be limited [3–7]. Thus, it is necessary to determine methods
for the improvement of their hardness and wear resistance.

Attempts have been made to tailor the hardness and wear resistance of pure titanium and its alloys
by a method of fabrication that involves titanium nitride embedded in the substrate. Ion implantation,
physical vapor deposition (PVD), chemical vapor deposition (CVD), and salt-bath nitriding have also
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been used to improve surface properties. However, the requirement for the whole work piece to be
heated at high temperature can lead to large shape deformations. Furthermore, long processing cycles,
the use of thin nitrided layers, and low combination strength can result in stripping between the nitrided
layers and substrate during fabrication. These problems can be addressed by laser gas nitriding of the
substrate whilst it is in a molten state. Laser gas nitriding as a fabrication technique, and in comparison
to traditional methods, is characterized by reduced substrate deformation, stronger metallurgical
zones, shorter fabrication times, and the ability to control the microstructure. It is well-documented in
the literature that laser gas nitriding can modify the hardness and wear resistance of titanium and its
alloys [8–10]. The purpose of laser gas nitriding in a nitrogen environment is to generate modified
layers with greater hardness, increased wear resistance, and layers that are free from metallurgical
defects. However, the major issues associated with laser gas nitriding are the problems of cracks in the
nitride layers and their surface roughness, which dramatically decrease the fatigue life of fabricated
components and materials, thus shortening their working life [1,11]. Although cracks in a single
track can be eliminated by optimizing processing parameters, overlapping tracks are often required in
engineering applications, which tend to develop network-interlaced cracks. Moreover, pores in the
edges of nitriding tracks increase the surface roughness of overlapping nitrided layers.

This paper focused on diode laser fabrication of nitrided layers that are both free from cracks
and have smooth surface morphology. The reaction rate of a nitrogen and titanium substrate can
be decreased by introducing argon into a nitrogen atmosphere, resulting in a reduced amount of
titanium nitride. The influence of this change in reaction rate on the surface morphology, hardness,
depth of layers, microstructure, and cracks of the nitrided layers were investigated.

2. Materials and Methods

Commercially annealed Ti–6Al–4V alloy was used in this study. Its microstructure consisted
of a hexagonal close-packed α phase mixed with some body-centered cubic β phase, as previously
determined [11]. A sheet with a 120 mm diameter and 8 mm thickness was used as the treated substrate.

Prior to laser gas nitriding, the surface of the substrate was ground with 400-grade paper to
remove oxides and other contaminants, and was then degreased with acetone. A schematic diagram of
the diode laser gas nitriding process is shown in Figure 1. Laser gas nitriding was conducted in pure
and different mixed atmospheres of nitrogen and argon, the concentrations of which were controlled
via a self-developed annular gas delivery nozzle. A high-pressure zone of nitrogen and/or argon was
generated at, and blocked by, the surface of the substrate as the gas was delivered. The diffusion of
the gas from this high-pressure zone isolated the surrounding atmosphere and prevented oxidation
during laser gas nitriding. The laser was fixed at a 10-degree angle (to the vertical) to prevent laser
reflection damage.

Figure 1. Schematic diagram of the laser gas nitriding process.
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Initial tests showed that the optimal parameters for experiments were: laser power of 1200 W;
movement speed of substrate, 180 mm/min; spot size of the laser of 2 × 4 mm2; gas flow of 33 L/min;
and distance between substrate and nozzle of 4 mm. These parameters were applied to all experiments.
The concentration of nitrogen (in the presence of argon) was varied from 10% to 100%; for example,
at 10% nitrogen, the atmosphere was 10% nitrogen and 90% argon, at 100% nitrogen, the atmosphere
was pure nitrogen.

Based on the above parameters, experiments were performed to produce different tracks on the
surface of the titanium alloy. The diode laser emitted near infrared radiation at a wavelength of 976 nm
and its energy distribution was trapezoidal. Tracks were cut into the Ti–6Al–4V alloy specimens
(20 × 10 × 8 mm3) using a wire cutting machine across the nitriding process direction. Cross sections
of nitrided layers were ground and polished by metallographic techniques and were then etched
chemically in a solution of 3 mL of HF, 5 mL of HNO3, and 100 mL of H2O for 15 s. The specimens were
then cleaned by ultrasonic cleaners. An optical microscope and scanning electron microscope (SEM,
FEI Company, Hillsboro, OR, USA) were used to determine the surface topography and microstructure.
Microhardness was measured by a HV-1000 microhardness tester (ZhongYi, Shanghai, China) using a
1000 g load for 15 s on polished and etched sections of the nitrided layers. The area fraction of the
dendrites in the cross section was calculated with ImageJ (PC) software (v1.8.0).

3. Results and Discussion

3.1. Surface Morphology of the Layers

Nitrided layer tracks, fabricated in pure and different mixed gas atmospheres of nitrogen and
argon, were studied. Figure 2 shows the surface morphology of one track nitrided in a gas atmosphere
of 80% nitrogen and 20% argon. The direction of laser motion is indicated by the black arrow (Figure 2a).
To highlight the surface characteristics of the nitrided layer, the surface image was labeled with Area A
and Area B, which are shown in more detail in Figure 2b,c respectively.

Figure 2. Surface morphology of one track nitrided in a gas atmosphere of 80% nitrogen and 20% argon.
(a) Scanning electron microscope (SEM) image of the surface, and at higher magnification (b) Area A
and (c) Area B.

Area A shows smoother surface characteristics, in comparison to Area B, and appeared more
golden in color. The intensity of surface color is known to be positively correlated with higher nitrogen
content of the layer, as previously observed by others. The convection strength reduces when the
nitrogen concentration of the nitrogen–argon gas atmosphere varied from 91% to 10%. This is due
to a reduction in nitrogen gas involved in the reaction, which reduces the temperature of the pool.
Here, the amount of titanium nitride (which has a high melting point) decreases, consequently resulting
in a molten pool of lower viscosity. The gas flow from the annular nozzle then causes turbulence in
the molten pool surface, and a ripple structure is formed (Figure 2b). These convection-based ripple
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effects do not occur in pure 100% nitrogen atmospheres or in atmospheres with less than 5% nitrogen,
indicating that the structure can be drastically affected.

Area B is the transition region near the fusion line between the substrate and the nitrided tracks.
It shows the concentrated regions of craters and humps (Figure 2a,c). The humps are thought to
correspond to nitrogen-rich cells, and the craters to the titanium-rich cellular region, as previously
observed [12].

The volume of the molten pool increases as the laser beam irradiates the substrate, which then
also influences the surface tension of the pool. These effects control the flow of the metal fluid in the
molten pool by Marangoni convection. Based on the phase diagrams of Ti–Al, Ti–V, Ti–Fe, and Ti-N,
the dissolution of elements Al, V, and Fe causes decreases in the melting point of the titanium solutions.
However, nitrogen (N) causes the melting point of titanium solution to rise. In the process of laser gas
nitriding, a titanium solution absorbs a large amount of nitrogen, and the melting point rises more than
1668 ◦C. Here, strong convection leads to a nitrogen-containing melt overflow from the edge of the
molten pool. It nucleates and solidifies immediately upon contact with the low-temperature un-melted
substrate, and the solidification front has a cellular structure (Figure 2c). The cellular structure of the
humped region, which represents the trailing edge of the molten pool, has been observed previously
and can be explained by the Cline and Anthony model [13].

The surface roughness of the nitrided layer improved dramatically (becoming smoother) with
a gas atmosphere of 5% nitrogen and 95% argon. Figure 3 shows the surface roughness (Ra) of the
nitrided layers obtained for gas atmospheres of 100%, 80%, and 5% nitrogen (in argon) at positions
along the surface of the layer. Compared with a maximum roughness depth (Rmax) of 95 µm in the
pure 100% nitrogen atmosphere (blue line), the maximum obtained in the 5% nitrogen and 95% argon
atmosphere (red line) was reduced by at least four times to 23 µm (Figure 3). This depth meets the
demands of several engineering applications. Thus, the surface roughness of the layer can be improved
significantly by diluting the nitrogen atmosphere with argon.

Figure 3. Roughness curves of the nitrided layers obtained in pure nitrogen (100%) (blue line), 80%
nitrogen, and 20% argon (green line), and 5% nitrogen and 95% argon (red line) gas atmospheres.

3.2. Hardness of the Layers

The hardness profiles, along the cross section of the nitrided layers, showed that the surface
hardness reached a maximum value in the pure (100%) nitrogen atmosphere (Figure 4). This is because,
compared with the mixed nitrogen and argon atmospheres, the amount of titanium nitride in the nitrided
layer increased. However, the hardness gradient of the nitrided layer, from the surface to the substrate,
in the pure nitrogen atmosphere was steeper than that in the dilute nitrogen–argon atmospheres.
The amount of nitrogen in the molten pool determines the pool temperature, which then determines
the dissolution and diffusion of nitrogen into the pool, therefore, there is a nitrogen concentration
gradient in the depth direction (surface to matrix) of the nitrided layer, as observed previously [14].
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Thus, the hardness values at different positions along the nitrided layer are dependent on the nitrogen
gas concentration of the atmosphere.

Figure 4. Hardness (HV) curves of the nitrided layer cross section in different nitrogen–argon gas
atmospheres. The percentages represent the amount of nitrogen in the atmosphere; for example, 100% is
pure nitrogen, and 37% is 37% nitrogen and 63% argon.

Energy spectrum curves of energy dispersive X-ray spectroscopy (EDX) point scanning on the
cross section of the nitrided layer are shown in Figure 5. Positions 1 and 2 were located on dendrites of
different depths (Position 2 was deeper than Position 1), and Position 3 was located on the structure
between dendrites. The results showed that the nitrogen content between the dendrites was significantly
smaller than that of the dendrites. The nitrogen content of the dendrites also decreased as the depth of
the nitrided layer increased (Figure 5b,c).

Figure 5. The energy spectrum curves of EDX point scanning. (a) SEM image of the cross section of the
nitrided layer showing Positions 1, 2, and 3. (b) The energy spectrum curves of Position 1. (c) The
energy spectrum curves of Position 2. (d) The energy spectrum curves of Position 3.

Overall, the surface hardness decreased dramatically when the amount of nitrogen in the
nitrogen–argon atmosphere was less than 50% (Figure 4). There are at least three reasons for this: first,
nitriding occurs through a process of nitrogen diffusion, hence, nitrogen has a gradient distribution,



Coatings 2020, 10, 1009 6 of 12

and the amount of titanium nitride and phase type vary along the depth of the nitrided layer [15];
second, the thin planar TiN on the layer surface, and the dense titanium nitride underneath it,
restricts nitrogen diffusion through the surface and into the bottom of the molten pool, so the nitrogen
content in the molten pool decreases; and finally, the nitrogen concentration at the surface of the molten
pool is influenced by the concentration of nitrogen present so that the amount of TiNx in that region is
changed [15]. Thus, it follows that laser gas nitriding in a nitrogen–argon atmosphere (as opposed to
purely nitrogen) is at the expense of decreasing the hardness of the layer. For example, the surface
microhardness of the nitrided layer is around 600 HV in 5% nitrogen and 95% argon, but 1240 HV in
pure (100%) nitrogen.

The relationship between nitrogen content and dendrite area fraction in the cross section of the
nitrided layer is shown in Figure 6. The area fraction of dendrites (titanium nitride) decreases with a
decrease in the amount of nitrogen present in the nitrogen–argon atmosphere. Then, the hardness
of the cross-section of the nitrided layer is positively correlated with the area fraction of dendrites
(Figures 4 and 6). Previous authors [12] have determined the amount of nitrogen absorbed in the
nitrided layer by weighing nitrided tracks. The results showed that the weight decreased by about
60% when the nitrogen concentration decreased by 11%.

Figure 6. The relationship between the dendrite area fraction (in the cross section) and the nitrogen
content of the nitrogen–argon gas atmosphere. When the nitrogen content of the nitrogen–argon
atmosphere was less than 37%, the hardness curves were not plotted because the depth of the dendrites
was less than 0.3 mm, and the microhardness was small.

The nitrogen content in the mixed nitrogen–argon atmosphere influences the dissolution and
diffusion of nitrogen into the molten pool, so the subsequent concentration of titanium nitride in
the pool changes, resulting in variable hardness values. Figure 7 shows the SEM images of the
nitrided layer in pure (100%) nitrogen atmosphere, and an atmosphere of 64% nitrogen and 36% argon.
The nitrided layer showed different morphologies and sized dendrites as the nitrogen concentration
changes, which then influenced the hardness value. The dendrites of the nitrided layer were denser
and smaller in a pure 100% nitrogen atmosphere, than in the 64% nitrogen (36% argon) atmosphere.
The hardness tended to increase as the dendrite density and size increased. Therefore, the area fraction,
size, and morphology of the dendrites have a dominant influence on the hardness, which are all
influenced by the gas atmosphere.
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Figure 7. SEM images of the nitrided layer for different amounts of nitrogen in the nitrogen–argon
atmosphere: (a) 100% nitrogen atmosphere, (b) 64% nitrogen and 36% argon atmosphere.

3.3. Microstructure of the Nitrided Layers

The fusion zone between the nitrided layer and the substrate was a completely metallurgical
combination. The cross section of the nitrided sample consists of three parts: the nitrided layer,
the heat-affected area, and the substrate (Figure 8). The heat-affected zone (Figure 8d) showed
occasional acicular martensite. The nitrided layer was mainly composed of dendrites and acicular
martensite in the pure (100%) nitrogen atmosphere. Then, as the nitrogen concentration of the
nitrogen–argon atmosphere decreased, the dendrites in the nitrided layer reduced, and the amount of
acicular martensite increased (Figure 9). The nitrided layer was composed of the thin planar layer and
acicular martensite in an atmosphere of 5% nitrogen and 95% argon (Figure 9b). The thin planar layer
only appeared on the surface of the nitrided layer in the diluted nitrogen atmosphere and not in a pure
(100%) nitrogen atmosphere (not shown).

The surface XRD of the nitrided layer consisted of TiN0.9 in a pure (100%) nitrogen atmosphere
(Figure 10a). Then, for the thin planar layer, only TiN appeared in the 80% nitrogen (20% argon)
atmosphere (Figure 10b). When the nitrogen concentration decreased further (5% nitrogen and 95%
argon), the surface of the nitrided layers consisted of TiN and α’-Ti (Figure 10c).

Figure 8. Optical microscope (a) and SEM image (b–d) of the nitrided layer in the 72% nitrogen and
28% argon atmosphere. (a) The cross section of the nitrided layer, (b) the microstructure of the nitrided
layer, (c) the zone between the nitrided layer and the heat-affected area, and (d) the heat-affected area
and matrix.
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Figure 9. SEM image of the nitrided layer in different nitrogen–argon gas atmospheres: (a) 18% nitrogen
and 82% argon, (b) 5% nitrogen and 95% argon.

Figure 10. The surface XRD results of the nitrided layers obtained in different nitrogen content
atmospheres; (a) pure (100%) nitrogen (100%), (b) 80% nitrogen and 20% argon, (c) 5% nitrogen and
95% argon.

The orientation of dendrites (Figure 8) was interesting, since the thermal gradient (G) was highest
on the surface of the molten pool, and then decreased with depth, which influences the value for
G/R (where R is radius of the molten pool). Thus, nitrogen absorbed into the molten pool caused the
nitrogen concentration to be highest at the pool surface and then it decreased with depth (toward the
bottom of the pool). Therefore, the surface reached the solubility limit for nitrogen in titanium more
readily and solidified to form titanium nitride. Due to the nature of sub-cooling, the solidification
front at the surface of the molten pool is not flat. There are solidifications that protrude, which lead
to the development of dendrite structures. At the same time, another solidification front that is not
nitrogen-rich proceeds from the bottom of the molten pool toward the surface, as observed by other
authors [16]. Therefore, solidification mainly occurred from a solid solution of nitrogen in titanium,
which showed acicular martensite (Figure 9).
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Zhechena et al. [17] built up a simplified physical diffusion model for the formation and growth
of the nitrided layer by the laser gas nitriding of pure titanium. The addition of alloy elements may
cause a deviation of phases for the Ti–6Al–4V alloy. However, other elements in the titanium alloy are
small in quantity and are usually dissolved in hcp α-Ti by formation of a substitutional solid solution.
Thus, dramatic changes to the kinetics of formation and the phase compositions of the nitrided layers
in the titanium alloy are not likely.

Based on the results of this work, and the conclusions of previous research on the microstructure
and phase compositions of nitrided layers [12,15,18–20], the phase distribution of layers can be
predicted (Figure 11). The XRD result of the nitrided surface illustrates that the thin planar layer on
the surface was TiN, TiNx was dendritic, and α’-Ti was acicular martensite, which may be a result of
the β phase to martensitic α’-Ti transformation in a highly non-equilibrium condition. Phases in the
nitrided layer may include hcp TiN0.3 and Ti2N, which form during the process of laser gas nitriding.
The phase type also influences the hardness of the nitrided layer.

Figure 11. Schematic presentation of the phase distribution during the laser nitriding of titanium alloys.

The Heiple surface tension model can be used to explain formations in the microimages,
which result from the molten pool (Figure 12). The surface tension gradient (with respect to temperature)
of liquid titanium is negative, therefore shallow and wide molten pool formations are formed for the
titanium alloy, and as previously observed [21].

Figure 12. OM image of the cross section of the nitrided layers obtained for different nitrogen (in argon)
concentrations: (a) 100% nitrogen, (b) 82% nitrogen 18% argon, (c) 64% nitrogen 36% argon, (d) 46%
nitrogen 54% argon, (e) 18% nitrogen 82% argon, and (f) 5% nitrogen 95% argon.
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The micrographs of the cross section of stringer beads (Figure 12) provide important information
about the transport mechanism of nitrogen in the molten pool. When dendrites are produced in
the nitrided layer, Marangoni convection dominates the molten pool dynamics in the pure (100%)
nitrogen atmosphere. As argon is introduced into the gas flow, and the concentration of nitrogen
is reduced, the fusion line becomes obscure (Figure 12b–d). In an atmosphere of 18% nitrogen
and 82% argon, dendrites are limited to a very thin surface layer, and the fusion line completely
disappears (Figure 12e). This shows that the transport mechanism of heat and mass changes
from convection-dominated to diffusion-dominated when the nitrogen concentration decreases,
and as observed by other authors [21]. However, the nitrided layer was entirely composed of
acicular martensite (except for the thin planar layer of the surface) when the nitrogen concentration
(of the nitrogen–argon atmosphere) was 5%, and convection dominated the molten pool dynamics.
The depth of the nitrided layer was significantly deepened for the 46% and 18% nitrogen concentration
atmospheres, as shown by the arrows in Figure 12d,e. This effect may have been caused by the annular
nozzle used because the distance between the abrupt location of the molten depth and the center of the
nitrided layer was equal to the radius of the annular nozzle, and the gas coming out of the annular
nozzle deepened the depth of the molten pool.

3.4. Cracks of the Nitrided Layers

Longitudinal and transverse cracks were observed on the surface and the cross section of the
nitrided layer in pure (100%) nitrogen (Figure 13a). The transverse cracks were perpendicular to the
scanning direction and were approximately parallel to each other; here, they dominated the surface of
the nitrided layer. Longitudinal cracks propagated from the surface nitrided layers down though the
lower layers, but were then stopped at the heat-affected zone (Figure 13b,c). These cracks were not
present in the overlapping tracks, which overlapped by 38%, under an atmosphere of 5% nitrogen
and 95% argon (Figure 9). Here, the microstructure was composed of acicular structures and a thin
planar layer.

Figure 13. Cracking of the nitrided layer attained in the pure (100%) nitrogen atmosphere. (a) Surface
cracking. (b) Cracking distribution through the layer. (c) Longitudinal cracking, the area illustrated by
the dotted box in (b).

Due to intense local heating from the high-energy density diode laser, and the subsequent rapid
cooling and addition of nitrogen, the laser nitriding process inevitably generates residual stress in the
treated layer [22]. The stress is mainly caused by thermal and microstructure stress, and cracks occur
when local residual stress exceeds the strength limit of the material. Cracks in the cross section of
the nitrided layer can also originate from the process of cutting specimens. Microcracks between the
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nitrided layers and the heat-affected zone may also be related to the inherent brittleness of titanium
nitride [23].

4. Conclusions

The fabricated nitrided layers had both smooth and humped regions. As the concentration of
nitrogen (of the nitrogen–argon atmosphere) decreased, the width of the smooth region tended to
increase, and the surface became smoother. Therefore, the surface roughness of the nitrided layers
was improved by diluting nitrogen with argon. For example, a maximum roughness depth of 95 µm
was obtained in pure nitrogen, compared with 23 µm in the 5% nitrogen, 95% argon atmosphere.
The hardness of the nitrided layer, overall, was greater in the pure (100%) nitrogen atmosphere
compared with diluted nitrogen (in argon) atmospheres. However, there was also layer depth
dependency and a steeper decrease in hardness for the layer in pure nitrogen as the depth of the layer
increased. Laser gas nitriding by diluting nitrogen with argon is at the expense of decreasing the
surface hardness. The surface microhardness of the (0.1 mm) nitrided layer was around 600 HV in the
gas atmosphere of 5% nitrogen and 95% argon, whilst in pure (100%) nitrogen, it was 1240 HV. The cross
section of the nitrided sample consisted of a nitrided layer, a heat-affected area, and a substrate.
The nitrided layer had a thin planar TiN layer, dendrites, and acicular martensite. The thin planar TiN
layer only appeared on the surface of the nitrided layer in a diluted nitrogen atmosphere, and not in
pure 100% nitrogen. The number of dendrites was reduced, and the amount of acicular martensite was
increased as the nitrogen composition of the nitrogen–argon atmosphere decreased. The surface of
the nitrided layer appeared to contain both longitudinal and transversal cracks. Longitudinal cracks
propagated from the surface of the nitrided layer down though the lower nitrided layers. These cracks
were eliminated in single and overlapping tracks in the 5% nitrogen and 95% argon atmosphere.
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