

Supplementary data

UHPLC-ESI-QTOF-MS/MS-Based Molecular Networking Guided Isolation and Dereplication of Antibacterial and Antifungal Constituents of *Ventilago denticulata*

Muhaiminatul Azizah ¹, Patcharee Pripdeevech ^{2,3}, Tawatchai Thongkongkaew ¹, Chulabhorn Mahidol ^{1,4}, Somsak Ruchirawat ^{1,4,5} and Prasat Kittakoop ^{1,4,5*}

- ¹ Chulabhorn Graduate Institute, Chemical Biology Program, Chulabhorn Royal Academy, Laksi, Bangkok 10210, Thailand; <u>prasat@cri.or.th</u> (P.K.); <u>mimi.hufflepuf@gmail.com</u> (M.A.); <u>tawatchait@cgi.ac.th</u> (T.T.)
- ² School of Science, Mae Fah Luang University, Muang, Chiang Rai 57100, Thailand; patcharee.pri@mfu.ac.th (P.P.)
- ³ Center of Chemical Innovation for Sustainability (CIS), Mae Fah Luang University, Muang, Chiang Rai 57100, Thailand
- ⁴ Chulabhorn Research Institute, Kamphaeng Phet 6 Road, Laksi, Bangkok 10210, Thailand; <u>mahidol natlab@cri.or.th</u> (C.M.); <u>somsak@cri.or.th</u> (S.R.)
- ⁵ Center of Excellence on Environmental Health and Toxicology (EHT), CHE, Ministry of Education, Bangkok, Thailand
- * Correspondence: prasat@cri.or.th; Tel.: +66869755777 (P.K.)
- Figure S1. Overlay of TIC chromatograms of MeOH crude extract of bark, MeOH crude extract of trunk, CH₂Cl₂ crude extract of bark, and CH₂Cl₂ crude extract of trunk.
- Figure S2. Molecular networking of crude extracts from V. denticulata in a negative ionization mode
- Figure S3. MS/MS spectra of (+)-(*R*)-ventilagolin (1) in a positive ionization mode
- **Figure S4**. MS/MS spectra of a putative new compound of (+)-(*R*)-ventilagolin derivative (**3**) or (**4**) in a positive ionization mode

Figure S5. MS/MS spectrum of rutin (2) parent ion at m/z 633.1422 [M+Na]+

Figure S6. MS/MS spectrum of rhamnazin 3-rhamninoside (7) parent ion at m/z 785.2430 [M+H]+

Figure S7. MS/MS spectrum of rhamnocitrin 3-rhamninoside (8) parent ion at m/z 755.2394 [M+H]+

Figure S8. MS/MS spectrum of rhamnetin 3-rhamninoside (9) parent ion at m/z 771.2343 [M+H]+

Figure S9. MS/MS spectrum of kaempferol 3-rhamninoside (10) parent ion at m/z 741.2233 [M+H]+

Figure S10. ¹H NMR (400 MHz) spectrum of rhamnazin 3-rhamninoside (7) in methanol-d₄

Figure S11. ¹³C NMR (100 MHz) spectrum of rhamnazin 3-rhamninoside (7) in methanol-d4

Figure S12. ESI-HRMS spectrum of rhamnazin 3-rhamninoside (7) in a negative ionization mode

Figure S13. ¹H NMR (400 MHz) spectrum of rhamnocitrin 3-rhamninoside (8) in methanol-d₄

Figure S14. ¹³C NMR (100 MHz) spectrum of rhamnocitrin 3-rhamninoside (8) in methanol-d4

Figure S15. ESI-HRMS spectrum of rhamnocitrin 3-rhamninoside (8) in a negative ionization mode

Figure S16. 1H NMR (400 MHz) spectrum of rhamnetin 3-rhamninoside (9) in methanol-d4

Figure S17. ¹³C NMR (100 MHz) spectrum of rhamnetin 3-rhamninoside (9) in methanol-d4

Figure S18. ESI-HRMS spectrum of rhamnetin 3-rhamninoside (9) in a negative ionization mode

Figure S19. ¹H NMR (400 MHz) spectrum of kaempferol 3-rhamninoside (10) in methanol-d4

Figure S20. ¹³C NMR (100 MHz) spectrum of kaempferol 3-rhamninoside (10) in methanol-d4

Figure S21. ESI-HRMS spectrum of kaempferol 3-rhamninoside (10) in a negative ionization mode

Figure S22. ¹H NMR (400 MHz) spectrum of quercetin 3-rhamninoside (11) in methanol-d₄

Figure S23. ¹³C NMR (100 MHz) spectrum of quercetin 3-rhamninoside (11) in methanol-d4 Figure S24. ESI-HRMS spectrum of quercetin 3-rhamninoside (11) in a negative ionization mode Figure S25. MS/MS spectrum of ventilatone B (12) parent ion at *m*/*z* 329.0659 [M+H]⁺ Figure S26. MS/MS spectrum of ventilatone A (15) parent ion at m/z 313.0706 [M+H]+ Figure S27. 1H NMR (400 MHz) spectrum of ventilatone B (12) in CDCl3 Figure S28. ¹³C NMR (100 MHz) spectrum of ventilatone B (12) in CDCl₃ Figure S29. ESI-HRMS spectrum of ventilatone B (12) in a negative ionization mode Figure S30. 1H NMR (400 MHz) spectrum of lupeol (13) in CDCl3 Figure S31. ¹³C NMR (100 MHz) spectrum of lupeol (13) in CDCl₃ Figure S32. ¹H NMR (400 MHz) spectrum of ventilatone A (15) in CDCl₃ Figure S33. ¹³C NMR (100 MHz) spectrum of ventilatone A (15) in CDCl₃ Figure S34. ESI-HRMS spectrum of ventilatone A (15) in a negative ionization mode Figure S35. 1H NMR (400 MHz) spectrum of ventilatone C (16) in CDCl3 Figure S36. ¹³CNMR (100 MHz) spectrum of ventilatone C (16) in CDCl₃ Figure S37. 1H-1H COSY spectrum of ventilatone C (16) in CDCl3 Figure S38. HSQC spectrum of ventilatone C (16) in CDCl3 Figure S39. HMBC spectrum of ventilatone C (16) in CDCl3 Figure S40. ¹H NMR (400 MHz) spectrum of ventilatone C (16) in acetone-d₆ Figure S41. ¹³C NMR (100 MHz) spectrum of ventilatone C (16) in acetone-d₆ Figure S42. 1H-1H COSY spectrum of ventilatone C (16) in acetone-d6 Figure S43. HSQC spectrum of ventilatone C (16) in acetone-d6 Figure S44. HMBC spectrum of ventilatone C (16) in acetone-d6 Figure S45. ESI-HRMS spectrum of ventilatone C (16) in a positive ionization mode

Figure S46. UV spectrum of ventilatone C (16) in CH₃CN

Figure S1. Overlay of TIC chromatograms of MeOH crude extract of bark, MeOH crude extract of trunk, CH₂Cl₂ crude extract of bark, and CH₂Cl₂ crude extract of trunk.

Crude extracts were analyzed by UHPLC connected to Q-TOF MS. UHPLC column was ACE Excel C₁₈ AR (100 x 2.1 mm, 1.7 μ m), and a flow rate was 0.2 mL/min with an injection volume of 0.5 μ L. The gradient elution was performed using the following conditions: (i) linear gradient from 40% CH₃CN (0.1% formic acid) in H₂O (0.1% formic acid) to 100% CH₃CN (0.1% formic acid) for 0-25 min, (ii) isocratic elution of 100% CH₃CN (0.1% formic acid) for 5 min (at time of 25-30 min), (iii) a linear gradient from 100% CH₃CN (0.1% formic acid) to 40% CH₃CN (0.1% formic acid) in H₂O (0.1% formic acid) for 4 min (at time of 30-34 min, and (iv) equilibrium time by isocratic elution with 40% CH₃CN (0.1% formic acid) in H₂O (0.1% formic acid) for 6 min (at time of 34-40 min). The total run time was 40 min.

Figure S3. MS/MS spectra of (+)-(*R*)-ventilagolin (**1**) in a positive ionization mode

Figure S4. MS/MS spectra of a putative analog compound of (+)-(*R*)-ventilagolin (**3**) or (**4**) in a positive ionization mode

Figure S5. MS/MS spectrum of rutin (2) parent ion at m/z 633.1422 [M+Na]⁺

Figure S6. MS/MS spectrum of rhamnazin 3-rhamninoside (7) parent ion at *m*/*z* 785.2430 [M+H]⁺

m/z	Calc m/z	Diff(ppm)	Z	Abund
129.054	129.0546	4.75	1	734.81
→ 147.0653	147.0652	-0.82	1	588.41
→ 163.0599	163.0588	-6.97	1	744.76
→ 331.0814	331.0812	-0.59	1	27225.84
332.0841	332.0838	-1	1	5593.48
333.0868	333.0862	-1.79	1	389.38
493.1341	493.1367	5.28	1	2089.53
494.1361	494.1395	6.96	1	410.03
785.2629				447.26

Figure S7. MS/MS spectrum of rhamnocitrin 3-rhamninoside (8) parent ion at *m*/*z* 755.2394 [M+H]⁺

m/z		Calc m/z	Diff(ppm)	z	Abund	Formula	Ion
	→ 129.0543	129.0546	2.48	1	1820.91	C6 H9 O3	M+
	— 147.0651	147.0652	0.39	1	633.51	C6 H11 O4	M+
	→ 163.06	163.0601	0.46	1	1941.96	C6 H11 O5	M+
	301.0709	301.0707	-0.64	1	41217.6	C16 H13 O6	M+
	302.074	302.0741	0.03	1	7913.13	C16 H13 O6	М+
	303.0763	303.0763	0.07	1	1178.09	C16 H13 O6	M+
	→ 463.1233	463.1235	0.41	1	4554.14	C22 H23 O11	М+
	464.127	464.1269	-0.18	1	1349.28	C22 H23 O11	M+

Figure S8. MS/MS spectrum of rhamnetin 3-rhamninoside (9) parent ion at *m*/*z* 771.2343 [M+H]⁺

m/z	Calc m/z	Diff(ppm)	z	Abund	Formula	Ion
117.0541	117.0546	4.59	1	366.75	C5 H9 O3	M+
→ 129.0548	129.0546	-1.49	1	1200.41	C6 H9 O3	M+
→ 147.0653	147.0652	-0.51	1	581.61	C6 H11 O4	M+
→ 163.0602	163.0601	-0.57	1	1033.11	C6 H11 O5	M+
→ 317.0657	317.0656	-0.47	1	21235	C16 H13 O7	M+
318.0692	318.069	-0.84	1	3967.16	C16 H13 O7	M+
319.0717	319.0711	-1.74	1	543.41	C16 H13 O7	M+
→ 479.1186	479.1184	-0.44	1	1983.18	C22 H23 O12	M+
480.1232	480.1218	-2.81	1	527.01	C22 H23 O12	M+
774.2146			2	332.07		

Figure S9. MS/MS spectrum of kaempferol 3-rhamninoside (10) parent ion at *m*/*z* 741.2233 [M+H]⁺

Figure S10. ¹H NMR (400 MHz) spectrum of rhamnazin 3-rhamninoside (7) in methanol-d₄

Figure S11. ¹³C NMR (100 MHz) spectrum of rhamnazin 3-rhamninoside (7) in methanol-d₄

Figure S12. ESI-HRMS spectrum of rhamnazin 3-rhamninoside (7) in a negative ionization mode

Rhamnazin 3-rhamninoside (7) had the observed precursor ion at m/z 783.2333 [M-H]⁻, calcd for [C₃₅H₄₄O₂₀ - H]⁻, 783.2348, $\Delta_{m/z}$ = 1.92 ppm, and thus having the molecular formula of C₃₅H₄₄O₂₀.

Figure S13. ¹H NMR (400 MHz) spectrum of rhamnocitrin 3-rhamninoside (8) in methanol-d4

Figure S15. ESI-HRMS spectrum of rhamnocitrin 3-rhamninoside (8) in negative ionization mode

Rhamnocitrin 3-rhamninoside (8) had the observed precursor ion at m/z 753.2249 [M-H]⁻, calcd for [C₃₄H₄₂O₁₉ - H]⁻, 753.2242, $\Delta_{m/z}$ = 0.93 ppm, and thus having the molecular formula of C₃₄H₄₂O₁₉.

Figure S17. ¹³CNMR (100 MHz) spectrum of rhamnetin 3-rhamninoside (9) in methanol-d4

Figure S18. ESI-HRMS spectrum of rhamnetin 3-rhamninoside (9) in a negative ionization mode

Rhamnetin 3-rhamninoside (9) had the observed precursor ion at m/z 769.2182 [M-H]⁻, calcd for [C₃₄H₄₂O₂₀ - H]⁻, 769.2191, $\Delta_{m/z}$ = 1.17 ppm, and thus having the molecular formula of C₃₄H₄₂O₂₀.

Figure S19. ¹HNMR (400 MHz) spectrum of kaempferol 3-rhamninoside (10) in methanol-d₄

Figure S20. ¹³CNMR (100 MHz) spectrum of kaempferol 3-rhamninoside (10) in methanol-d4

Figure S21. ESI-HRMS spectrum of kaempferol 3-rhamninoside (10) in a negative ionization mode

Kaempferol 3-rhamninoside (10) had the observed precursor ion at m/z 739.2082 [M-H]⁻, calcd for [C₃₃H₄₀O₁₉ - H]⁻, 739.2086, $\Delta_{m/z}$ = 0.54 ppm, and thus having the molecular formula of C₃₃H₄₀O₁₉.

Figure S22. ¹H NMR (400 MHz) spectrum of quercetin 3-rhamninoside (11) in methanol-d₄

Figure S23. ¹³C NMR (100 MHz) spectrum of quercetin 3-rhamninoside (11) in methanol-d4

Figure S24. ESI-HRMS spectrum of quercetin 3-rhamninoside (11) in a negative ionization mode

Quercetin 3-rhamninoside (11) had the observed precursor ion at m/z 755.2027 [M-H]⁻, calcd for [C₃₃H₄₀O₂₀ - H]⁻, 755.2035, $\Delta_{m/z}$ = 1.06 ppm, and thus having the molecular formula of C₃₃H₄₀O₂₀.

Figure S25. MS/MS spectrum of ventilatone B (12) parent ion at *m/z* 329.0659 [M+H]⁺

Figure S26. MS/MS spectrum of ventilatone A (15) parent ion at *m*/*z* 313.0706 [M+H]⁺

Figure S27. ¹H-NMR (400 MHz) spectrum of ventilatone B (12) in CDCl₃

Figure S28. ¹³C-NMR (100 MHz) spectrum of ventilatone B (12) in CDCl₃

Figure S29. ESI-HRMS spectrum of ventilatone B (12) in a negative ionization mode

Ventilatone B (12) had the observed precursor ion at m/z 327.0506 [M-H]⁻, calcd for [C₁₇H₁₂O₇ - H]⁻, 327.0505, $\Delta_{m/z} = 0.31$ ppm, and thus having the molecular formula of C₁₇H₁₂O₇.

Figure S30. 1H NMR (400 MHz) spectrum of lupeol (13) in CDCl3

Figure S32. ¹H NMR (400 MHz) spectrum of ventilatone A (15) in CDCl₃

Figure S34. ESI-HRMS spectrum of ventilatone A (15) in a negative ionization mode

Ventilatone A (15) had the observed precursor ion at m/z 313.0710 [M+H]⁺, calcd for [C₁₇H₁₂O₆ + H]⁺, 313.0712, $\Delta_{m/z}$ = 0.64 ppm, and thus having the molecular formula of C₁₇H₁₂O₆.

Figure S36. ¹³C NMR (100 MHz) spectrum of ventilatone C (16) in CDCl₃

Figure S37. ¹H-¹H COSY spectrum of ventilatone C (16) in CDCl₃

Figure S38. HSQC spectrum of ventilatone C (16) in CDCl₃

Figure S40. ¹H NMR (400 MHz) spectrum of ventilatone C (16) in acetone-d₆

Figure S41. ¹³C NMR (100 MHz) spectrum of ventilatone C (16) in acetone-d₆

Figure S42. 1H-1H COSY spectrum of ventilatone C (16) in acetone-d6

Figure S43. HSQC spectrum of ventilatone C (16) in acetone-d₆

Figure S44. HMBC spectrum of ventilatone C (16) in acetone-d₆

Figure S45. ESI-HRMS spectrum of ventilatone C (16) in a positive ionization mode

Ventilatone C (16) had the observed precursor ion at m/z 299.0917 (M+H)⁺, calcd for [C₁₇H₁₄O₅ + H]⁺, 299.0919, $\Delta_{m/z}$ = 0.67 ppm, and thus having the molecular formula of C₁₇H₁₄O₅.

