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Abstract: Acinetobacter baumannii is a Gram-negative pathogen responsible for a variety of community-
and hospital-acquired infections. It is recognized as a life-threatening pathogen among hospitalized
individuals and, in particular, immunocompromised patients in many countries. A. baumannii,
as a member of the ESKAPE group, encompasses high genomic plasticity and simultaneously is
predisposed to receive and exchange the mobile genetic elements (MGEs) through horizontal genetic
transfer (HGT). Indeed, A. baumannii is a treasure trove that contains a high number of virulence
factors. In accordance with these unique pathogenic characteristics of A. baumannii, the authors aim
to discuss the natural treasure trove of pan-genome and virulence factors pertaining to this bacterial
monster and try to highlight the reasons why this bacterium is a great concern in the global public
health system.
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1. Introduction

Acinetobacter baumannii is named after the American bacteriologists Linda and Paul
Baumann. The most isolated strains of Acinetobacter spp. from clinical samples belong to
A. baumannii [1]. According to the proposal of Brisou and Prévot, which was based on the
results of transformation assays, the non-motile bacteria of Achromobacter were reclassified
as Acinetobacter genus in 1954 [1,2].

In 1911, some surveys analyzed Acinetobacter isolates taken from the soil, which was
known as Micrococcus calcoaceticus. As a new bacterial genus, Acinetobacter was officially
classified in 1971 [3]. In accordance with the List of Prokaryotic names with Standing
in Nomenclature (LPSN) (https://lpsn.dsmz.de/, accessed on 11 March 2024), the name
Acinetobacter is rooted in the Greek language, meaning A (non-); cinet (motile); bacter (rod).
With the progression of advanced high-throughput molecular technologies, 82 validly pub-
lished species in association with the bacterium of Acinetobacter have been reported up to
11 March 2024 (https://lpsn.dsmz.de/genus/acinetobacter, accessed on 11 March 2024) [4].

Although the ubiquitous Gram-negative, catalase-positive, aerobic, non-fermenter
coccobacilli of A. baumannii is recognized as a non-motile bacterium, it can be moved via
a twitching process [3,5,6]. As a ubiquitous bacterium, A. baumannii can be recognized in
different natural habitats and environments, e.g., soil and water. Due to this knowledge,
this bacterium can also be isolated from non-human hosts such as arthropods (human head
lice), animals and plants. In this regard, A. baumannii is known as an important pathogen
among animals and in veterinary clinics [7,8].

A. baumannii is a life-threatening pathogen among hospitalized individuals and, in par-
ticular, immunocompromised patients in many countries. A. baumannii may cause serious
hospital (HAIs) and community-acquired infections (CAIs), e.g., bacteremia, septicemia,
severe (ventilator-associated) pneumonia, etc.
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Moreover, A. baumannii is a member of the ESKAPE group. ESKAPE is an acronym for
Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, A. baumannii, Pseudomonas
aeruginosa and Enterobacter spp. [5,6,9,10]. As previous studies show, the ESKAPE group
members are predisposed to receive and exchange the mobile genetic elements (MGEs),
e.g., plasmids bearing antimicrobial resistance genes (ARGs) through horizontal genetic
transfer (HGT). On the other hand, antimicrobial resistance (AMR) is a significant global
concern and is placed among the top 10 worldwide threats to public health [9–13].

Most HAIs are caused by multidrug-resistant (MDR) strains of A. baumannii. The
critical or priority 1 case of the World Health Organization (WHO) relating to the AMR
problem belongs to carbapenem-resistant A. baumannii (CRAB) strains [5,9]. As previous
studies show, the highest rate of multidrug-resistant (MDR) strains of A. baumannii belong
to the Middle East and Europe, while the lowest rate of MDR strains of A. baumannii is
associated with North America.

With the global increase of antimicrobial abuse or overuse, three groups of
microbial-resistant strains, including A. baumannii-resistant strains, have appeared.
These three categories are composed of MDR (resistant to the major portion of antimicro-
bials excluding two antimicrobials) strains, pandrug-resistant (PDR/resistant to all of the
present antibiotics) strains and extensively drug-resistant (XDR/resistant to >three classes
of antibiotics) strains [6].

In total, A. baumannii uses five resistant mechanisms, including the production of
β-lactamase enzymes, the production of multidrug degrading enzymes, plasma membrane-
related proteins’ molecular patterns’ alteration, recruitment of MDR pumps, and ribosomal
methylation [6,14–16].

In recent years, the use of next-generation sequencing (NGS) technologies such as
whole-genome sequencing (WGS) techniques has led to an effective increase in the knowl-
edge concerning bacterial resistomes, molecular epidemiology typing and strain detection.
The WGS technique enables us to screen very close strains of A. baumannii differing via a
single nucleotide [5,9,17,18].

The genomic plasticity of the pathogenic strains of A. baumannii seems high; accord-
ing to global reports, these pathogens possess versatile genomic sequences in different
geographical areas worldwide [19,20].

The major goal of the present review literature is to highlight the main virulence
factors, molecular pathogenesis and a genomic pool of CRAB strains.

2. Genomic Pool

The study of bacterial pan-genomics started about two decades ago, and the progres-
sion of advanced high-throughput technologies, e.g., NGS methodologies, has supported
this effective discipline [21]. According to pan-genomic classical categorization, the bac-
terial genomic pool, including the A. baumannii’s genomic pool is composed of a core
genome (>99%) (the softcore genome is a stable genomic pool which can be detected among
95–99% oe all strains), which contains those genes distributed among all related strains
and are involved in cell division, energy production, genetic processes, metabolism, etc.
In this regard, as a part of core genomic pool, the housekeeping genes are good examples
because they are involved in different types of vital cellular activities, e.g., replication, gene
expression, translation, etc.) [22–30]. The accessory genome genes (flexible, dispensable,
and adaptive), which is distributed among ≥2 related strains (the subset of accessory shell
genes; (detectable within 15–95% of the genomic datasets)) have contributed to adaption
to niches, virulence factors and antibiotic resistance. The dispensable genes are normally
acquired via HGT or an occurrence of paraphyletic evolution] [22–24,30–32], and singleton
genes [unique, exclusive, cloud genes (detectable in <15% of the genomic datasets)], which
are recognized in just one strain (singletons are normally acquired through the HGT fea-
ture and they are in association with effective adaptation, virulence and pathogenicity in
pathogenic bacteria) [22–24,30,33–35].
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The median length of A. baumannii genomes is about 3.96 Mb with a median DNA G+C
content of 39% (https://www.ncbi.nlm.nih.gov/genome/?term=Acinetobacter+baumannii,
accessed on 11 March 2024).

The bacterial pan-genomes can be determined to be closed or open. In this regard,
by the recruitment of Heap’s formula (n = κ * N−α), in which n is the number of genes
associated with a determined number of genomes, κ and α are recognized as free items that
can be empirically obtained (α = 1 − γ), and N is the number of genomes. However, when
α > 1, it means that a pan-genome is closed, and when α ≤ 1, it means that the pan-genome
is open [22,36]. The pan-genomic structural studies show that A. baumannii possesses
an open pan-genome bearing a large number of MGEs such as Insertion sequences (ISs),
transposons (Tns) and integrons in genomic islands. Furthermore, A. baumannii may bear
the resistance genes on a wide range of plasmids from 2 kb to >100 kb in length [37–39].
As the reported results indicate, the occurrence of recombination and a variety of gene
exchange mechanisms may lead to the entrance of new genes into bacterial genomes like
A. baumannii [6,40]. These facilities expand the genomic pool of the A. baumannii strains
through the addition of new genes. In this manner, the novel genes are detectable in newly
sequenced genomes pertaining to A. baumannii. The α parameter in Heap’s law regarding
the pan-genome of A. baumannii equals 0.71 (0 < 0.71 < 1). This amount of α confirms that
the pan-genome of A. baumannii should be open. This feature is correlated with universal
high genomic plasticity among A. baumannii strains [22,31,36,41,42].

These characteristics of A. baumannii strains, including the presence of a wide range of
different novel genes in different strains’ genomes of A. baumannii, which is the outcome
of gene duplications or HGT via MGEs, have been shown by Rodrigues et al. [6]. As the
recorded reports show, the ARGs are located in both the core and accessory genomic pool
in A. baumannii. ISs, integrase and transposase enzymes, are effective means in genetic
exchanges with other bacterial species and strains through HGT to add the ARGs to the
A. baumannii accessory genomic pool. Hence, HGT contributes effectively to the bacterial
evolution of pathogenicity and virulencity in A. baumannii. Furthermore, some plasmids
were identified bearing integrated intact prophages in A. baumannii. These prophages may
be integrated within the plasmids through direct integration or via recombination (with the
bacterial chromosome). The acquired prophage-encoded genes in A. baumannii seem to be
involved in bacterial MDR. The reported results depict effective participation of prophages
in A. baumannii’s pathogenicity evolutionary pathway and its spread [43].

The ISs in Acinetobacter strains, including A. baumannii (ISAba), are key genetic el-
ements for the activation and transmission of carbapenem-hydrolyzing β-lactamase en-
zymes. Indeed, the ISs are responsible for the global concern regarding A. baumannii
infections in public health systems. ISs (1 kb) are known as the simplest and smallest MGEs.
Therefore, ISAba elements may lead to significant genomic variability in A. baumannii
strains [38,44–48].

As previous studies show, both ISs and Tns have the same structures and recruit
transposases to be inserted within a genomic site. Tns transfer different ARGs [38,48,49].
Integrons and site-specific recombinases are other elements belonging to MGEs that con-
tribute to acquiring resistance cassettes. The gene cassettes relate to integrons and can
encode antimicrobial resistance. The gene cassettes act as small non-autonomous MGEs,
normally composed of a promoter-free open reading frame (ORF) and a recombination site
known as attC [38,50,51]. The miniature inverted-repeat transposable elements (MITEs) are
another non-autonomous structure that is a member of MGEs. It seems that ancestral ISs
and Tns are the main sources of these degraded elements. Although MITEs have no ORFs
in most cases, their involvement in antibiotic resistance promotion among Acinetobacter
strains is a global concern [38,52–54].

In addition, Rodrigues et al. [6] showed that the strains of A. baumannii possess
considerable gene permutation in their genomes while they are not significantly clonal.
This feature has been detected via the recognition of several gaps between the strains’
genomes through the bioinformatic genomic comparative in silico assays in bioinformatic
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(dry) labs [6,39,55–57]. Rodrigues et al. [6] detected a variety of genomic islands, including
metabolic islands, pathogenicity islands (PAIs), resistance islands and symbiotic islands
within the genomic pools of strains belonging to A. baumannii. The highest number of the
islands were associated with resistance islands, while the lowest number was related to
symbiotic islands. The identified resistance genes within the resistance islands pertaining to
some enzymes and efflux pumps (Figure 1) [6,58,59]. Furthermore, blaoxa genes (including a
wide range of D class β-lactamase variants) with a high diversity of variants are detectable
in pan-resistome studies in association with A. baumannii [12,60,61].
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Figure 1. The main antibiotic resistance mechanisms can be divided into three categories in
A. baumannii. In this regard, LPS modification or mutation in LPS bisynthesis genes, efflux pumps
(promoted efflux), outer membrane proteins (OMPs/porins) (decrease in OMPs’ permeability) and
secretion systems (T2SS, T4SS and T6SS) contribute to antibiotic resistance through transportation via
bacterial cell membranes; antibiotic inactivation via enzymes (e.g., monooxygenase and β-lactamase
enzymes); alterations and modifications in antibiotic target sites, such as mutations in antibiotic target
enzymes (including DNA gyrase (single mutations in parC (topoisomerase IV encoding gene)) and/or
in gyrA (DNA topoisomerase IV encoding gene) against fluoroquinolones), mutations in Penicillin-
binding proteins (PBPs)), ribosomal protection proteins (RPPs) in the occurrence of non-covalent
modifications of bacterial ribosomes against antibiotics (e.g., tetracycline), production of ribosome
methylase enzymes (via plasmid-transposon-borne genes) against lincosamides, and 16S rRNA
methylase enzymes against aminoglycosides. Plasmids are important MGEs directly participating in
antibiotic-resistant genes via HGTs [3,62–65].

The outer membrane vesicles (OMVs) are effective vehicles for transferring DNA
fragments among bacterial species and strains. In this regard, the plasmid-borne genes
of blaNDM-1 and blaOXA-23 and/or free environmental DNA molecules ((e-DNAs), whether
via bacterial cell lysis or type VI secretion system (T6SS)) can be transferred from an
A. baumannii strain to another through the OMVs. In recent years, it has been reported that
chromosomal ARGs can be transferred between A. baumannii strains via the phage-mediated
HGT. Therefore, the transmission of ARGs, e.g., blaNDM-1, can occur via generalized phage
transduction among the MDR strains of A. baumannii instead of direct cell–cell interaction.
In addition, phages are suitable vehicles for transferring genomic DNA fragments bearing
ARGs between MDR strains of A. baumannii [66]. As recent investigations show, prophages
are significant cargo capable of encoding ARGs in their bacterial hosts (A. baumannii
strains). This feature may support the occurrence of lysogenization as a pivotal feature
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in phage-mediated HGT [67]. The most frequent feature pertaining to colistin resistance
in A. baumannii is the occurrence of mutations in chromosomal operon genes of pmrCAB.
However, it has been most recently observed that the colistin resistance feature can be
transduced even by the A. baumannii bacteriophage of Φ19606 through the transmission of
the eptA1 gene (the homolog of pmrC gene) via the HGT. Up until now, the A. baumannii
bacteriophage of Φ19606 is the first phage-mediated colistin resistance feature in bacterial
cells [62].

3. Virulence
3.1. Virulence Factors and Molecular Pathogenesis

Through a wide range of pan-genomic studies, it has been recognized that A. baumannii
is an open pan-genomic bacterial pathogen; hence, A. baumannii encompasses a variety
of virulence factors with different functions and activities. Because of the importance of
these virulence factors, Table 1 shows a complete package of the identified virulence factors
together with the related genes [3,68,69].

Table 1. Summarized information regarding the general microbial virulence factors arsenal detected
in A. baumannii.

Virulence Factors Functions

Capsule (CPS) Antimicrobial resistance, host–pathogen
interactions and pathogenesis

Efflux pumps
Antimicrobial resistance, biofilm formation,

disinfectant resistance, heavy metal resistance and
response to oxidative and osmotic stresses

Lipopolysaccharide (LPS) Antimicrobial resistance, bacterial motility and
induction of pro-inflammatory cytokines in humans

Lipooligosaccharide (LOS)
Antimicrobial resistance, bacterial adhesion,

resistance to human opsono-phagocytosis and
induction of pro-inflammatory cytokines in humans

Outer membrane proteins (OMPs)

Antimicrobial resistance, induction of apoptosis in
human cells, bacterial adhesion, invasion and

dissemination, cytotoxicity in human cells,
host–pathogen interactions, induction of reactive
oxygen species (ROS) in human cells, metal ion

acquisition and substrate translocation

Pili
Bacterial adhesion, bacterial attachment

(irreversible), biofilm formation, genetic exchange
through HGT and motility (e.g., twitching)

Metal ion uptake systems

Bacterial metal (e.g., Zn, Fe, Mn) uptake,
translocation, metabolism homeostasis, biofilm

formation, quorum sensing regulation and response
to oxidative stress

Two-component systems (TCSs)

Antimicrobial resistance, aromatic compound
metabolism, bacterial pathogenesis, biofilm

formation, capsule expression, regulation of bacterial
motility, lipid A modification, regulation of some

groups of efflux pumps and resistance
to human serum

Secretion systems (SSs)

Antimicrobial resistance, bacterial adhesion, biofilm
formation, bacterial colonization and proliferation
within the human cells, bacterial survival, enzyme

and toxin secretion, induction of apoptosis in human
cells, genetic elements exchange via HGT

and pathogenesis
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In accordance with the latest studies, the deciphered virulence and pathogenesis
factors in A. baumannii are divided into nine groups, including capsular exopolysaccharide
(CPS), efflux pumps, lipopolysaccharide (LPS), lipooligosaccharide (LOS), outer membrane
proteins (OMPs), pili, metal ion uptake systems, two-component systems (TCSs) (virulence
factors” regulators), and secretion systems (SSs) (Figures 1 and 2) [68]. These items are
summarized in Table 1.

In recent years, pan-genomic investigations indicated that the majority of virulence
factors and ARGs are transmitted via different MGEs, including Tns, ISs, integrons, bacte-
riophages, etc. Many of these MGEs are transferred by a mass of plasmids through different
types of HGT [66,67,70]. Table 2 indicates the related items.

3.2. Capsular Exopolysaccharide (CPS)

CPS is known as the main virulence factor arming A. baumannii stains. This struc-
ture acts as a superficial multifunctional virulence factor that pathogenic bacteria like
A. baumannii use to survive in unfavorable environmental conditions, such as the presence
of antimicrobials, human host cell immune defense mechanisms and prolonged desiccation
(Table 2) [68,71,72]. The omission of CPS expression in CPS-producing A. baumannii strains
may significantly affect bacterial virulency and pathogenesis.

Indeed, CPS is recognized as a pivotal protection for bacterial survival in vivo
(Figures 1 and 2) [73]. CPS is composed of repeating K units; however, the K units differ
in composition, length and structure (branched or unbranched). The results reported
by analytical investigations show that K units are constructed by derivatives of simple
UDP-linked sugars. These sugar molecules are mainly comprised of glucose and galactose
and sometimes form complex sugars, e.g., non-2-ulosonic acid. This diversity among
K units depicts the presence of effective variabilities (>100 different types) in capsular loci.
Moreover, the structure of K units directly determines the virulence and pathogenesis of
A. baumannii strains [71,72,74,75]. Those genes between fkpA and lldP genes encode proteins
involved in capsular polysaccharides biosynthesis and/or transmission processes [74]. The
two-component system (TCS) of BfmRS is involved in the upregulated expression of K loci
and increased capsule secretion [71,76].

3.3. Efflux Pumps

Efflux pumps are important bacterial defensive mechanisms that support bacterial
pathogens, e.g., A. baumannii strains, in the presence of antimicrobial drugs. The efflux
pumps extrude the antimicrobials from the exposed bacteria. Although A. baumannii
encompasses effective structures of outer membranes (OMs) with low permeability against
the large-sized molecules of antimicrobial drugs, the efflux pumps have a vital role in this
regard (Figure 1). Because of the wide varieties of efflux pumps in different prokaryotic
cells of bacteria, these pumps are categorized into six different groups, including the ATP
Binding Cassette (ABC), Small Multidrug Resistance (SMR), Major Facilitator Superfamily
(MFS), Proteobacterial Antimicrobial Compound Efflux (PACE), Multidrug And Toxic
compound Extrusion (MATE), and Resistance Nodulation Division (RND). The identified
efflux pumps among the A. baumannii isolates are shown in Table 2 and Figure 2. Some
members of RND may also be involved in biofilm formation [77–80]. The MFS group
possesses the widest range of varieties and, therefore, is present in different types of
life domains. The MFS transporters are classified into three categories called antiporters,
symporters and uniporters [68,80,81].

In accordance with reported results from different studies, the efflux pumps pertaining
to RND family members may be responsible for the appearance of intrinsic resistance
among Gram-negative bacteria, including A. baumannii strains, in exposure to a wide
range of antimicrobial groups [80–82]. AdeABC is known as the first member of the
RND efflux pump, which was detected in clinical isolates of A. baumannii strains. The
AdeABC contributes to bacterial resistance against various antimicrobial groups, e.g.,
β-lactams, chloramphenicol, aminoglycosides, fluoroquinolones, erythromycin, and so on.
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Moreover, this member of RND is increasingly produced among MDR strains isolated from
clinical samples. Hence, AdeABC may be identified as the most clinical-related RND efflux
pump [68,79,80,82,83]. The efflux pumps contribute to other vital bacterial activities rather
than MDR characteristics, including virulence, surface-related motility, quorum sensing
activities and the related pathways, e.g., biofilm formation (Figures 1 and 2) [84,85].
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Figure 2. A schematic bacterial cell pertaining to Acinetobacter baumannii. The situation and structures
of important virulence factors include the capsule, outer membrane proteins (Omps), lipopolysac-
charide (LPS), Csu pilus, type IV pilus, efflux pumps and secretion systems (SSs). As shown, the
secretion systems exert molecules (proteins) into the extracellular zone. Two types of T5bSS and
T5cSS have been detected in A. baumannii. Although there are five sub-groups of T5SS (e.g., T5aSS,
T5bSS, T5cSS, T5dSS and T5eSS) in Gram-negative bacteria, only two sub-groups of T5bSS and T5cSS
are detected among the A. baumannii strains. Among these two secretion systems, T5cSS is the main
secretion system that can be identified in A. baumannii populations. The efflux pumps—excluding
ABC and RND families—take protons from the bacterial periplasm space into the cytoplasm and
simultaneously excrete antibiotics from the bacterial cytoplasm into the periplasm space. The ABC
family consumes ATP to excrete the antibiotic molecules from the bacterial periplasm space into
the extracellular space. It acts as uniport efflux pump. On the other hand, the RND family takes
the protons from the periplasm space into the cytoplasmic space and simultaneously excretes the
antibiotic molecules from the periplasm space into the extracellular space [68,80,86].

3.4. Lipopolysaccharide (LPS)

LPS is the main molecule that forms the OM in Gram-negative bacteria. The structural
integrity of the OM is covered by the LPS composition through their presence in high
abundance. It also determines the permeability capabilities of bacterial OM in exposure to
hydrophobic molecules. The LPS (smooth LPS) molecule is composed of three segments:
lipid A (a glycolipid), a core (made up of oligosaccharide) and a repetitive O-antigen
(an effective immunogen structure) (Figures 1 and 2). The core bridges lipid A to the
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O-antigen. These properties of LPS make it a microbe-associated molecular pattern (MAMP)
for human host innate and adaptive immune system components such as toll-like receptors
(TLRs) [3,87–93]. TLRs and interleukins (ILs) are important immune biomolecules that can
be induced by stranger molecules, such as different parts of microbial components. TLR
activation may lead to induce TLR signaling pathways that results in activation of several
immune cells and immune biomolecules in a cascade process. In this regard, the LPS of
A. baumannii triggers the production of a cascade of biomolecules such as pro-inflammatory
cytokines (e.g., IL-8, tumor necrosis factor-α (TNF-α), CCL4, TLR4, etc.) [3,87,92–94]. The
lipid A, as a negatively charged component of the LPS biomolecule, makes the bacterial
cells of A. baumannii susceptible to the cationic polypeptide of colistin. The lpxABCD gene
operon encodes the LPS components (Table 2) [68,95].

3.5. Lipooligosaccharide (LOS)

LOS, which is known as rough LPS, misses the immunogenic component of the
O-antigen within its structure (Table 2) [91]. The high-variated oc locus is usually identified
in Gram-negative bacteria, e.g., A. baumannii. The oc locus is located in the region between
ilvE and aspS genes. The early detection of OCL1–3 variants was achieved in a genomic pool
of A. baumannii. The biomolecule of LOS contributes to a wide range of activities, including
induction of pro-inflammatory immune responses (as aforementioned in association with
LPS), bacterial motility, killing-resistant activity against opsono-phagocytosis, superficial
attachment, bacterial susceptibility in exposure to colistin as a polymyxin antimicrobial
agent and resistance to serum antimicrobial peptides in the human body [95–107].

3.6. Outer Membrane Proteins (OMPs)

OMPs are important bacterial virulence factors in A. baumannii strains for bacterial
adherence in the human host cells (Tables 1 and 2, Figure 2). OmpA contributes to bacterial
adhesion (A. baumannii ATCC17978 and ATCC19606) to the epithelial cells [69]. OmpA is
capable of attaching to human host integrins, junctional adherence proteins, fibronectin and
cytoskeleton. In the AB5075 strain of A. baumannii, the OmpA binds to desmosomes and
hemidesmosomes to modulate the processes of cell-to-cell contact in epithelial cells and
weakening cell-to-cell interactions. This strategy helps the bacterial cells of A. baumannii
to invade the epithelial cells of the host body. Therefore, the overexpression of OMPs in
A. baumannii is presumed to be an effective means for bacterial adhesion to human host
cells as a part of bacterial virulence and pathogenesis [69,108,109].

Although OMPs in Gram-negative bacteria are located within the bacterial OM, they
participate in different types of bacterial activities, including bacterial adhesion and inva-
sion, biofilm formation, occurrence of antibiotic resistance to a wide range of antibiotic fami-
lies, host-mediated stresses, bacterial survival and induction of apoptosis (programmed cell
death) through the activation of caspase enzymes within the human host cells [57,110–113].
In addition to OmpA, OmpW, Omp33–36, outer membrane carboxylate channels (Occ)
and Carbapenem susceptible protein (CarO) are the pivotal OMPs involved in bacterial
virulence and pathogenesis of A. baumannii (Table 2) [68].

The highest portion of porins in A. baumannii belongs to OmpA. This porin is composed
of two domains: an N-terminal (made up of an eight-stranded antiparallel β-barrel) situated
within the OM and a C-terminal with a globular configuration interacting with the bacterial
cell wall. OmpA induces TLR2 in epithelial cells of the lung human host and promotes
the permeability of the lung epithelial cells [110,111,114–117]. A major portion of OmpA
can be transferred into the human host cells through the OMVs, produced by the bacterial
cells of A. baumannii. The OmpA molecules enter the human host cells through the fusion
process of OMVs [118].

OmpW encompasses an eight-stranded antiparallel β-barrel configuration located in
OM. It participates in bacterial adhesion, invasion, biofilm formation and iron acquisition.
As the reports show, the TCS of BfmRS regulates the expression of the OmpW encoding
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gene and those genes that contribute to the expression of siderophores and oxidative
osmotic stress response [119–122].

CarO is another member of OMPs involved in the carbapenem resistance feature
and acquisition of some amino acids, e.g., glycine and ornithine, in A. baumannii strains
(Table 1). As previously mentioned, CarO contributes to bacterial adhesion, dissemination
and invasion into the human host cells, such as lung epithelial cells [123–125].

Occ proteins form channels with narrow pore sizes. Occ proteins are structured
as monomeric 18-stranded β-barrels, participating in small molecule transmission. Five
orthologs of these proteins, including OccAB1, OccAB2, OccAB3, OccAB4 and OccAB5,
have been detected in A. baumannii ATCC17978. OccAB1 or former OprD belongs to Occ
family proteins in Pseudomonas aeruginosa. Although OprD contributes to carbapenems
acquisition in bacterial cells of P. aeruginosa, OccAB1 has no relationship with carbapenem
acquisition in bacterial cells of A. baumannii. Recently, a new homolog of OprD has been
detected in clinical isolates of A. baumannii, which is related to hypervirulence in CRAB
strains [13,126–130].

The Omp33–36 protein in A. baumannii strains is involved in bacterial adhesion,
invasion, cytotoxicity and resistance to carbapenems. In contrast to OmpA, which en-
compasses nuclear localization signals to induce the apoptosis feature in host cells, the
Omp33–36 protein does not express this feature. However, the internalized Omp33–36 is
able to activate the caspase enzymes to induce apoptosis feature in host cells [131].

3.7. Pili

Pili are known as pivotal structures in pathogenic bacteria for bacterial adherence
to biotic (human host cells) or abiotic (catheter) surfaces to have effective pathogenesis
and infection (Table 1). Indeed, these superficial, short, antigenic thread-like appendages
are detectable in both Gram-negative and Gram-positive bacteria categories. Because of
the high diversity of pili in Gram-negative bacteria, they have been categorized into five
different groups: chaperone-usher pili (CUP), curli fimbriae, type IV pili, type V pili, and
conjugative type IV secretion pili (Table 2). The CUP pili are effective virulence factors
in clinical isolates of A. baumannii strains because of their capability to adhere to biotic
and abiotic surfaces in human patients with different infectious diseases like urinary tract
infections [69,132,133]. The immunogenic Csu pili (Figure 2) belongs to type I CUP and has
been detected in A. baumannii strains. These pili are involved in bacterial attachment to
hydrophobic (tight adhesion) and hydrophilic (very loose adhesion) surfaces but not to the
epithelial cell line surfaces [84,132,134,135].

On the other hand, type IV pili in the bacterial cells of A. baumannii are involved in
twitching, superficial adhesion, biofilm formation and natural transformation (Figure 2).
These pili activities are regulated by the GacSA TCS. The PilA variants have different
activities in oppose to surface chemistry [136–140]. Curli fibers (Table 2) are constructed
by different types of Csg pilins. Although curli fimbriae are detected in some strains of
E. coli, no report has been recorded in association with a complete machinery system of
curli biosynthesis in A. baumannii [132,141].

3.8. Metal Ion Uptake Systems

Metal ion uptake systems are vital means for pathogenic bacteria like A. baumannii to
survive (Table 1). In this regard, metal ions associated with iron, zinc and manganese are
essential elements for eukaryotic host cells, e.g., human host cells and microbial pathogens
such as A. baumannii. On the one hand, iron, as an important metal ion, is restricted
through employing associated proteins, including hemoglobin (the major protein), ferritin,
lactoferrin, transferrin and calprotectin (a metal-chelating antimicrobial protein pertaining
to the innate immune system) by the human host cells. On the other hand, pathogenic
bacteria like A. baumannii have their own iron acquisition systems, e.g., siderophore proteins
(e.g., three classes of acinetobactin, baumannoferrin, and fimsbactin) and heme acquisition
systems (Table 2) [142,143]. The enzyme phospholipase C, produced by bacterial cells
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of A. baumannii, disrupts the human host red blood cells (RBCs) to uptake the released
hemoglobin. Then, the bacterial heme acquisition system converts the released form of the
iron ion into the requisite form for bacterial cells. The bacterial heme acquisition system is a
multi-sectional and multi-functional system. In this regard, the heme oxygenase component
is responsible for converting ferrous ions (Fe3+) into ferric ions (Fe2+) [144–147].

Siderophore activity needs energy produced via the proton motive force (pmf) sit-
uated across the bacterial inner membrane. Furthermore, this process is modulated by
a protein complex composed of TonB-ExbB-ExbD and ABC transporters. The expressed
siderocalin molecules by neutrophils prevent the iron acquisition activity of the bacterial
siderophores [68,76,142,147]. As published reports show, the evolution of iron acquisi-
tion systems in A. baumannii can be occurred through different genetic exchanges, e.g.,
HGT [148]. Zinc is another important metal essential for both human host and bacterial
pathogens, e.g., A. baumannii. Bacterial enzymes like metalloproteins need zinc for their
activity. The overexpression of znuABC genes by A. baumannii to acquire further zinc ions
from the environment is modulated by the zinc uptake regulator (Zur), a zinc-binding
protein about the ferric uptake regulator (Fur) protein family [149–152].

Metal ions of Manganese (Mn2+) play a key role as co-factors in a wide range of
enzymes, such as superoxide dismutase, which contributes to protecting bacterial cells
of A. baumannii from reactive oxygen species (ROS) in the feature of oxidative stress.
A. baumannii strains recruit natural resistance-associated macrophage protein (NRAMP)
family proteins like MumT to cover themselves against the human host immunoprotein
of calprotectin. MumT is a transporter enzyme that participates in manganese and urea
metabolisms [153,154]. As the reported results show, a pathogen like A. baumannii needs a
rigorous regulatory mechanism for its metal uptake systems and homeostasis for successful
virulence and pathogenesis within the human host body [76].

3.9. Two-Component Systems (TCSs)

TCSs are pivotal systems that control the phenotypic switching processes. Due to
this fact, these signal transduction systems can be detected in both archaea and bacteria.
The importance of TCSs lies in their contribution to bacterial adaptation and sensing in
exposure to different environmental factors and situations. A TCS is normally comprised of
two components: a cytoplasmic membrane-bound sensor (e.g., a histidine kinase) and
a response regulator, which is involved in DNA-binding and transcription processes. It
seems that a bacterial genome may bear between 50 and 60 genes that encode TCS proteins.
According to previous reports, A. baumannii strains encompass up to 20 TCSs with different
functions. TCSs are able to change the bacterial genetic reactions in exposure to environmental
factors, e.g., antibiotic resistance, virulency and pathogenesis (Table 2) [68,76,77,155,156].

3.10. Secretion Systems (SSs)

SSs are known as the major virulence factors because they can transfer bacterial vir-
ulence factors to the outside of the bacterial cells. This strategy induces the human host
immune system and may support the virulencity and pathogenesis of pathogens like
A. baumannii. Until now, six SSs—including T1SS–T6SS—have been discovered in Gram-
negative bacteria such as A. baumannii. These SSs have their own compositions, functional
activities, structures and roles in bacterial virulence, pathogenesis and antimicrobial resis-
tance (Table 2, Figures 1 and 2) [86].



Antibiotics 2024, 13, 257 11 of 27

Table 2. General microbial virulence factors arsenal detected in A. baumannii.

Structures Virulence Genes Gene Position Virulence Factors Roles References

Capsule (CPS)

>100 unique capsule loci
(KL) with different sizes in
length (between 20 and 35

kilobases (kb))

Between the fkpA and lldP
genes on the chromosome

Capsular biosynthesis
and export

Bacterial pathogenicity, Virulence,
Antimicrobial resistance, Persistence,

Evasion of host immune system
(antiphagocytosis), reduction of

interactions between human host
and pathogen

[3,64,68,71,74,157]

Efflux pumps

ATP binding cassette
(ABC) transporter

A1S-0536

Chromosome

A1S-0536 Resistance to erythromycin

[3,68,79,80]

A1S-1535 A1S-1535 Resistance to chloramphenicol
and gentamicin

abuO AbuO Response to oxidative stress

macAB-tolC MacAB-TolC Potentially resistance to macrolides
and tigecycline

Multidrug and toxic
compound extrusion (MATE) abeM AbeM Resistance to fluoroquinolones

and disinfectants [3,6,68,79,80]

Major facilitator
superfamily (MFS)

abaF

Chromosomal genomic islands

AbaF Resistance to fosfomycin

[3,68,79,80,158]

abaQ AbaQ Resistance to quinolones
amvA AmvA Resistance to erythromycin
cmlA CmlA Resistance to chloramphenicol
craA CraA Resistance to chloramphenicol

emrAB EmrAB Resistance to colistin and adaptation
to osmotic stress

tetA
Plasmids and MGEs

TetA Resistance to tetracycline
and tigecycline

tetB TetB Resistance to minocycline
and tetracycline

Resistance nodulation
division (RND)

abeD

Chromosome

AbeD

Resistance to benzalkonium
chloride, ceftriaxone, gentamicin,
rifampin, tobramycin, killing the

host cells

[3,6,65,74–77]

acrAB AcrAB Resistance to disinfectants, colistin
and tobramycin

adeABC AdeABC

Resistance to aminoglycosides,
chloramphenicol, fluoroquinolones,

pentamide, tetracyclines,
trimethoprim and osmotic stress

adeDE AdeDE

Resistance to chloramphenicol,
erythromycin, tetracycline,

amikacin, meropenem, ceftazidime,
rifampin and ciprofloxacin
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Table 2. Cont.

Structures Virulence Genes Gene Position Virulence Factors Roles References

adeFGH AdeFGH

Resistance to clindamycin,
chloramphenicol, fluoroquinolones,

tetracycline-tigecycline and
trimethoprim, biofilm formation

adeIJK AdeIJK

Resistance to erythromycin,
β-lactam antibiotics, trimethoprim,

tetracycline, fusidic acid,
chloramphenicol, novobiocin,

lincosamides and rifampin

adeL AdeL Resistance to fluoroquinolones
and tetracycline

adeN AdeN

Resistance to macrolides,
tetracycline, cephalosporins,

carbapenem, penems,
fluoroquinolones and rifamycin

adeXYZ AdeXYZ
Similar to AdeIJK in phenotypic,

structural and genetic
characteristics (homologs)

arpAB ArpAB Resistance to tobramycin
and amikacin

czcABCD CzcABCD Resistance to heavy metals,
e.g., copper

Proteobacterial antimicrobial
compound efflux (PACE)

A1S-1503
Chromosome

A1S-1503 Resistance to disinfectants
[3,68,79,80]aceI AceI Resistance to disinfectants

Small multidrug
resistance (SMR)

abeS
Chromosome

AbeS
Resistance to novobiocin,

erythromycin, chloramphenicol,
fluoroquinolones and disinfectants [3,68,79,80]

qacE QacE Resistance to disinfectants

Lipopolysaccharide (LPS) lpxACD operon; lpxB Chromosome, plasmids lipidA biosynthesis,
LPS biosynthesis

Bacterial surface-associated motility,
Microbe associated molecular

pattern (MAMP), Immune system
activation through triggering the

expression of versatile
pro-inflammatory cytokines,

e.g., toll-like receptor 4 (TLR4),
interleukin 8 (IL-8), Tumor necrosis

factor-α (TNF-α) and CCL4,
Bacterial susceptibility

against colistin

[62,87,94,98,159,160]
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Table 2. Cont.

Structures Virulence Genes Gene Position Virulence Factors Roles References

Lipooligosaccharide (LOS) Outer core (OC) loci (OCL) Between ilvE and aspS genes
on the chromosome

lipid-carbohydrate
surface structure

Antimicrobial peptides resistance,
Bacterial adhesion, Bacterial

resistance against human host
opsonophagocytotic activities,

bacterial cell motility, Induction of
expression of several

pro-inflammatory cytokines

[3,96]

Outer membrane proteins (OMPs)

carO

Chromosome, plasmids

CarO

Resistance to Carbapenems, uptake
of glycine, imipenem, and ornithine,
contribution to bacterial adhesion,

invasion and dissemination

[3,68,77,119,125,161]

occAB1–AB5 OccAB1–AB5

Substrates translocation, metal ions
acquisition, e.g., iron (Fe2+) and
magnesium (Mg2+), antibiotics

(β-lactams) and amino acids uptake,
participation in nutritional

immunity and stress survival caused
by the host

(host–pathogen interactions)

omp33–36 Omp33–36

Resistance to carbapenems,
activation of caspase enzymes of
3 and 9 and apoptosis within the
host cells, cytotoxicity, bacterial
adhesion and invasion into the

host’s epithelial cells

ompA OmpA

Resistance to β-lactams and colistin,
iron siderophores

(e.g., acenitobactin) acquisition,
cytotoxicity, bacterial adhesion

through fibronectin
(irreversible attachment), invasion

and persistence, induction of
reactive oxygen species (ROS) and

apoptosis within the host cells, it has
been recognized in up to 81% of
isolated strains of A. baumannii

ompW OmpW
Bacterial adhesion and invasion into

pulmonary epithelial cell lines,
cytotoxicity, iron acquisition
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Table 2. Cont.

Structures Virulence Genes Gene Position Virulence Factors Roles References

Pili

Chaperon-usher type I pili csuA/BABCDE Plasmid/chromosome

Formation of
chaperone-usher Csu

fimbriae;
CsuA/B (Shaft of the pili

(Major subunit)),
CsuA (Minor subunit),
CsuB (Minor subunit),

CsuC (Chaperon),
CsuD (Usher),

CsuE (Adhesin tip)

Biofilm formation on abiotic
surfaces, irreversible attachment;
recognized in up to 100% of the

isolated strains belonging to
A. baumannii

[68,77,162,163]

Type IV pili pilApgyA, pilBCD, pilTU

Plasmid/chromosome

Formation of type IV pili;
PilA (Major subunit), PgyA

(O-glycosylase), PilB
(putative traffic ATPase),

PilC (putative inner
membrane platform

protein), PilD (putative
prepilin peptidase),

PilT (putative retraction
ATPase), PilU (putative

retraction ATPase)

Biofilm formation,
host-cell adhesion, twitching

motility, HGT,
microcolony formation

[77,139,164]

Curli fiber csgBAC
csgDEFG

Amyloid protein (composed
of major subunits of csgA)

Adherence, matrix formation,
biofilm maturation; recognized in
up to 70% of the isolated strains

belonging to A. baumannii

[77,165]

Type I fimbriae fimBEAICDFGH Chromosome FimH (adhesin)

Bacterial cell adhesion
(irreversible attachment), recognized
in up to 50% of the isolated strains

belonging to A. baumannii

[77,165]

P fimbriae papIBAHCDJKEFG PAIs/chromosome PapG (adhesin)

Biofilm formation
(homologous to Escherichia coli);
recognized in up to 80% of the
isolated strains belonging to

A. baumannii

[77,165]

Phospholipase
plc1, plc2

Plasmid/chromosome
Phospholipase C

Red blood cell lytic and hemoglobin
releasing enzyme, iron uptake and

lipolytic activity
[3,68]

pld1, pld2, pld3 Phospholipase D iron uptake and lipolytic activity [3]
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Table 2. Cont.

Structures Virulence Genes Gene Position Virulence Factors Roles References

Metal ion
uptake systems

Acinetobactin (including
three gene clusters of
A1S-2392-A1S_2372)

basAB, basCD, basFG, basHIJ

Plasmid/chromosome

BasA–J

Biosynthesis of acinetobactin for
iron uptake, persistence of the

infection within the epithelial cell
and apoptosis

[3,68,147,148,153,166]

barA, barB BarAB

Members of siderophore efflux
system of the ABC superfamily,

which secrete the produced
acinetobactin via bas gene clusters

bauABECD, bauF BauA–F

Receptor for complexes of
ferric-acinetobactin to translocate
these complexes into the bacterial
cell of A. baumannii, persistence of
the infection within the epithelial

cell and apoptosis

Baumanoferrin
(including one gene cluster

of A1S_1647-A1S-2372)
bfnABCDEFGHIJKL BfnA–L Biosynthesis, translocation and the

uptake of iron

Fimsbactins
(including two gene clusters

of A1S-2582-A1S_2562)
fbsABCDEFGHIJKLMNOPQ FbsA–Q Biosynthesis, translocation and the

uptake of iron

mum operon mumRTLUHC MumR–C

MumR contributes to oxidative
stress resistance and regulating of

Mn homeostasis; MumT participates
in Mn chelating, it also acts as Mn

and urea transporter

Fur fur Fur Transcriptional regulator
of iron metabolism

Zinc uptake system

zigA ZigA Zinc homeostasis,

znuBC, znuA, znuD, znuD2

ZnuB (inner membrane
channel), ZnuC (ATPase),

ZnuA (periplasmic binding
protein), ZnuD (outer

membrane channel), ZnuD2
(outer membrane channel)

Zinc acquisition, homologous
to ZnuABC system

in E. coli, pathogenesis

zur Zur Transcriptional regulator
of zinc metabolism
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Table 2. Cont.

Structures Virulence Genes Gene Position Virulence Factors Roles References

Two-component
systems (TCSs)

A1S_2811 A1S_2811

Plasmid/chromosome

A1S_2811

Hybrid sensor kinase, involved in
motility (via flagella or pili),

contribution to biofilm formation,
regulation of quorum sensing

[155]

AdeRS adeRS AdeR, AdeS

Involved in antibiotic susceptibility
in A. baumannii, contribution to

controlling the expression of
~600 genes (involved in, e.g., biofilm
formation, multidrug-efflux activity
(such as AdeABC) and virulence),

directly or indirectly.

[76,155]

BaeSR baeSR BaeS, BaeR

There is a homology between this
TCS in A. baumannii and E. coli,

triggered by sucrose, regulation of
overlapping regulons relating to

other present TCSs in A. baumannii,
BaeSR may occur cross-talk with the
other members of TCSs; it regulates
the expression of AdeABC, ADEIJK,

MacAB-TolC drug efflux pumps,
Susceptible to tannic acid,

contributes to bacterial
antibiotic resistance

[76,155]

BfmRS bfmRS BfmR, BfmS

This TCS (recognized in up to 92%
of isolated strains of A. baumannii) is

a type of sensor kinase that
regulates the expression of csu
operon (pili) in A. baumannii,

contribution to biofilm formation
(irreversible attachment), regulation

on capsule production through
controlling the exopolysaccharide

biosynthesis (expression of K locus),
regulation of bacterial TCSs and
virulence in A. baumannii, BfmS

phosphorylates the BfmR

[76,77,155]
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Table 2. Cont.

Structures Virulence Genes Gene Position Virulence Factors Roles References

GacSA gacSA Transposon/chromosome GacS, GacA

Regulation of ~680 genes in
association with motility, pili
formation, biofilm formation,

bacterial resistance towards human
serum, immune evasion, catabolism
of aromatic compounds (paa operon,

which has homology to E. coli),
bacterial pathogenesis

[76,155]

PmrAB pmrAB Plasmid/chromosome PmrA, PmrB
Lipid A modification, contribution

to colistin and polymyxin B
resistance (via gene mutations)

[155]

Secretion system

T1SS tolC-hlyB-hlyD gene cluster
(homologous to E. coli) Chromosome

TolC (a trimeric outer
membrane protein

interacting with HlyD),
HlyB (an ATP-binding

cassette transporter that
provides the required

energy), HylD
(a periplasmic adaptor)

T1SS has cross-talk with T2SS and
T6SS, Contribution to virulence,
secretion of putative effectors,

e.g., RTX-serralysin-like toxin and
Bap and other effectors such as

glycosidases, proteases,
phosphatases and invasins which

are involved in bacterial attachment,
invasion, biofilm formation

and pathogenesis

[68,86,167]

T2SS gspC-M, pilD
gsp genes dispersed into
five clusters within the

bacterial genome

GspC (a subunit of the inner
membrane (IM) platform),
GspD (an outer membrane

(OM) complex), GspE
(cytoplasmic ATPase), GspF

(a subunit of the inner
membrane (IM) platform),
GspG-K (subunits of the
periplasmic pseudopilus
(GspG is known as major

pseudopilin, while the
others are recognized as

minor pseudopilins)), GspL
(a subunit of the inner

membrane (IM) platform),
GspM (a subunit of the
inner membrane (IM)

platform), PilD contributes
to processes of cleavage

and methylation

Secretion of enzymes and toxins
such as CpaA protease,

intimin-invasin lipoprotein of InvL
and lipases of LipA, LipAN and
LipH, pathogenesis, antibiotic

resistance (e.g., resistance
against ciprofloxacin)
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Table 2. Cont.

Structures Virulence Genes Gene Position Virulence Factors Roles References

T4SS (type F) traA-I, traK-N,
traU-W, trbC, finO Plasmid

TraA (constitutes the
extracellular section of the
pilus), TraB (constitutes the

IM platform of the T4SS),
TraC (the cytoplasmic

subunit of the T4SS), TraD
(the cytoplasmic subunit of

the T4SS), TraE, TraF
(constitutes the IM platform

of the T4SS), TraG
(constitutes the IM platform

of the T4SS), TraH
(constitutes the OM core

complex of the T4SS), TraI
(contributes to nick), TraK
(constitutes the OM core

complex of the T4SS), TraL,
TraM (participates in

translocation initiation),
TraN (constitutes the OM
core complex of the T4SS),
TraU (constitutes the IM

platform of the T4SS), TraV
(constitutes the OM core

complex of the T4SS), TraW
(constitutes the IM platform

of the T4SS), TrbC
(constitutes the IM platform

of the T4SS),
FinO (regulator)

T4SS is involved in DNA exchanges,
e.g., HGT features such as

transformation, conjugation which
may lead to translocation of

virulence genes, drug-resistance
genes among bacterial cells,

contribution to bacterial
pathogenesis, colonization and

proliferation within the eukaryotic
host cells

[3,68,86]

T5bSS cdiA, cdiB, abfhaB, abfhaC Chromosome

CdiA (toxin), CdiB
(OM transporter) Lethal proteins

[3,68,86]
AbFhaB, AbFhaC

Adhesion (via fibronectin) to host
cell, virulence, bacterial survival,

biofilm formation

T5cSS
The most popular T5SS

in A. baumannii
ata Chromosome Ata

Autotransporter, biofilm formation,
attachment to laminin and different
types of collagens including I, III, IV
and V, bacterial survival, bacterial
invasion to host cells, induction of
apoptosis (programmed cell death)

process within the host cells

[3,68,86,112]
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Table 2. Cont.

Structures Virulence Genes Gene Position Virulence Factors Roles References

T6SS

asaA-tssBC-hcp(tssD)-
tssEFG-asaB-tssM-tagFN-

asaC-tssHAKL-asaDE
vgrG-paar

Plasmid/chromosome

TssA–M forms the core, and
TagD–L constructs the

accessory proteins of the
T6SS structure

TssL–M and TssJ form the
membrane complex of the

T6SS within the periplasmic
space; TssE–G, TssK, VgrG

and PAAR construct the
cytoplasmic baseplate;

TssA–C and Hcp (TssD)
form the tail tube or sheath

complex of the bacterial
T6SS in A. baumannii

Bacterial virulence factor,
pathogenicity factor in eukaryotic
host cells, bacterial invasion and

adhesion, antibiotic resistance

[86,168,169]
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4. Conclusions

A. baumannii possesses a wide range of virulence factors with versatile abilities. Simul-
taneously, this pathogenic bacterium is supported by a significantly high plasticity in its
pan-genome. In addition, A. baumannii exploits the HGT as an effective genetic exchange
to acquire or transfer MGEs. These data and information reveal that despite the presence
of a huge volume of pathogenicity in A. baumannii, we can also utilize this bacterial arse-
nal to protect ourselves against its global concern associated with public health systems
worldwide. In this regard, we can find the related bacterial strategies and mechanisms to
acquire different types of virulence factors and ARGs from different sources. By knowing
these strategies and related resources, we can protect ourselves against their pathogenesis,
dissemination, proliferation, antibiotic resistance, and transmission. Moreover, deciphering
the different roles of bacterial cells and their components in induction of different immune
system signaling pathways, mediators, modulators in human and non-human hosts pro-
vides us an opportunity to promote our capability against a versatile of infections caused
by A. baumannii through a wide range of alternatives like new strategies in pharmaceutical
therapies, immunotherapies and vaccine production.
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