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Abstract: Gentamicin is an essential broad-spectrum aminoglycoside antibiotic that is used in over
40 clinical conditions and has shown activity against a wide range of nosocomial, biofilm-forming,
multi-drug resistant bacteria. Nevertheless, the low cellular penetration and serious side effects of
gentamicin, as well as the fear of the development of antibacterial resistance, has led to a search
for ways to circumvent these obstacles. This review provides an overview of the chemical and
pharmacological properties of gentamicin and offers six different strategies (the isolation of specific
types of gentamicin, encapsulation in polymeric nanoparticles, hydrophobization of the gentamicin
molecule, and combinations of gentamicin with other antibiotics, polyphenols, and natural products)
that aim to enhance the drug delivery and antibacterial activity of gentamicin. In addition, factors
influencing the synthesis of gentamicin-loaded polymeric (poly (lactic-co-glycolic acid) (PLGA) and
chitosan) nanoparticles and the methods used in drug release studies are discussed. Potential research
directions and future perspectives for gentamicin-loaded drug delivery systems are given.

Keywords: gentamicin; antibacterial activity; drug delivery; nanoparticles; polyphenols; natural
products; synergy

1. Introduction

Due to the alarming rate of increase in antibacterial resistance, common broad-
spectrum antibiotics often fail to treat infections. More and more often opportunistic
and nosocomial pathogens, especially bacterial strains with a tendency to form biofilms,
like Pseudomonas aeruginosa, are the cause of high-morbidity and high-mortality infections
that require high-dosage and longer antibacterial treatments [1–3]. This again leads to
increased antibacterial resistance, creating a vicious cycle. The majority of nosocomial in-
fections are caused by six multidrug-resistant bacteria (Enterococcus faecium, Staphylococcus
aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobac-
ter species). This group of bacteria is commonly referred to as ESKAPE pathogens [4]. All
of these bacteria can also be found on the World Health Organization’s (WHO) priority
list for research on and the development of new antibiotics for antibiotic-resistant bacteria
at either critical or high-priority levels [5]. As there has been a serious shortage of new
antimicrobials entering the market in recent years, a search for ways to enhance the efficacy
and drug delivery of already known and widely used antibacterial agents like gentamicin
is essential.

Gentamicin is a broad-spectrum, bactericidal, aminoglycoside antibiotic. It is effective
against a wide range of aerobic Gram-negative bacteria, as well as Gram-positive Staphylo-
coccus species [6]. Of special importance is its potential activity against ESKAPE pathogens.
Although it was discovered in the early 1960s [7], gentamicin still is a part of the essential
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medicines list of the World Health Organization [8]. Because of its wide activity spectrum,
gentamicin is used to treat over 40 different clinical conditions, including bacterial sepsis,
peritonitis, meningitis, the urinary tract and respiratory tract, eye, ear, bone, and surgical
site infections, and others, proving its important role in modern medicine [6,8–10]. Figure 1
summarizes United States (US) Food and Drug Administration (FDA) approved, prevalent
indications treated with gentamicin.
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Gentamicin represents class III of the Biopharmaceutical Classification System due to
its high solubility in water and low cellular penetration [11]. Consequently, drug delivery
of this active agent alone may be hindered. As gentamicin is used to fight serious infections,
often caused by multi-drug-resistant pathogens, ways to lower the needed concentration of
gentamicin and ultimately minimize the chance of the development of resistance against it
are one of the top priorities.

Therefore, this review paper provides an overview of the chemical and pharmacologi-
cal properties of gentamicin and offers six different strategies (the isolation of specific types
of gentamicin, encapsulation in polymeric nanoformulations, hydrophobization of the
gentamicin molecule, and combinations of gentamicin with other antibiotics, polyphenols,
and natural products) that aim to enhance the drug delivery and antibacterial activity
of gentamicin.

2. The Components and Properties of Gentamicin Complex

Gentamicin is produced by the Micromonospora species of bacteria, as a mixture of
multiple components, but mainly consists of five structurally different C-subtypes (C1, C1a,
C2, C2a, and C2b) with structural modifications at position 6′ of moiety I (Figure 2A) [12].
The structural differences in the major components are related by the level of methylation—a
methyl or hydrogen substitution in two R groups on the 2-amino-hexose residue (I). In
gentamicin C1a, methyl groups are missing, whereas both in C1 and C2, a methyl group is
present at the 6′ position; gentamicin C1 is N-methylated at this position, while C1a and
C2 have free amines. The C2 component consists of two stereoisomers [13]. The ratio of
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the gentamicin components varies depending on the drug’s manufacturing method, the
fermentation conditions, and the purification procedure [14,15].
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The major components constitute 92–99% of the gentamicin complex. Other gentam-
icin derivatives (Figure 2B), as the minor components, are found in the range between 0.8
and 5.3% [15,16].

According to the European Medicine Agency (EMA), the gentamicin composition consists
of 10–30% C1a, 25–45% C1, and 35–55% C2, C2a, and C2b [17,18]. The ratio of gentamicin
components has been studied using several methods based on paired-ion, high-performance
liquid chromatography (HPLC) [19,20] and coupled liquid chromatography–NMR to compare
the composition of different batches from various sources [15].

The clinical mechanism of action of the mixture is unclear; it is unknown whether the
broad spectrum of antimicrobial action is due to multiple components. In other terms, it
is unclear whether each component works across a narrower range of bacterial strains or
species than the entire mixture [21]. Numerous research groups worldwide are working
on the characterization of the structure–activity relationships of gentamicin components,
studying the activity of the difficult-to-separate components of the commercial gentamicin
samples, and characterizing specially prepared single components [21,22]. The relative
toxicity and activity of the individual components in the commercial gentamicin samples
have been studied since the 1970s [16,17]. These studies suggest that gentamicin C2 is less
nephrotoxic than the other gentamicin constituents [23]; gentamicin C1 and C1a are less
ototoxic than C2 [24]. In more recent studies evaluating the ototoxicity, it was indicated that
gentamicin C1a was less ototoxic than a commercial gentamicin mixture. The minimum
inhibitory concentration (MIC50 and MIC90) values of both the gentamicin complex and
gentamicin C1a against clinical isolates of five bacterial species from E. coli, K. pheumoniae,
A. baumannii, P. aeruginosa, and S. aureus were comparable; however, a two-fold increase in
MIC50 was observed for the gentamicin C1a isomer compared to the gentamicin complex.
However, these two compounds showed rather different in vitro activities against a larger
portion of 61 isolates from E. coli, K. pheumoniae, A. baumannii, P. aeruginosa, and S. aureus [25].

Further research on the activity–toxicity relationship of the gentamicin components
is necessary to draw concrete conclusions regarding the potential gains of isolating and
applying individual gentamicin subtypes.
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3. Pharmacology, Stability, and Administration of Gentamicin

Gentamicin belongs to the 4,6-disubstituted-2-deoxystreptamine class of aminogly-
cosides [26]. Clinically, gentamicin has been used as a sulfate salt. It contains five basic
nitrogens and requires five sulfuric acid equivalents per mole of every gentamicin base [27].

The mechanism of action prevents the synthesis of bacterial proteins through elec-
trostatic binding with negatively charged phospholipids’ head groups. Afterwards, the
antibiotic binds to the specific ribosomal proteins, resulting in the formation of inactive
complexes that cause misreadings in mRNA [28,29]. Gentamicin is a cationic antibiotic
with a narrow therapeutic index [30,31]. Its antibacterial activity can be influenced by the
pH. A low pH is associated with a decrease in activity [30]. The pharmacological action of
gentamicin is concentration-dependent [6].

The pharmacokinetics of gentamicin are comparable to those of other aminoglycosides.
Gentamicin is a polar molecule and is poorly absorbed when taken orally (less than 1%);
therefore, systemic use requires parenteral administration [31–33]. In certain infections,
topical and local administration is needed [34]. The local delivery of antibiotics might
reduce potential toxic side effects and be of particular use in infections that require the
long-term, sustained release of antibiotics, like osteomyelitis [35].

It has been suggested that the standard intravenous gentamicin starting dose of
7 mg/kg based on total body weight appears to optimize the chance of reaching the expo-
sure target after the first administration in both adults and children older than 1 month,
including critically ill patients. However, despite numerous recent population pharma-
cokinetic studies, the optimal pharmacokinetic–pharmacodynamic target for efficacy is
still unclear [36]. If patients suffer from renal failure, the dosage of gentamicin needs to be
lowered [37].

Gentamicin binds to serum proteins very poorly; in most cases, the binding to serum
proteins is under 15% [38]. In the cerebrospinal fluid of patients with uninflamed meninges, it
is found in very low concentrations [37]. Gentamicin does not easily penetrate cells; instead, it
is mostly distributed in the extracellular fluid [33]. Pinocytosis is the main mechanism of free
gentamicin uptake [39]. Gentamicin does not undergo metabolism in the body, and, through
glomerular filtration, unchanged gentamicin is quickly eliminated [33,40]. Since gentamicin
has a short plasma half-life of around 2 h, frequent administration is needed [31]. The
biodistribution of gentamicin causes its most common side effects—nephrotoxicity and
ototoxicity [41,42]. The half-life in the renal cortex is estimated to be around 100 h [43]. The
pharmacokinetics of gentamicin are dependent on the overall health status of the patient.
Altered pharmacokinetic parameters like the volume of distribution, peak concentrations,
and renal clearance are affected by conditions like sepsis, heart failure, peritonitis, and
renal impairment [33,44].

Gentamicin sulfate sterile solutions should be kept between 2 and 8 ◦C. Gentamicin
solutions have proven to be stable when kept at room temperature and in boiling aqueous
buffers with pH values ranging from 2 to 14 [27,45]. Recommendations under the auspices
of the International Society for Peritoneal Dialysis (ISPD) underlined that gentamicin
is stable for 14 days at all temperatures [46]. A protocol used for microbe–epithelium
cocultures states that gentamicin is stable at 4 ◦C for 1 month [47]. The good stability of
gentamicin over a wide range of storage conditions makes it a promising candidate for
encapsulation in novel drug delivery systems like nanoparticles.

4. Polymeric Nanoformulations of Gentamicin

In the last two decades, nanoformulations have emerged as one of the frontrunners
for the encapsulation and delivery of a wide range of active agents, including antibiotics.
Nanoformulations for enhanced drug delivery have provided formulation scientists with
the opportunity to achieve a higher bioavailability and biocompatibility, a controlled release,
and increased target selectivity [48]. Although the use of nanoformulations in terms of
their toxicity and distribution in the body is still under investigation, the potential gains of
this approach drive further research in this field [14].
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In the case of antibiotics, the main hope for the use of nanoformulations is that
they will lower the chance of the development of antimicrobial resistance and achieve
the targeted delivery of antibiotics with the lowest effective dose to avoid unwanted
side effects for the patient [49,50]. For more than two decades, various lipids, polymers,
and other materials have been applied to create micro- and nanoformulations, including
nanoparticles, nanofibers, nanocomposites, and others, for the delivery of a wide range of
antibiotics [50]. Gentamicin is no exception. In addition to polymeric nanoformulations,
gentamicin has been successfully encapsulated into liposomes [51–53] and mesoporous
silica nanoparticles [54–56], as well as being tested for synergic effects in combination
with metallic nanoparticles [57–59]. A detailed overview of all nanoformulation types for
the delivery of gentamicin has been thoroughly evaluated in a recent review paper by
Athauda et al. [14]. The use of lipid-based nanoparticles for the delivery of antibiotics and
the treatment of infections has already been reviewed in detail by Ferreira et al. [60,61].
Therefore, this review will only focus on recent advances in polymeric formulations, in
particular, poly (lactic-co-glycolic acid) (PLGA) and chitosan-based systems, their potential
applications, and the main variables impacting the systems and their kinetics. The sustained
release properties of gentamicin-loaded nanoformulations and the possibility of enhancing
the bioavailability of gentamicin are of particular importance; therefore, these topics will
be discussed in detail in further subsections.

4.1. Gentamicin-Loaded PLGA Nanoparticles

PLGA is a polyester copolymer composed of lactic acid (PLA) and glycolic acid (PGA)
in varying ratios. It is biodegradable, biocompatible, non-toxic, approved for parenteral
use by both FDA and EMA, and allows for a wide range of surface modifications [62]. An
overview of gentamicin-loaded PLGA nanoparticles and their main parameters can be
found in Table 1.
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Table 1. Gentamicin-loaded PLGA nanoparticles.

PLGA Type Surfactant Formulation
Method Size (nm) PDI Zeta Potential

(mV)
Particle

Characterization
Methods

EE (%) Drug Loading Drug Release
(In Vitro)

Bacteria
(In Vitro Tests)

Potential
Application Ref.

50:50
(13.7 kDa)

PVA
(15 kDa)

w/o/w
solvent

evaporation
320 NA −15.5 ± 0.2

DLS
ELS
SEM
XRD
DSC

13.12–58.76 3.24–7.35 # 28 days NT Intracellular
pathogens [63]

50:50
(13.7 kDa)

PVA
(15 kDa)

w/o/w
solvent

evaporation
310 ± 2.00 NA NT DLS NT 6.2 * NT NT Intracellular

pathogens [64]

50:50
(12 kDa) PVA

w/o/w
s/o/w
solvent

evaporation
241.3–358.5 0.10–0.23 −0.4–2.3 DLS

ELS NT 6.4–22.4 * Over 16 days P. aeruginosa
Planktonic-

and
biofilm-based

infections
[65]

85:15
(80 kDa)

PVA
(31 kDa)

w/o/w
solvent

evaporation
219–391 0.21–0.38 −7.2–−1.1

DLS
ELS

AFM
2.7–52.4 0.06–10.28% 35 days S. aureus

S. epidermidis Osteomyelitis [66]

50:50
(7–17 kDa)

PVA
(85–124 kDa)

w/o/w
solvent

evaporation
280 ± 12.04 0.15 ± 0.01 −4.9 ± 0.84

DLS
ELS
SEM
TEM

NT 60% 216 h P. aeruginosa
S. aureus

Surgical site
infections [67]

50:50
(7–17 kDa) PVA

w/o/w
solvent

evaporation
227 0.162 −1.67

DLS
ELS
SEM

NT 135 * 120 h K. pneumoniae Intracellular
pathogens [68]

PLGA-PEG
(70 kDa)

PVA
(85–124 kDa)

s/o/w
solvent

evaporation
140.0–919.3 0.104–1.230 −5.54–0.36

DLS
ELS
TEM

43.97–64.61 2.9–7.9% 10 h
P. mirabilis

E. coli
P. aeruginosa

S. aureus

Intracellular
pathogens [11]

75:25
(4–15 kDa)

PVA
(89–98 kDa)

w/o/w
solvent

evaporation
32–2400 NA NT DLS

SEM NT NT 10 h E. coli Wound
treatment [69]

#—µg gentamicin/mg particles; *—µg gentamicin/mg polymer; NA—not available; NT—not tested; PVA—poly (vinyl alcohol); PDI—polydispersity index; DLS—dynamic light
scattering; ELS—electrophoretic light scattering; AFM—atomic force microscopy; TEM—transmission electron microscopy; SEM—scanning electron microscopy; DSC—differential
scanning calorimetry; XRD—X-ray diffraction analysis.
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Since gentamicin is highly hydrophilic, its penetration into cells might be hindered and
the clearance of the drug is fast [11,31]. Hence, higher doses should be administered more
frequently. In the case of gentamicin, the chance of developing side effects increases accord-
ingly [31]. Low cellular penetration is especially associated with intracellular infections [64].
The encapsulation of gentamicin in polymeric nanoparticles like PLGA and chitosan could
offer a solution to the problems caused by the high water-solubility of gentamicin. Drug-
loaded nanoparticles have an improved bioavailability and permanence time at the site of
infection, in addition to offering a sustained release and protection of premature degrada-
tion [11]. Polymers offer a wide variability of parameters, like molecular weight and the
ratio between monomers, which can be applied to develop nanoformulations with optimal
drug release properties.

In comparison to other polymers, like chitosan and alginate, PLGA nanoparticles can
have controlled release properties without a chemical modification [67]. The sustained
release of gentamicin from PLGA nanoparticles may be the most important advantage
compared to using a free drug. The ratio between PLA and PGA is crucial to the hydropho-
bicity of the formulation [70]. A higher lactic acid content increases the hydrophobicity of
the system and prolongs the release of drugs [64,70]. In addition, a sustained release of the
drug can also be achieved by using a polymer with a higher molecular weight [71]. In case
of chronic, long-lasting infections, a sustained release will determine the efficacy of the ther-
apy. To date, PLGA 50:50 is the most commonly used PLA:PGA ratio in nanoformulations
due to its favorable physiochemical properties and release kinetics [72].

The small molecular weight and the high water-solubility of gentamicin make it
challenging to encapsulate it into nanocarriers [11]. One key advantage of using PLGA as
a nanocarrier is its ability to encapsulate both hydrophobic and hydrophilic substances.
However, different formulation methods need to be applied. For a hydrophilic drug
(like gentamicin) encapsulation, multiple emulsions are needed so that the aqueous core
containing the drug is coated by a polymer shell [65]. Therefore, the majority of published
methods use the double emulsion w/o/w solvent evaporation method, with only a few
authors reporting on the use of the s/o/w method [11,65]. A schematic illustration of the
solvent evaporation method can be found in Figure 3.
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Cao et al. provide an in-depth overview of the influence of various parameters in the
w/o/w method on the morphology and physiochemical properties of PLGA particles [73].
In short, the study determined that PLGA concentration and the colostrum emulsification
speed are the most influential factors impacting the size of the particles. Lower PLGA
concentration levels (10–20 mg/mL) produce particles with a narrow size distribution;
however, the shape of the nanoparticles can be rather uneven. A higher PLGA concentration
(30–40 mg/mL) allows for the formation of particles with round shapes, although the size
distribution of the particles in this case is significantly larger. Up to a certain concentration,
an increase in the PLGA concentration increases the drug loading. A higher polymer
concentration leads to a higher viscosity and the particles solidify faster. As a consequence,
less of the drug can escape from the particles, and the encapsulation efficiency (EE%) and
drug loading (DL%) increase [73]. Regarding DL%, the second emulsification step is just as
important. Higher emulsification speeds lead to the increased volatilization of solvents like
DCM or chloroform, restricting the escape of drugs from particles [73].

Another factor significantly impacting the performance of the formulation method
is the pH of the external aqueous phase. Increasing the pH of the external aqueous phase
from 5 to 7.4 can increase the EE% up to three times [65]. This phenomenon is based on the
deprotonation of the amino groups in the gentamicin molecule, making the molecule less
hydrophilic [65].

Poly (vinyl alcohol) (PVA) is the most commonly used surfactant in PLGA-gentamicin
nanoformulations. With increasing concentrations of PVA, it is possible to decrease the
particle size as well as the polydispersity index (PDI) [66]. A study by Sun et al. suggests
that a higher concentration of PVA (9%, 12%) is associated with a more uniform, spherical
particle shape [69]. In addition, the hydrophilic nature of PVA could be responsible for the
porous surface structures of nanoparticles due to the diffusion processes [69]. The pore size
decreases with a higher PLGA concentration [69].

It has been determined that the size of nanoparticles will heavily impact their fate in
biological systems. Nanocarriers under 100 nm are prone to endocytosis, while carriers
larger than 500 nm will face phagocytosis [74]. The endocytosis of nanoparticles could
be more efficient than the pinocytosis of free gentamicin, leading to an increase in the
efficiency of the therapy [75]. In practice, most gentamicin-loaded PLGA nanoparticles
range between 200 nm and 400 nm (see Table 1). PLGA nanoparticles are internalized
using both pinocytosis- and clathrin-mediated endocytosis [76]. After internalization, the
PLGA nanoparticles escape the lysosomes and enter the cytoplasm approximately 10 min
after incubation [77,78]. It has been suggested that the naturally negative/anionic surface
charge of PLGA nanoparticles (due to the carboxylic acid end groups) reverses to cationic
with the low pH of endo-lysosomes (pH ≈ 4) [78]. The surface cationization allows for
nanoparticles to escape into the cytosol, where the encapsulated drug is released [78].
Moreover, the sustained release of the drug is achievable intracellularly. Since the PLGA
nanoparticles are only cationic in the endosomal compartment, and therefore do not cause
lysosomal destruction, they could be less toxic in comparison to cationic lipids and cationic
polymers [78].

The disadvantages of unmodified PLGA use are the lack of specific targeting properties
and response to environmental stimuli, as well as vulnerability to aggregates during freeze-
drying [79].

Since, without surface modifications, PLGA has no active targeting properties, it has
to rely on passive targeting after intravenous administration. Passive targeting will be more
effective against conditions that exhibit enhanced permeability and retention effects, such as
cancers and inflammatory processes [80]. If no surface modifications to PLGA nanocarriers
are applied, opsonization by macrophages usually occurs at high rates [65]. Due to the
previously mentioned reasons and the chance of the development of antibacterial resistance,
nanoformulations with gentamicin are most often applied for topical or local delivery.

However, in the case of systemic application, it is possible to apply surface modifica-
tions to PLGA to avoid clearance by phagocytes, limit opsonization, and prolong circulation
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time. The surface of PLGA is most often modified using polyethylene glycol (PEG), differ-
ent lipids, and target-specific agents, like antibodies and bisphosphonates [81]. To the best
of our knowledge, only one publication to date has explored the use of PLGA-PEG for the
encapsulation of gentamicin [11].

Three main targets for PLGA–gentamicin nanoparticles can be differentiated—surgical
site infections, osteomyelitis, and intracellular infections.

In the case of osteomyelitis, poor vascularization around bone tissues makes drug
delivery to the site of infection very difficult [82]. For both surgical site infections and
osteomyelitis, which are commonly caused by Staphylococcus aureus, Pseudomonas aeruginosa,
and Escherichia coli, as well as more resistant strains like Methicillin-resistant Staphylococcus
aureus, up to 6 weeks of the sustained delivery of gentamicin might be needed to eliminate
the infections and their biofilms [66,83,84]. Although non-biodegradable bone cements,
like poly (methyl methacrylate) (PMMA), possess several advantages for osteomyelitis
treatment, the need for a second surgical intervention to remove them hinders their wider
use [85,86]. Biodegradable PLGA-based nanocarrier administration via injection at the site
of infection is a great alternative [66].

Another group of infections targeted by gentamicin-loaded PLGA nanoparticles are in-
tracellular infections. Intracellular infections act as a reservoir of bacteria and lead to chronic
conditions that can also be lethal. Targeting intracellular infections is much harder due to
the poor cellular penetration of gentamicin [64,68]. To overcome this challenge, it is possible
to turn to nanoformulations, which, in general, are often taken up by macrophages via
phagocytosis. This strategy allows for the passive targeting of intracellular infections and
enhances the efficacy of the therapy [68]. To date, gentamicin-loaded PLGA nanoparticles
have been effectively explored against two intracellular infections—Klebsiella pneumoniae
and Brucella melitensis [64,68]. Not only can gentamicin-loaded PLGA nanoparticles be
taken up by infected macrophages, but they also reduce bacterial viability without inducing
an inflammatory or apoptotic response on the macrophages [68].

The current evidence of the antibacterial effectiveness of PLGA nanoparticles loaded
with gentamicin compared to the use of a free drug is mixed. Empty PLGA nanoparticles
do not possess antibacterial properties; therefore, their effect is dependent on the drug
content and the drug release mechanisms [65,69]. Some in vitro tests against P. aeruginosa,
S. aureus, and E. coli have shown that the MIC and MBC levels of nanoparticles compared
to a free drug are equal or one dilution higher [11,65]. Lower effective concentrations
of nanoparticles compared to the free drug have been reported against S. aureus [11,67].
However, when Jiang et al. tested the use of gentamicin-loaded nanoparticles against
K. pneumoniae in vitro, the MIC and MBC values for the nanoparticles were significantly
higher than those of a free drug [68]. The MIC/MBC values of nanoparticles lowered
when tested after a longer period (up to 120 h), while, for the free gentamicin, the values
stayed the same. This observation suggests that simple in vitro antibacterial tests might
not be suitable for testing nanoparticles with sustained release. Instead, nanoformulations
should be tested in more complex physiological environments in vivo for a longer period
of time. It was further proven in vivo that gentamicin-loaded nanoparticles were more
effective, providing longer protective effects against the infection than the free form of the
drug due to the sustained release of the gentamicin from nanoparticles [68]. An increased
effectiveness in vivo was also observed with P. aeruginosa infection [65]. In addition, in
terms of antibiofilm activity, the sustained release of gentamicin proves an advantage over
a single dose of free gentamicin [65].

To alleviate the application of prepared nanoparticles and to further modify the release
profile of the drugs, it is possible to incorporate the nanoparticles in various other drug
delivery forms. For local application, gentamicin-loaded PLGA nanoparticles have been
incorporated into transdermal patches and pullulan films [67,87,88].

In sum, the main advantages provided by PLGA nanoparticles are the sustained release
of gentamicin for up to 35 days and an enhanced possibility of targeting intracellular
infections and infections needing long-term treatment, leading to an increase in their
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bioavailability. The challenges regarding PLGA–gentamicin nanoparticles are that they
require further process optimization to obtain reproducible results, in addition to a quite
limited EE%. More studies on the antibacterial efficiency of these nanoparticles using
in vivo tests are needed. Gentamicin-loaded PLGA nanoparticles with various surface
modifications are an underexplored research field, with future potential for more targeted
treatments of infections.

4.2. Gentamicin-Loaded Chitosan Nanoparticles

Chitosan is a natural, linear polysaccharide with wide use in the biomedical industry
due to its physiochemical properties, biocompatibility, biodegradability, and antibacterial
and antifungal activity [89,90]. It is composed of β-1,4 glucose amine and β-1,4-N-acetyl
glucose amine units [91]. The antimicrobial properties of chitosan are explained by the
electrostatic interaction between the positive charge of chitosan and the negatively charged
bacterial cell walls [92,93]. Without the polycationic nature, the antibacterial properties
of chitosan are reduced [93]. In addition, other factors, like molecular weight, positive
charge density, and pH, can influence the antibacterial properties of chitosan [93,94]. The
antimicrobial properties of chitosan make it a desirable polymer for nanoparticle formation
and the encapsulation of antibiotics. Gentamicin-loaded chitosan nanoparticles have
largely been explored only in the last 5 years. An overview of gentamicin-loaded chitosan
nanoparticles and their main parameters can be found in Table 2.
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Table 2. Gentamicin-loaded chitosan nanoparticles.

Chitosan Type Crosslinker Drugs Formulation
Method Size (nm) PDI Zeta Potential

(mV)
Particle Char-
acterization

Methods
EE (%) Drug Loading

(%)
Bacteria

(In Vitro Tests)
Potential

Application Ref.

150 kDa,
deacetylation
degree 85.6%

TPP Gentamicin Ionic gelation 779.37 ± 51.79 NT 1.9 ± 0.5 DLS
ELS 78.06 ± 2.13 63.10 ± 1.54 NT Intracellular

pathogens [95]

80 kDa,
deacetylation
degree 95%

TPP Gentamicin +
salicylic acid Ionic gelation 148–345 0.234–0.428 32.45–42.43

DLS
ELS
TEM
SEM
FTIR
XRD

61.70–87.20 13.56–26.64 NT Reduction in
toxicity [96]

140 kDa,
deacetylation
degree 85%

TPP Gentamicin Ionic gelation 100 NT 28
DLS
ELS
SEM

72 22 B. abortus
B. melitensis

Intracellular
pathogens [75]

304 kDa,
deacetylation
degree >84%

-
Gentamicin +

proanthocyani-
din

Hydrogen
bonding 242.9–277.4 0.344–0.391 34.5–38.5

DLS
ELS
SEM
FTIR
TGA

94 NT
E. coli

S. aureus
P. aeruginosa

Enhanced
antimicrobial

activity
[97]

Low molecular
weight, deacetyla-

tion ≥ 75%
TPP Gentamicin Ionic gelation 151–212 0.21–0.29 37.2–51.1

DLS
ELS
TEM
SEM
DSC

36.6–42.7 NT NT Wound healing [98]

NA TPP Gentamicin +
ascorbic acid Ionic gelation 278 NT 30.01

DLS
ELS
TEM
FTIR

89 22 S. aureus
P. aeruginosa

Reduction in
toxicity [99]

NA—not available; NT—not tested; TPP—sodium tripolyphosphate; DLS—dynamic light scattering; ELS—electrophoretic light scattering; TEM—transmission electron microscopy;
SEM—scanning electron microscopy; TGA—thermogravimetric analysis; DSC—differential scanning calorimetry; FTIR—Fourier-transform infrared spectroscopy; XRD—X-ray
diffraction analysis.
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Both physical and chemical crosslinking can be applied to form chitosan nanoparti-
cles [100]. The ionic gelation method, which is a type of physical crosslinking, has been
most widely used to form gentamicin-loaded nanoparticles due to the simplicity and mild
conditions of the method [96,99]. Sodium tripolyphosphate (TPP), in most cases, is used
as a cross-linker. TPP is a non-toxic agent with negatively charged phosphate groups;
therefore, it can react with the positively charged amino groups of chitosan, leading to
gelling [101,102].

The cellular uptake of chitosan nanoparticles is dependent on their attachment to
the negatively charged cell membranes due to electrostatic interactions. The chitosan
nanoparticles are then transported via endocytosis, with subsequent release in subcellular
compartments like lysosomes [103]. The “proton sponge effect” promotes chitosan nanopar-
ticle escape from endosomes, meaning that the amino groups are more protonated in the
acidic pH of endosomes. Subsequently, water and chloride ions enter the endosomes to
balance out the osmotic imbalance. The volume increase ruptures the endosomes, allowing
the nanoparticles to enter cytoplasm [104]. The same mechanism is also responsible for
lysosome rupture [103]. In terms of their possible application, the use of gentamicin-loaded
chitosan nanoparticles against intracellular bacteria and biofilms has been examined, as
well as explored their potential as wound healing agents [75,95,98,105].

Regarding their antibacterial activity, gentamicin-loaded chitosan nanoparticles have
shown promising results. Gentamicin-loaded chitosan nanoparticles have shown equal or
better antibacterial properties compared to gentamicin in a free drug form [75,97,99,105].
The authors suggest that the higher antibacterial efficiency is observed due to the sustained
release of gentamicin [75]. When tested in combination with other agents, like ascorbic
acid, the dual-therapy chitosan particles show enhanced antibacterial activity and possible
synergy between the components [99].

A disadvantage of using chitosan to encapsulate gentamicin is the positive charge
of both molecules, which leads to electrostatic repulsion and, therefore, lower drug load-
ing [95]. In addition, gentamicin release from the nanoparticles is rather short in comparison
to that of gentamicin-loaded PLGA nanoparticles, with authors reporting drug release
lasting up to 1 week and, in most cases, only around 3 days [75,95–97,99,105]. The re-
lease profile of chitosan nanoparticles could prohibit their potential use in hard-to-combat
infections that require several weeks of treatment.

In recent years, novel publications can be found on chitosan nanoparticles that combine
gentamicin with other active agents, like ascorbic acid, salicylic acid, and proanthocyanidin,
to minimize the side effects of gentamicin and enhance the antibacterial activity, with
promising results [96,97,99]. As strong antioxidants, these molecules could minimize the
toxicity to cells created by reactive oxygen species (ROS) [99].

To further maximize the advantages of both polymeric and lipid drug delivery systems,
combined hybrid nanoparticles are currently being researched. In the case of chitosan, Qiu
et al. developed novel phosphatidylcholine–chitosan nanoparticles and coated the particles
with gentamicin to enhance the drug delivery to biofilms and intracellular pathogens, with
promising results [105].

4.3. The Release of Gentamicin from Polymeric Nanoparticles

The in vitro release study is crucial in evaluating drug delivery systems’ safety, ef-
fectiveness, and quality when utilizing nanoparticles. However, despite its importance,
no universally recognized standards or regulations currently govern this type of test-
ing [106,107].

Various mechanisms are employed to assess the release of drugs from nanoparticles
depending on the drug’s physical and chemical properties and the matrix. These mech-
anisms include diffusion, erosion, swelling, and osmosis [108–112]. The effectiveness of
drug release from biodegradable polymeric microspheres is determined by various factors,
including drug loading efficiency, solubility, biodegradability, diffusion, and microsphere
size [113].
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As highlighted by the literature, gentamicin release studies involving the quantifica-
tion of gentamicin face several challenges. Firstly, gentamicin is a complex mixture of five
structurally distinct components (see Section 2). Secondly, gentamicin lacks chromophore
groups, which means that it cannot absorb UV light and can be indirectly determined
through chemical derivatization methods with o-phthaldialdehyde, phenyl isocyanate,
9-fluorenylmethyl chloroformate, 1-fluoro-2,4-dinitrobenzene, and others, which are time-
consuming and produce unstable derivatives [114,115]. Most of the literature on gentamicin
release from PLGA and chitosan mentions derivatization with o-phthaldialdehyde or nin-
hydrin [11,30,63,65–67]. The obtained fluorescent product can be determined through
multiple methods. One of the most popular is the more rapid and cost-effective UV/VIS
method. Alternatively, the most reliable method is high-performance liquid chromatogra-
phy (HPLC), which enables UV, fluorescence, electrochemical, or MS detection [114,115].

The drug release profiles of nanoparticle-based formulations can be obtained through
three methods: dialysis membrane, sample and separate methods, and the continuous-flow
method [106,116,117]. For gentamicin-loaded PLGA and chitosan nanoparticles, the most
commonly used methods are the first two.

One of the major challenges in comparing research findings in the field of gentamicin
release is the absence of standardization in experimental methods. This leads to variations
in the type of membranes used, stirring speed (50–200 rpm), medium (NaCl or PBS with
pH 6.4–7.4), temperature (37 ◦C or 32 ◦C), and volume (500–900 mL) [11,30,63,65–67,69].
Even when the same techniques, such as UV/VIS, are employed, different wavelengths
are often used to detect fluorescence or absorbance [11,30,69]. Fluorescence has been
measured at 360/460 nm [63,65,68]. UV absorbance has been detected at 332 nm [66],
334 nm [75], 335 nm [67], and 400 nm [11]. Due to the variability in drug release profiles
(Higuchi, first or zero order), it can be challenging to compare the published results and
draw meaningful conclusions. This can lead to different interpretations of the drug release
times and concentrations [69,113,118].

5. Hydrophobization of the Gentamicin Molecule

To increase the efficacy of antimicrobial drug activity against various infectious dis-
eases, it is necessary to increase antimicrobial activity in the intracellular environment or
prolong the presence of the antibiotic to produce a therapeutic effect. Gentamicin sulfate is
a polar antimicrobial drug and, due to its hydrophilic nature, penetration into infected cells
is limited. Moreover, as gentamicin shows a concentration-dependent bactericidal activity
and post-antibiotic effect, it requires regular and high doses, which lead to increases in
side effects [31]. Nanotechnology has developed a promising approach for the treatment
of intracellular infections by providing the intracellular targeting and sustained release
of encapsulated drugs inside the infected cells [119]. Initially, hydrophilic gentamicin
sulfate was encapsulated in PLGA particles, and its encapsulation efficiency was achieved
at 19.2% at 9.2 µg/mg of the polymer. However, drug release tests revealed that most of
the gentamicin was released within the first hour. This can be explained by the possible
absorption of gentamicin on the surface of PLGA particles [63]. Therefore, a highly efficient
drug encapsulation strategy is required. The hydrophobic ion pairing of gentamicin with
anionic surfactants without losing antimicrobial activity serves well for this purpose [120].
This method is well known to convert polar drugs into non-polar complexes and improve
their encapsulation efficiency. For this purpose, active substances such as docusate sodium
salt (AOT), sodium dodecyl sulfate, sodium oleate, and sodium deoxycholate sulfate are
used [121]. Docusate sodium salt is one of the most promising anionic surfactants for
gentamicin. The chemical structure of gentamicin and AOT are presented in Figure 4.

The ionic complex of the Gent–AOT ratio is 1:5, and the stoichiometric complexation of
the five ionizable amino groups of gentamicin is neutralized with the AOT sulfate group. The
lipophilic alkyl chains of AOT make this complex soluble in organic solvents [122]. The obtained
complexes form particles with a size of 1000 nm [123], followed by further encapsulation of the
hydrophobic Gent–AOT complex in a biodegradable water-insoluble polymer (PLGA), making
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it possible to obtain nanoparticles with a size of 200–300 nm [122–124]. This strategy allows
for a gentamicin encapsulation efficacy close to quantitative yields and up to 60 µg/mg
of the PLGA polymer compared to instances where sulfate is used as an ion pairing
agent [125]. In addition, encapsulated gentamicin is released from PLGA particles much
more slowly in drug release tests due to the hydrophobic gentamicin AOT complex. It
was observed that only 10% of gentamicin was released during the first hour, but an
almost linear sustained release of the drug over 10 weeks was observed later [122]. Other
biodegradable polymers are also used for the encapsulation of hydrophobic Gent–AOT, for
example, poly (ε-caprolactone) and poly (D,L-lactic acid) [126], polyvinyl alcohol [122], poly
(aspartic acid) [127] or poly (methyl vinyl ether-co-maleic anhydride) [128]. The variation
in surfactants is another tool to construct a drug delivery system, as the interactions of the
gentamicin complex with the AOT that was entrapped into PLGA are known to provide a
more efficient drug delivery than occurs in the absence of AOT [31].

The antibacterial properties of nanoparticles that contain Gent–AOT are superior.
However, the toxicity of Gent–AOT should also be considered, and more research is needed
to evaluate gentamicin nanoformulations [124,125].
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6. Gentamicin Combinations with Other Antibiotics

Early studies started investigating the synergic effects of gentamicin, together with
other antibiotics, like β-lactams, in the 1970s, reporting better outcomes for the combination
approach [129–131]. Currently, gentamicin is co-prescribed with a range of penicillins
(amoxicillin, ampicillin, and benzylpenicillin) for the treatment of serious infections like
sepsis, bacterial pneumonia, and peritoneal abscess [8]. The World Health Organization
recommends gentamicin + azithromycin dual treatment for gonococcal infections in case
treatment with cephalosporins fails, although this is a conditional recommendation with
very low-quality evidence [132]. In the last decade, several studies have searched for new
potential synergic combinations. Synergy has been observed when combining gentamicin
with azithromycin [133,134], mitomycin C [135], fosfomycin [136,137], ciprofloxacin [136],
daptomycin [138], and cefepime [139].

Recent tests on gentamicin in combination with other antibiotics have largely focused on
its antibacterial activity against P. aeruginosa [134–136,139] and Enterococci species [137,138]. In
addition, the combinational approach has also been tested against uncomplicated gonor-
rhea [133] and E. coli strains [136]. The synergic effects of combinations against biofilms of
both E. coli (fosfomycin/gentamicin [136]) and P. aeruginosa (ciprofloxacin/gentamicin [136]
and cefepime/gentamicin [139]) may be particularly important. A fosfomycin/gentamicin
combination even retained its synergic effects against a gentamicin-resistant strain of
E. coli [136].

The mechanisms behind the synergic effects of the two antibacterial agents are still
largely unknown and underexplored. It has been suggested that the synergy of the
azithromycin/gentamicin combination might be due to the suppression of trans-translation
by gentamicin, enhancing the efficacy of azithromycin [134]. In addition, a bacterolytic effect
of gentamicin has been hypothesized to explain the efficacy of the fosfomycin/gentamicin
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combination against a gentamicin-resistant strain [136]. Due to the high clinical significance,
understanding the mechanism behind the synergic effects responsible for action against
biofilms is critical.

Reports have been presented on the increased development of resistance after using the
gentamicin combination compared to monotherapy [140]. Furthermore, the increased toxicity,
especially the nephrotoxicity, of this approach is particularly concerning [29,140–142]. For
example, a study of patients with gonorrhea revealed a strong adverse gastrointestinal effect
rate in patients, which would likely limit the application of the azithromycin/gentamicin
combination in clinical practice [133].

Further studies, including randomized controlled trials, should be executed to evaluate
the risks and benefits of gentamicin + other antibiotic approaches. A search for alternative
antibacterial agents, which have safer profiles and a lower likelihood of the development
of resistance, like substances derived or isolated from natural products, is needed.

7. Gentamicin Combinations with Polyphenols

The used combination should lower the effective dose of antibiotic, as well as minimize
the potential side-effects of the treatment [2,143]. These criteria could potentially be met by
natural products like individual phytochemicals or herbal extracts.

Polyphenols are one of the largest groups of natural bioactive substances and are
present in a very wide variety of plants [144]. Polyphenols possess not only antimicrobial
but also antioxidant and anti-inflammatory properties [144,145]. Even though the effective
concentrations of polyphenols often are much higher than those of antibiotics, their overall
properties and potential for synergism make them attractive candidates for the combination
approach [146].

A wide range of polyphenols, mainly flavonoids, have been tested together with
gentamicin in the last 20 years. For the most part, more flavonoid aglycones than glycosides
have been tested. Aglycones are known to have more potent biological activity than their
respective glycosides [147]. An overview of studies with positive conclusions regarding
synergy is found in Table 3. Polyphenols that, to date, have not shown any synergistic
effects together with gentamicin have not been included in Table 3.

Table 3. Synergy between gentamicin and individual polyphenols.

Polyphenol Bacteria Bacterial Strain
Type

Antibacterial Effect on
Gentamicin FICI Synergy/Partial

Synergy Ref.

Caffeic acid P. aeruginosa Clinical isolates
MIC reduced from

625 µg/mL to
24.61 µg/mL

NA Synergy [148]

Epigallocatechin gallate

A. baumannii Reference MIC reduced from
27 µg/mL to 4 µg/mL 0.65 Partial synergy [146]

S. aureus Clinical isolates MIC reduced from
32 µg/mL to 6.4 µg/mL 0.325 Synergy [149]

E. coli Clinical isolates MIC reduced from
32 µg/mL to 6.4 µg/mL 0.325 Synergy [149]

Daidzein A. baumannii Reference MIC reduced from
27 µg/mL to 8 µg/mL 0.42 Synergy [146]

Galangin
S. aureus

(methicillin-
resistant)

Clinical
isolates/reference Reduced MIC 0.18–0.25 Synergy [150]

Gallic acid S. aureus Clinical isolates
MIC reduced from

49.21 µg/mL to
2.44 µg/mL

NA Synergy [148]

Genistein A. baumannii Reference MIC reduced from
27 µg/mL to 4 µg/mL 0.4 Synergy [146]

5-Hydroxy-3,7,4′-
trimethoxyflavone

S. aureus Clinical isolates Reduced MIC NA Synergy [151]
E. coli Clinical isolates Reduced MIC NA Synergy [151]

Kaempferol 7-O-β-D-(6′′-
O-cumaroyl)-

glucopyranoside

S. aureus Reference MIC reduced from
16 µg/mL to 4 µg/mL NA Synergy [3]

E. coli Reference MIC reduced from
16 µg/mL to 8 µg/mL NA Synergy [3]
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Table 3. Cont.

Polyphenol Bacteria Bacterial Strain
Type

Antibacterial Effect on
Gentamicin FICI Synergy/Partial

Synergy Ref.

Luteolin S. aureus Reference MIC reduced 4-fold 0.258 Synergy [143]
E. coli Reference Reduced MIC 0.504 Additive [143]

Nordihydroguaiaretic
acid

S. aureus
(methicillin-

sensitive)
Clinical isolates Several-fold MIC

reduction <0.5 Synergy [152]

S. aureus
(methicillin-

resistant)
Clinical isolates Several-fold MIC

reduction <0.5 Synergy [152]

Quercetin

P. aeruginosa Clinical isolates MIC reduced from
128 µg/mL to 32 µg/mL 0.28–0.53 Synergy/Partial

synergy [153]

P. aeruginosa Clinical
isolates/reference Reduced MIC 0.375–0.75 Synergy/Partial

synergy [2]

P. mirabilis Clinical isolates Restored antibacterial
activity NA Synergy [154]

Plumbagin P. aeruginosa Reference Reduced MIC 0.152–0.485 Synergy [155]

Pyrogallol S. aureus Clinical isolates
MIC reduced from

49.21 µg/mL to
2.44 µg/mL

NA Synergy [148]

Rutin P. aeruginosa Reference MIC reduced from
10 µg/mL to 2.5 µg/mL 0.5 Synergy [156]

Sophoraflavanone B
S. aureus

(methicillin-
resistant)

Clinical
isolates/reference

MIC reduced 8- to
32-fold 0.25–0.375 Synergy [157]

Vitexin P. aeruginosa Reference Reduced MIC 0.078 Synergy [158]

NA—not available; FICI—fractional inhibitory concentration index; MIC—minimum inhibitory concentration.

Three main mechanisms of polyphenol and gentamicin synergy can be distinguished.
First, polyphenols inhibit the bacterial wall biosynthesis, allowing gentamicin to reenter
the cells and leading to increased sensitivity [146,152,153]. Second, polyphenols can inhibit
different bacterial efflux pumps; for example, AbeM and AdeABC [146,153]. Since these
efflux pumps can be responsible for the development of resistance, their inhibition could
increase bacterial sensitivity against antibiotics [146]. Third, polyphenols can inhibit quo-
rum sensing, consequently regulating the bacterial population density [2,155,158]. Quorum
sensing plays a significant role in biofilm production, hindering optimal drug delivery
to pathogens. The inhibition of quorum sensing disrupts the biofilm structure, allowing
gentamicin to reach and kill the pathogens [2,153,155].

Overall, most of the research focused on members of the ESKAPE group of pathogens,
providing potential future alternatives to current approaches. To date, the lowest amount of
evidence of synergy was found for E. coli, with only two papers finding synergy or additive
effects using reference strains [3,143], and the rest reporting no or minimal effect [146,148,154,159].

In terms of the tested bacterial strains, it is advisable to use not only commercially
available reference strains but also clinical isolates, since different strains may exhibit
different synergic effects due to their diverse genetic and resistance mechanisms [2]. The
synergic activity of polyphenols with gentamicin against reference strains does not always
translate to clinical isolates [143].

In addition to the synergic effects, polyphenols have also been investigated to minimize
the toxic effects of oxidative stress subsequent to the use of gentamicin [143,159].

8. Gentamicin Combinations with Natural Products

Another approach to enhance the antibacterial properties of gentamicin is to test
multicomponent natural products like herbal extracts. Herbal extracts contain up to
hundreds of bioactive substances and, therefore, could simultaneously act on multiple
targets and enhance each other’s antibacterial activity [160]. In addition, the use of multi-
component products could lower the chances of antibacterial resistance development [161].
An overview of studies with positive conclusions regarding the synergy between natural
products and gentamicin is found in Table 4. Natural products that, to date, have not
shown any synergistic effects together with gentamicin are not included in Table 4.

Most positive outcomes regarding the synergy between natural products and gen-
tamicin were obtained using bacterial reference strains, raising the question of whether
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the same observation could be seen using clinical isolates. If using medicinal plant ex-
tracts, the preparation method of the extract is crucial to the chemical composition of the
extract. Furthermore, the wide variability in the chemical profiles and concentrations of
bioactive substances in plants has to be kept in mind. Therefore, studies on the potential
synergy between herbal extracts and antibiotics should also provide results on the chemical
composition of the extract.

A concrete conclusion regarding the mechanisms responsible for the synergic activity
of natural products together with antibiotics cannot be obtained [161–164]. Some authors
have suggested that synergic effects could be observed due to changes in the efflux system,
damage to cell membranes, and the inhibition of protein synthesis. Further research is needed
to clearly understand the mechanisms [161,162,164]. A study using propolis revealed that the
concentration of natural products is also crucial to the synergic activity [161]. Higher con-
centrations of propolis and antibiotics lead to a surprising loss of synergy [161]. This finding
accentuates the important role of the ratio of components to produce synergic activity [161].

Table 4. Synergy between gentamicin and natural products.

Natural Product Bacteria Bacterial Strain Type Antibacterial Effect
on Gentamicin FICI Synergy/Partial

Synergy Ref.

Aniba rosaeodora essential oil

B. cereus Reference
MIC reduction from

0.50 µg/mL to
0.12 µg/mL

0.30 Synergy [40]

B. subtilis Reference
MIC reduction from

0.25 µg/mL to
0.06 µg/mL

0.34 Synergy [40]

S. aureus Reference

MIC reduction from
0.50 µg/mL to

0.12 µg/mL and from
0.06 µg/mL to

0.01 µg/mL

0.30 Synergy [40]

E. coli Reference
MIC reduction from

0.50 µg/mL to
0.12 µg/mL

0.35 Synergy [40]

A. baumannii Reference
MIC reduction from

4.00 µg/mL to
0.24 µg/mL

0.11 Synergy [40]

S. marcescens Reference
MIC reduction from

0.50 µg/mL to
0.12 µg/mL

0.30 Synergy [40]

Y. enterocolitica Reference
MIC reduction from

0.25 µg/mL to
0.01 µg/mL

0.11 Synergy [40]

Clinopodium vulgare L. extracts B. subtilis Clinical isolates Reduction in MIC 0.395–0.44 Synergy [164]

Daphne genkwa extract S. aureus
(methicillin-resistant) Reference Reduction in MIC 0.750 Partial synergy [165]

Magnolia officinalis extract S. aureus
(methicillin-resistant) Reference Reduction in MIC 0.750 Partial synergy [165]

Kaempferia parviflora extracts

K. pneumoniae Clinical isolates Reduction in MIC 0.141–0.625 Synergy/Partial
synergy [162]

P. aeruginosa Clinical isolates Reduction in MIC 0.133–0.625 Synergy/Partial
synergy [162]

A. baumannii Clinical isolates Reduction in MIC 0.133–0.563 Synergy/Partial
synergy [162]

Mentha piperita L. essential oil

B. cereus Reference
MIC reduction from

2.00 µg/mL to
0.06 µg/mL

0.08 Synergy [163]

B. subtilis Reference
MIC reduction from

0.50 µg/mL to
0.01 µg/mL

0.07 Synergy [163]

S. aureus Reference

MIC reduction from
2.0 µg/mL to

0.06 µg/mL; from
0.5 µg/mL to

0.06 µg/mL; from
8.0 µg/mL to

2.0 µg/mL

0.103–0.3 Synergy [163]

E. faecalis Reference
MIC reduction from

8.0 µg/mL to
1.0 µg/mL

0.32 Synergy [163]

E. coli Reference
MIC reduction from

1.0 µg/mL to
0.03 µg/mL

0.43 Synergy [163]

K. pneumoniae Reference
MIC reduction from

32.0 µg/mL to
1.0 µg/mL

0.43 Synergy [163]

A. baumannii Reference
MIC reduction from

8.00 µg/mL to
0.5 µg/mL

0.46 Synergy [163]

P. aeruginosa Reference
MIC reduction from

2.00 µg/mL to
0.06 µg/mL

0.08 Synergy [163]
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Table 4. Cont.

Natural Product Bacteria Bacterial Strain Type Antibacterial Effect
on Gentamicin FICI Synergy/Partial

Synergy Ref.

Pelargonium graveolens
essential oil

B. cereus Reference
MIC reduction from

0.50 µg/mL to
0.125 µg/mL

0.30 Synergy [40]

B. subtilis Reference
MIC reduction from

0.25 µg/mL to
0.06 µg/mL

0.34 Synergy [40]

S. aureus Reference

MIC reduction from
0.50 µg/mL to

0.01 µg/mL and from
0.12 to 0.04 µg/mL

0.28–0.35 Synergy [40]

E. coli Reference
MIC reduction from

0.50 µg/mL to
0.12 µg/mL

0.30 Synergy [40]

A. baumannii Reference
MIC reduction from

4.00 µg/mL to
0.24 µg/mL

0.11 Synergy [40]

S. marcescens Reference
MIC reduction from

0.50 µg/mL to
0.12 µg/mL

0.45 Synergy [40]

Y. enterocolitica Reference
MIC reduction from

0.25 µg/mL to
0.03 µg/mL

0.22 Synergy [40]

Propolis

B. subtilis Reference
MIC reduction from

1.25 µg/mL to
0.05 µg/mL

NA Synergy [161]

B. cereus Reference
MIC reduction from

1.25 µg/mL to
0.05 µg/mL

NA Synergy [161]

B. megaterium Reference
MIC reduction from

0.25 µg/mL to
0.01 µg/mL

NA Synergy [161]

S. aureus
(methicillin sensitive) Reference

MIC reduction from
1.5 µg/mL to

0.5 µg/mL
NA Synergy [161]

S. aureus
(methicillin-resistant) Reference

MIC reduction from
>1.5 µg/mL to

0.5 µg/mL
NA Synergy [161]

E. coli Reference
MIC reduction from

>1.5 µg/mL to
0.5 µg/mL

NA Synergy [161]

NA—not available; FICI—fractional inhibitory concentration index; MIC—minimum inhibitory concentration.

9. Conclusions and Future Perspectives

Even after 60 years on the market, gentamicin plays an important role in combating
serious infections, especially those originating from the nosocomial ESKAPE pathogens.
Several strategies, including encapsulation in nanoformulations, hydrophobization of the
molecule, and combinations with various agents, have been investigated to enhance both
the activity and drug delivery of gentamicin. Current evidence indicates that polymeric
nanoformulations, especially PLGA nanoparticles, could provide a sustained release of
gentamicin and offer higher bioavailability. Hydrophobization of the gentamicin molecule
can significantly increase the encapsulation efficiency in nanoparticles and enhance the
antibacterial properties of the system. Nevertheless, the currently used in vitro drug
release methods lack standardization, hindering adequate comparison between studies.
Further research on the toxicology of these nanoformulations is needed. Research on the
synergic effects between gentamicin and polyphenols is an exciting research direction.
Testing on a wider range of clinical isolates, not only reference strains of bacteria, will
allow us to see if the results of synergy can be translated to clinical practice. The possible
encapsulation of gentamicin–polyphenol combinations in drug delivery systems should
be further investigated. As gentamicin is applied to treat hard-to-reach infections like
osteomyelitis, target-specific surface modifications of drug delivery systems hold great
potential for future research.
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164. Stefanovic, O.; Stankovic, M.; Čomić, L. In vitro antibacterial efficacy of Clinopodium vulgare L. extracts and their synergistic
interaction with antibiotics. J. Med. Plant Res. 2011, 5, 4074–4079.

165. Kuok, C.F.; Hoi, S.O.; Hoi, C.F.; Chan, C.H.; Fong, I.H.; Ngok, C.K.; Meng, L.R.; Fong, P. Synergistic antibacterial effects of herbal
extracts and antibiotics on methicillin-resistant Staphylococcus aureus: A computational and experimental study. Exp. Biol. Med.
2017, 242, 731–743. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1111/jam.15253
https://www.ncbi.nlm.nih.gov/pubmed/34365707
https://doi.org/10.1080/10408398.2015.1032400
https://doi.org/10.1016/j.micpath.2016.08.004
https://doi.org/10.1016/j.heliyon.2019.e02126
https://www.ncbi.nlm.nih.gov/pubmed/31372566
https://doi.org/10.1007/s12275-008-0012-7
https://www.ncbi.nlm.nih.gov/pubmed/18604497
https://doi.org/10.1089/mdr.2018.0359
https://www.ncbi.nlm.nih.gov/pubmed/30741597
https://doi.org/10.3389/fmicb.2015.01195
https://www.ncbi.nlm.nih.gov/pubmed/26579101
https://doi.org/10.1016/j.micpath.2023.106274
https://doi.org/10.15586/ijfs.v34i2.2196
https://doi.org/10.1111/jam.13476
https://doi.org/10.1016/j.foodcont.2018.02.044
https://doi.org/10.1155/2013/823794
https://doi.org/10.1038/srep23347
https://doi.org/10.1016/j.etap.2016.11.004
https://www.ncbi.nlm.nih.gov/pubmed/27846408
https://doi.org/10.1039/C9NP00011A
https://www.ncbi.nlm.nih.gov/pubmed/31187844
https://doi.org/10.1111/jam.15440
https://www.ncbi.nlm.nih.gov/pubmed/35092131
https://doi.org/10.3390/plants11223128
https://www.ncbi.nlm.nih.gov/pubmed/36432857
https://doi.org/10.1371/journal.pone.0200902
https://www.ncbi.nlm.nih.gov/pubmed/30067803
https://doi.org/10.1177/1535370216689828

	Introduction 
	The Components and Properties of Gentamicin Complex 
	Pharmacology, Stability, and Administration of Gentamicin 
	Polymeric Nanoformulations of Gentamicin 
	Gentamicin-Loaded PLGA Nanoparticles 
	Gentamicin-Loaded Chitosan Nanoparticles 
	The Release of Gentamicin from Polymeric Nanoparticles 

	Hydrophobization of the Gentamicin Molecule 
	Gentamicin Combinations with Other Antibiotics 
	Gentamicin Combinations with Polyphenols 
	Gentamicin Combinations with Natural Products 
	Conclusions and Future Perspectives 
	References

