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Abstract: Nature’s way for bioactive peptides is to provide them with several related functions and
the ability to cooperate in performing their job. Natural cell-penetrating peptides (CPP), such as
penetratins, inspired the design of multifunctional constructs with CPP ability. This review focuses
on known and novel peptides that can easily reach intracellular targets with little or no toxicity to
mammalian cells. All peptide candidates were evaluated and ranked according to the predictions
of low toxicity to mammalian cells and broad-spectrum activity. The final set of the 20 best peptide
candidates contains the peptides optimized for cell-penetrating, antimicrobial, anticancer, antiviral,
antifungal, and anti-inflammatory activity. Their predicted features are intrinsic disorder and the
ability to acquire an amphipathic structure upon contact with membranes or nucleic acids. In
conclusion, the review argues for exploring wide-spectrum multifunctionality for novel nontoxic
hybrids with cell-penetrating peptides.

Keywords: amphipathic peptides; multifunctional; design; penetratins; antimicrobial; antiviral;
anticancer; anti-inflammatory; cell-penetrating; non-toxic

1. Introduction

Bioactive peptides are all around us, including host defense peptides (HFD) in our
bodies. We can regard them as templates developed by natural evolution that are lead
compounds for creating commercial products or drugs. Various chemical modifications
are employed to increase their stability for different applications. Bioactive peptides are
often multifunctional. Some are hidden within proteins and liberated to perform their
functions only when needed. Others can be designed in silico by combining several
shorter peptides. In any case, there is a fast-growing field of design and applications for
peptides that may have multifaceted performance. Such candidate therapeutics may help
treat complex diseases often associated with opportunistic infections. Dual antibacterial
and anticancer activity has been frequently observed [1–6]. For instance, wide-range
antibacterial peptide aurein 1.2 exhibits high activity against 52 cancer cell lines [7]. Another
nontoxic antimicrobial peptide, buforin IIb, is active against 60 human tumor cell lines [8].
The bimodal function can encompass antimicrobial and anti-inflammatory activity [9–11].
Hilchie et al. [9] mention 18 biological activities of cationic host defense peptides and
their synthetic derivatives. In their 2019 review [12], Hilchie et al. stressed that “cationic
amphipathic peptides may exhibit any combination of antimicrobial, anticancer, or immune-
modulatory properties”.

Regarding antimicrobial performance, antifungal and antiviral activity are of particular
interest due to difficulties in the development of safe, low molecular weight antibiotics
against such targets [13–17]. The penetration inside cells also belongs to the coveted
multifunctional property, firstly for the ability of cell-penetrating peptides (CPP) to interact
with the cellular membrane in a non-invasive manner [18,19], and secondly for acting on
hard-to-reach intracellular targets [20,21].

Current algorithms for predicting the activity of multifunctional peptides have limited
accuracy. However, they are still helpful indicators of which natural peptides or in silico
constructs are promising for much more expensive verifications in vitro and in vivo. A
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plethora of user-friendly servers has appeared during recent years for sequence-based
prediction of cell-penetrating (CPP), antimicrobial (AMP), anticancer (ACP), antiviral
(AVP), antifungal (AFP), and anti-inflammatory (AIP) peptides [22–35]. An older server by
Hwang et al. [36] can be used to predict DNA binding. A valuable feature is when servers
allow for designing novel peptides with improved function [35] or decreased toxicity [37].
The goal of combining all six activities (CPP, AMP, ACP, AVP, AFP, and AIP) in a single
peptide construct is possible, but two caveats should be considered. We do not want
to invest time and money into examining strongly toxic peptides. Fortunately, in silico
prediction by dedicated servers for toxicity [37–39] and hemolytic activity [40] can be used
to prune designed candidates with high predicted hemolytic activity or toxicity to healthy
human cells. Secondly, all predictions are questionable in the absence of experimental
validation. Hence, whenever possible, we must compare predictions with observations to
obtain insight into the reliability of employed “in silico” expectations.

We shall describe in this review several classes of peptides that have confirmed or
predicted high multifunctional potential. Our approach is to start with some natural or
artificial peptides with proven cell-transduction efficiency. It is the parent peptide for
in silico exploration on how it can be modified or fused to other bioactive peptides for
acquiring multifunctional activity without losing its cell-penetrating ability. Such peptides
have a better chance of reaching intracellular pathogens that are difficult to eradicate with
conventional antibiotics.

Regarding predictions, there are several additional caveats to using publicly accessible
web servers for predicting sequence-based functionality for a peptide. The most important
one is reproducibility. Free assistance to the scientific community via such web servers is
never cost-free for those who maintain them. Suppose larger organizations up to the state
or international level are not involved in maintaining long-term reproducibility. In that
case, the half-life of servers for scientific calculations is measured in years, not decades.
The most severe reproducibility problem is when the server’s output (score) is different
for each submission of an identical peptide. That may happen when recent algorithms are
still riddled with bugs; although, their link is in the public domain and the description is
published in a high-impact journal. The case example is the ToxIBTL server for predicting
peptide toxicity [41].

Different artificial intelligence algorithms are becoming ever more popular in con-
structing predictive algorithms. However, most suffer from well-known weaknesses. They
are essentially black boxes containing some rules learned during the training procedure.
There is no easy way to discover and formulate these rules, however useful they may be in
raising the prediction accuracy. Overly intensive training does not help either because it
can decrease the performance when the AI algorithm is presented with the testing dataset,
which differs in some properties from the training dataset.

When large enough datasets of non-redundant and non-homologous peptides are
collected, one can separate the training and testing datasets by choosing some compromise
for the cut-off in similarity among these datasets. It is an excellent practice when several
benchmarking datasets are used for testing. However, the proper training procedure should
be such that testing datasets are never examined during the training procedure. Tests with
the benchmark datasets should be done only once. Frequent jackknife tests of the training
dataset amount to additional training procedures and should be avoided if possible. It may
not be possible when different descriptors are tested as well.

The fourth caveat is connected to the choice of features or descriptors. It is subjective
and usually limited to overly simple ideas about what is essential for peptides’ activity.
Atomic composition, amino acid composition, dipeptides composition, charges, and other
amino acid features (hydrophobicity) completely neglect the sequence order of amino acid
residues in a peptide, sequence profile of hydrophobicity and hydrophobic moments, dipole
moments, and many other structure-associated physicochemical features. These are features
and descriptors we described in our publications when we were constructing descriptors
for predicting selectivity and a membrane-induced increase in helical conformation [42–46].
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Recently developed AI algorithms, which we mentioned in Methods, incorporate interpretable
features and in-depth analysis of peptides’ biophysical and biochemical properties. We have
used them on many occasions during the past several years. There were only occasional short
service disruptions for some of them, probably due to maintenance. Our last accession was on
7 August 2022.

We shall firstly examine in this work the multitude of natural penetratin analogs with
special attention to those of ancient origin. Secondly, we shall use the hybrid constructs with
penetratin analogs and optimized penetratin to find promising lead compounds for strong
multifunctional activity. Thirdly, novel peptide conjugates for intracellular targets will be
proposed too. Next, shorter CPPs unrelated to penetratin, either known or novel, will be
examined regarding predicted multifunctional activities when conjugated to peptides with
verified activity for promising broad-spectrum applications.

Conclusions will gather the best compromise for all peptide constructs among strongly
predicted six multifunctional activities (CPP, AMP, ACP, AVP, AFP, and AIP) and low
toxicity estimates in the hope of future experimental verifications and appropriate chemical
modifications for various applications. The class of highly charged temporin analogs fused
to short CPP ended up as 50% of the 20 best peptides that have promising therapeutic
potential. They are not overly expensive for synthesis, with a length ranging from 22 to 31
amino acid residues.

2. Sequence-Based Servers for Predicting Peptide Activity and Proposed
Ranking Methods

The choice of online available predictive algorithms is according to (a) their online
persistence, (b) the usage simplicity when peptide sequence is submitted, and (c) claimed
accuracy. The last requirement (accuracy) is challenging to estimate independently from
the authors’ claims. Prediction results are commented on in the paper when they indicate
some algorithm shortcomings.

The MLCPP server, www.thegleelab.org/MLCPP/ (accessed on 7 August 2022) by
Manavalan et al. [22], is used to predict peptide cell-penetrating probability and uptake
efficiency. We also consulted the C2Pred server by Tang et al. [23] (http://lin-group.cn/
server/C2Pred, (accessed on 7 August 2022)) for the CPP probability.

The DP-Bind server http://lcg.rit.albany.edu/dp-bind/ (accessed on 7 August 2022)
by Hwang et al. [36] is used for sequence-based prediction of DNA-binding residues
in DNA-binding proteins and peptides. In some cases, the dSPRINT server http://
protdomain.princeton.edu/dsprint, (accessed on 7 August 2022)) by Etzion-Fuchs et al. [47]
provided the confirmation of the DNA-binding preference for sequence domains.

The antimicrobial peptide probability for a query peptide is found by applying the
Support Vector Machine (SVM) algorithm from the CAMPR3 web server http://www.
camp.bicnirrh.res.in/predict (accessed on 7 August 2022) [24]. We also used the AmpGram
server (http://biongram.biotech.uni.wroc.pl/AmpGram/ (accessed on 7 August 2022) [25])
to identify antimicrobial peptides.

Two web servers are used to predict the peptide’s anticancer activity. These are
the ACPred server http://codes.bio/acpred/ (accessed on 7 August 2022) [26] and the
mACPred server http://thegleelab.org/mACPpred/ (accessed on 7 August 2022) by
Boopathi et al. [27].

Three web servers are used to predict the peptide’s antiviral activity. These are the
ENNAVIA server https://research.timmons.eu/ennavia (accessed on 7 August 2022) by
Timmons and Hewage [28], the FIRM-AVP server https://msc-viz.emsl.pnnl.gov/AVPR/
(accessed on 7 August 2022) by Chowdhury et al. [29], and the Meta-iAVP server http:
//codes.bio/meta-iavp/ (accessed on 7 August 2022) by Schaduangrat et al. [30].

The iAMPpred web server http://cabgrid.res.in:8080/amppred/server.php (accessed
on 7 August 2022) of Meher et al. [31] gives predictions for antibacterial, antiviral, and
antifungal activity, but we reported only the last one. We also used the AntiFungal server

www.thegleelab.org/MLCPP/
http://lin-group.cn/server/C2Pred
http://lin-group.cn/server/C2Pred
http://lcg.rit.albany.edu/dp-bind/
http://protdomain.princeton.edu/dsprint
http://protdomain.princeton.edu/dsprint
http://www.camp.bicnirrh.res.in/predict
http://www.camp.bicnirrh.res.in/predict
http://biongram.biotech.uni.wroc.pl/AmpGram/
http://codes.bio/acpred/
http://thegleelab.org/mACPpred/
https://research.timmons.eu/ennavia
https://msc-viz.emsl.pnnl.gov/AVPR/
http://codes.bio/meta-iavp/
http://codes.bio/meta-iavp/
http://cabgrid.res.in:8080/amppred/server.php
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of Zhang et al. [32] (https://www.chemoinfolab.com/antifungal/, (accessed on 7 August
2022)) to predict the antifungal activity.

For the prediction of anti-inflammatory activity, we used the AIPpred server (http:
//www.thegleelab.org/AIPpred/ (accessed on 7 August 2022) [33]), the PreAIP server
(http://kurata14.bio.kyutech.ac.jp/PreAIP/ (accessed on 7 August 2022) [34]), and the
scoring output of the AntiInflam server (http://metagenomics.iiserb.ac.in/antiinflam/
(accessed on 7 August 2022) [35]) when it predicts the anti-inflammatory activity. We used
the AntiInfam server to design peptides with a better anti-inflammatory score.

Two different methods estimated peptide toxicity. Firstly, the probability that the
peptide has hemolytic activity was assessed using the HAPPENN server https://research.
timmons.eu/happenn (accessed on 7 August 2022) by Timmons et al. [40]. Secondly, the
peptide toxicity was predicted by the ToxinPred server https://webs.iiitd.edu.in/raghava/
toxinpred/ (accessed on 7 August 2022) [37–39]. We used the server modules for batch
submission and designing peptides with decreased toxicity. To verify peptide toxicity class
(toxic or nontoxic), a more recent ToxIBTL server http://server.wei-group.net/ToxIBTL
(accessed on 7 August 2022) [41] was also employed. Besides toxicity class, that server’s
output contains an irreproducible and meaningless score because the user is given a
different score for an identical peptide in each submission.

We employed older reliable servers, SPLIT 3.5 [42] and SPLIT 4.0 [43], for predicting
the sequence profile of hydrophobicities, optimal hydrophobic moments, and membrane
preference for amphipathic and membrane-associated segments: http://split.djpept.com/
split/ (accessed on 7 August 2022) and http://split.djpept.com/split/4/ (accessed on 7
August 2022). Our Mutator tool [46] served to design anuran-like peptide antibiotics with
a predicted high selectivity index: http://mutator.djpept.com/ (accessed on 7 August 2022)
or http://splitbioinf.pmfst.hr/mutator/ (accessed on 7 August 2022).

For each of the considered peptides, we presented predicted results in Tables 1–5. The
summary Table 6 for ranking the best peptide constructs presents only mean scores for each
of the predicted activities. The mean score for anti-inflammatory activity can be higher than
1.0 because the AntiInflam server reports the score for the AIP activity that can be higher
than 1.0. The arithmetic average of mean CPP, AMP, ACP, AVP, AFP, and AIP scores served
to rank all peptides regardless of their toxicity to healthy human cells. We then introduced
the reward for predicted low toxicity and hemolytic activity to obtain the overall ranking
for all nontoxic multifunctional constructs. The reward score is calculated as a negative
mean of toxicity score (negative) by the ToxinPred server and the HAPPENN server output
(positive). Mean scores for six activities and the reward score are then averaged to obtain
the overall score. It ranges from 0.873 to 0.927 for the 20 best peptides, while the reward
score ranges from 0.346 to 0.867.

https://www.chemoinfolab.com/antifungal/
http://www.thegleelab.org/AIPpred/
http://www.thegleelab.org/AIPpred/
http://kurata14.bio.kyutech.ac.jp/PreAIP/
http://metagenomics.iiserb.ac.in/antiinflam/
https://research.timmons.eu/happenn
https://research.timmons.eu/happenn
https://webs.iiitd.edu.in/raghava/toxinpred/
https://webs.iiitd.edu.in/raghava/toxinpred/
http://server.wei-group.net/ToxIBTL
http://split.djpept.com/split/
http://split.djpept.com/split/
http://split.djpept.com/split/4/
http://mutator.djpept.com/
http://splitbioinf.pmfst.hr/mutator/
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Table 1. Penetratin-like peptides within homeodomains.

Organism/
Common Name

Parent Protein or Gene/
GenBank or Uniprot Link * Penetratin or Penetratin Analog Sequence #Arg /#Lys/CPP Probability $

Drosophilamelanogaster/fruit fly pAntp/P02833 RQIKIWFQNRRMKWKK 3/4/1.00

Homo sapiens/human

Hox-A5/P20719
PDX-1/P52945
HXD8/P13378
Hox-C12/ P31275

RQIKIWFQNRRMKWKK
RHIKIWFQNRRMKWKK
RQVKIWFQNRRMKWKK
QQVKIWFQNRRMKKKR

3/4/1.00
3/4/0.997
3/4/0.97
3/4/0.97

Homo sapiens/human Pax-6/P26367
Pax-7/P23759 and Pax-3/P23760

ARIQVWFSNRRAKWRR
ARVQVWFSNRRARWRK

5/1/0.94
5/1/0.94

Homo sapiens/human PITX2/D6RFI4 ARVRVWFKNRRAKWRKR 5/3/0.97

Ciona intestinalis/sea squirt tunicate Pax3/7-like/NP_001071798.1 ARVQVWFSNRRAKWRR 5/1/0.94

Acropora millepora/stony coral Pax-6/XP_029212196.2 ARIQVWFSNRRAKWRK 4/2/0.94

Capitella teleta/annelid worm Ct-Pax3/7 (Pax6)/A1XC54, ABC68267.1 ARVQVWFSNRRARWRK 5/1/0.94

Nematostella vectensis/sea anemone PaxC homeodomain transcription factor/Q5IGV4 ARVQVWFSNRRAKWRR 5/1/0.94

Mnemiopsis leidyi/comb jelly PRD10a homeobox trancription factor/
ADO22618.1 ARIQVWFQNRRAKWRK 4/2/0.93

Amphimedon queenslandica/sponge Pax-6/XP_003387530.1 SRVQVWFQNRRAKWRK 4/2/0.93

Trichoplax adhaerens PaxB/ACH57172.1 ARVQVWFSNRRAKWRK 4/2/0.92

Ceratocystis platani/fungi Pax-6/KKF93291.1 AKINNWFQNRRAKAKL 2/3/0.86

Galerina marginata/Dykaria higher fungi Homeobox containing protein
fragment/A0A067SZU8 ARIQVWFSNRRAKWRR 5/1/0.94

Planoprotostelium fungivorum/amoeba Arf-GAP with homeobox domain/ A0A2P6NXG8 ARIQVWFSNRRAKWRR 5/1/0.94

Monosiga brevicollis (Choanoflagellate) Mb_hbx2 homeobox-domain protein/
A9UP33 QQINNWFINARRRLLNR 4/0/0.76

Capsaspora owczarzaki
amoebae(Filasterea clade)

CAOG_004648 Homeobox domain-containing
protein/ A0A0D2VSA1

RVIRIWFQNRRAKQRR
RRQKARRNQFWIRIVRR§ 6/1/0.96

7/1/0.96
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Table 1. Cont.

Organism/
Common Name

Parent Protein or Gene/
GenBank or Uniprot Link * Penetratin or Penetratin Analog Sequence #Arg /#Lys/CPP Probability $

Candida glabrata/budding yeast Homeobox containing protein PHO2/
Q6FKZ3

KNVRIWFQNRRAKVRK
KNVRIWFQNRRAKVRKKGKL 4/3/0.95

4/5/0.95

Hanseniaspora osmophila/
wine-making yeast

Regulatory protein PHO2 with homobox domain
1/A0A1E5RMZ3 TQVKIWFQNRRMKWKR 3/3/0.94

Acinetobacter baumannii/Gram- bacteria Homeobox domain-containing protein (partial)/
WP_139162288.1 RQVAVWFQNRRARWKT 4/1/0.87

Klebsiella pneumoniae/Gram- bacteria Homeobox domain-containing protein
WP_185963280.1 TQIKIWFQNRRAKDHR 3/2/0.76

Euryarchaeota archaeon RYE98021.1 RQVSVWFTNARKRIWL 3/1/0.77

Acanthamoeba polyphaga mimivirus/
giant virus

Putative homeobox protein/
AKI80488.1 RQIQIWFQNRRCKDRK 4/2/0.87

Moumouvirus maliensis/giant virus Homeodomain containing protein/
QGR53678.1

KQISIWFANRRAYDARK
RKNGVKMTKVKKIRRSR&

3/2/0.63
4/5/0.94

Megavirus chiliensis/giant virus Putative homeobox protein/
YP_004894234.1 RQIQIWFQNRRARDSKKNR 5/2/0.85

Bandra megavirus/ Homeobox/ AUV58136.1 RQIQIWFQNRRARDSKKIR 5/2/0.85

Unclassified Mimivirus/
giant virus

Homeobox protein/
QZX43434.1 RQIQIWFQNRRARDSRKNR 6/1/0.86

* Bold font is for amino acid residues that are identical in type and sequence location to Drosophila pAntp penetratin; underlined residues are for extended penetratin analog at its
C-terminal; All examined viruses and some Gram-negative bacteria have aspartate (D) highlighted with italic font instead of tryptophan (W) at the 14th sequence location. $ #Arg/#Lys
are the numbers of arginines and lysines in the sequence. The third number after the slash symbol is the cell-penetrating probability (CPP), according to www.thegleelab.org/MLCPP/
(accessed on 7 August 2022) server. § Reversed amoebae penetratin (Filasterea clade) with added arginine. & Homeodomain motif upstream from penetratin analog is also predicted as
the CPP.

www.thegleelab.org/MLCPP/
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The overall score ranking is highly dependent on estimated toxicity. Peptide toxicity is
usually firstly examined as hemolytic potency. Minimizing hemolytic activity can improve
the therapeutic potential of peptides. The HAPPENN server [40] employs the threshold
value of 0.5 to distinguish hemolytic from non-hemolytic peptides. Its valuable feature
is distinguishing C-terminal amidated from non-amidated peptides. Amidated peptides
are more active antimicrobials but can be associated with increased hemolytic activity.
Magainin-2 in its C-terminal amidated form is the best-known antimicrobial peptide. More
than 500 µM concentration of MG2 is needed to cause 50% hemolysis. Its hemolytic
probability is 0.83 (see Table 5, peptide 6 for the HAPPENN output). Therefore, a peptide
with a probability for hemolytic activity between 0.50 and 0.83 or less can still be a good
candidate for synthesis, purification, and testing.

3. Under-Appreciated Versatility of Penetratins
3.1. The Evolutionary Depth of Homeobox Domains and Penetratin-like Cryptides in the
Animalia Kingdom

Natural DNA-binding peptides can be the inspiration for designing cell-penetrating
peptides (CPP) with DNA-binding and other multifunctional activities. We shall first ex-
plore this idea for the penetratin-like peptides. Le Roux et al. published in 1993 [48], the pri-
mary structure of 35 amino acid long cryptide L(322)TRRRRIEIAHALCLTE
RQIKIWFQNRRMKWKKEN(356) rich in arginines from the homeodomain of the
Drosophila melanogaster (fruit fly) protein Antennapedia (pAntp). The highlighted se-
quence (with bold font residues) was named the penetratin peptide. Remarkably, that
16-residues long cryptide (hidden peptide) from homeodomain proteins connected fruit
flies to humans (Table 1). One can speculate that DNA-binding and cell-penetrating func-
tions are related and equally ancient for penetratin analogs found in homeobox-like proteins
(Tables 1 and 2). More to the point, membrane activity, cell-penetrating ability, antimicro-
bial potency, and anticancer activity are also related to the highly cationic and moderately
amphipathic structure of the penetratin and its natural or synthetic analogs [49–58].

Identical hexadecapeptide penetratin analog is present in Drosophila O18381, mouse
P63015, and human P26367 Pax-6 parent proteins. It is the arginine-rich ARIQVWFSNRRA
KWRR sequence (residues identical to Drosophila pAntp penetratin are in a bold font). We
can estimate its evolutionary depth by performing the peptide search for that arginine-rich
sequence in the UniProt database. There are about two thousand hits for invertebrate
and vertebrate animals, most associated with the Pax-6 annotation. The Pax-6 gene is a
master control gene responsible for developing photodetection and eye morphogenesis in
flies, mice, and humans. Walter Gehring and his co-authors postulated that the strikingly
diverse eyes found in the most primitive to the most advanced animals derived from an
ancestral eye and ancestral organ selector genes [59–63]. Pax and Pax-like genes coding for
penetratin analogs were found not only in flatworms, insects, and mammals but also in
sponges lacking a nervous system [64–66].

Corresponding proteins are transcription factors containing two to three domains
with three α-helices. The first two domains belong to the defining Pax signature of the
128-amino acid DNA-binding paired domain [67]. The third DNA-binding domain with
three helices is the 60-amino acid homeobox domain. Binding to DNA as homodimers
or heterodimers is often essential for the transcriptional activity of homeobox-containing
proteins [68]. An unresolved question is the functional importance of penetratin analogs
found in a homeobox-like sequence of the simplest and most ancient animals devoid
of organs. Another underexplored question regards the possible toxicity of natural or
designed penetratin analogs. When substituted amino acids change peptide–DNA or
parent protein–DNA interaction, the results can be either beneficial or harmful in vivo.
Disease-causing mutations in the human Pax3 gene belong to the latter examples.

From the UniProt entry P23760 the homeobox sequence is Q(219)RRSRTTFT
AEQLEEL(234)ERAF(238)ERTHYPDIYTREELAQRAKLTEARVQV(265)W(266)FSNR(270)
R(271)AR(273)WRKQA(278) for human Pax3 (we underlined helices α1, α2, and α3). The
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substitution of residues V(265), W(266), R(270), R(271), and R(273) from recognition helix
α3 with, respectively, F, C, C, C, and K, may result in the Waardenburg syndrome (WS1)
with impaired hearing and other disorders. Presumably, Phe (F) and Cys (C) cannot main-
tain crucial DNA–homeodomain interactions provided by V(265), W(266), and R(271).
Substitutions P for L(234) and S for F(238) are also causing WS1 syndrome probably by
destabilizing the hydrophobic interactions for the homeodomain fold (see Birrane et al.,
2009 paper [69], where L(16) and F(20) correspond to L(234) and F(238)). Birrane et al. [69]
concluded that Pax3 has no DNA-interacting residue in its first homeodomain helix (α1).
It has one DNA-interacting residue in its second helix (α2) and eight such residues in its
third DNA-recognition helix (α3). Other authors also concluded that the penetratin-like
helix α3 has the strongest contact with the major DNA groove [70,71].

We restricted Table 1 examples of metazoan penetratins to phylums Chordata (Mam-
malia class), Tunicata (subphylum, Ascidiacea class, which includes sea squirts), Antrophod
(Insecta class), Annelida (Polychaeta class worm), Cnidaria (Anthozoa class, including
stony corals), Ctenophora (Tentaculata class, which includes comb jellies), Porifera (De-
spongiae class), and Placozoa (T. adhaerens). In all subkingdoms of Animalia, we can easily
find those penetratin analogs that are essential motifs in transcription factors regulating
the development.

Given examples from Table 1, let us elaborate on the evolutionary depth of the con-
served role for Pax, Pax-like genes, homeotic genes, and associated penetratin-like DNA-
binding motifs. It is not only penetratin-like peptides from animals without eyes, eye
spots, and neurons (Table 1 examples for Porifera and Placozoa). Surprisingly, such pep-
tides are also present in fungi, yeasts, bacteria, Archaea, and viruses. In his 2013 review,
Peter Holland observed that homeotic genes were not found in Archaea or bacteria [72].
However, additional Archaea and bacterial genomes have been decoded during the past
decade. The last nine rows from Table 1 illustrate that homeobox domains and penetratin
analogs can be found as cryptides among proteins from prokaryotic cells and viruses. The
bacterial origin is more likely than the Archaea origin for a recognizable homeodomain
with the helix-loop-helix-turn-helix motif. Only marginal similarity to pAntp or human
Pax-6 penetratin is found for natural penetratin analogs from Archaea because at least 50%
of the residues from these hexadecapeptides are different. Recent whole-genome decod-
ing of giant viruses also revealed putative homeodomains and penetratin analogs [73,74].
The conserved motif WFXNRR is shared among all kingdoms of life, but it is too short
to find significant similarities. In any case, prokaryotes and viruses also use regulatory
transcription factors, and some of them may have been the progenitors of homeotic proteins
in eukaryotes.

Ed Lewis, the first expert on homeotic genes, quipped in a letter to Walter Gehring:
“Dear Walter, you made the homeobox our flying carpet.” The penetratin analog segments
are our time-machine part of the “flying carpet“ for reaching the distant past of Life
development. Let us show several examples to support that claim. We used our PROSITE
motifs, BLASTP, and UniProt searches to investigate the evolutionary roots. That is the
origin of some of the cited penetratin analogs (see Tables 1 and 2).
Example 1: Human penetratin-like sequences

There are more than 500 human homeotic proteins. Some human proteins contain
two homeobox domains and two different penetratin-like peptides (see some examples
at UniProt links O43812, Q96PT3, A6NLW8, and P0CJ85). Human Zink finger homeobox
protein 3 has four homeobox domains in its long sequence of 3703 residues (see Q15911)
with four associated penetratins, which are, however, of low similarity to pAntp penetratin.
Example 2: Nematodes, cnidarians, and tunicates

Previously mentioned arginine-rich analog ARIQVWFSNRRAKWRR is present in
the Vab-3 transcription factor G5EDS1 from the worm Caenorhabditis elegans. The worm
does not have eyespots, much less fully developed eyes. Since it lives underground or
inside rotting fruits, it does not require image-forming eyes, however primitive. Still, the
worm has consistently expressed the Pax6 gene [66], which must be somehow involved
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in developing its miniature brain. C. elegans uses rhodopsin-like sensory receptor protein
Q10042 annotated with a G protein-coupled receptor activity, but molecular details of its
function are unknown. Color-perceiving systems without eyes and without ”seeing“ color
may exist. The C. elegans animal model is probably the best for discovering neural circuits
and previously unrecognized proteins that have evolved to capture light and react to rich
information within the light spectrum. Its nervous system consists of only 302 neurons
and performs miracles of sensing mechanical forces, chemicals, temperature, humidity,
and electromagnetic fields. The Vab-3 involvement (if any) in C. elegans neural circuits for
eyeless light detection is still the subject of active research.

The same arginine-rich sequence is present in the Nematostella vectensis (sea anemone)
PaxC homeodomain from the transcription factor Q5IGV4. That cnidarian has a variable
number of neurons (several hundred at most [75]) in decentralized nerve nets and poorly
understood eyeless photodetection [76]). Another cnidarian, the Acropora millepora stony
coral, can tune spawning behavior with the phases of the moonlight [77]. It is unknown
whether the penetratin analog ARIQVWFSNRRAKWRK from Q5IGV4 protein, with a
conservative Arg to Lys substitution, plays a role in light sensing by coral larva or not. It
would not be surprising that more ancient eyeless vision needed penetratin analogs for its
development. The arginine-rich hexadecapeptide connects worms, corals, and starlet sea
anemones to insects and mammals. Its sequence can be as good a, if not a better, vehicle
than pAntp penetratin for trans-membrane transport.

Tunicates are the sister group to vertebrates. The Ciona intestinalis larva (sea squirt tu-
nicate) has the smallest brain of any chordate, with only 231 neurons [78]. Still, it needs the
transcription factor protein NP_001071798.1 containing the penetratin-like ARVQVWFSNR-
RAKWRR sequence. Larva’s simple eye-spot ocellus has a pigment cell and vertebrate type
ciliary opsin Ci-opsin1 [79], showing significant homology to vertebrate rhodopsins [80].
The retinal chromophore, Ci-opsin1, ocellus, and homeobox-containing transcription factors
are the connection to the evolution of complex vertebrate eyes.
Example 3: Placozoans

Placozoans are the simplest animals in the evolutionary tree of Metazoa. The expres-
sion of homeobox-containing proteins has been confirmed in Trichoplax adhaerens and other
placozoans [81–83]. T. adhaerens express genes encoding for proteins implicated in morpho-
genesis [84], innate immunity [85–90], and motility [91]. Moving and sensing are possible
without brain cells but not without specialized proteins. The ARVQVWFSNRRAKWRR
penetratin analog from the T. adhaerens ACH57174.1 Pax-3-like protein is different from
corresponding human analogs only in one or two conservative amino acid substitutions
(only V↔I or R↔K)! The TriPaxB penetratin RVVQVWFQNQRAKLKK from the Trichoplax
adhaerens protein Lim1 (UniProt entry B5LDT8) served as a query (named TriPaxB) for
extended penetratins in other simple organisms (see Table 2).

T. adhaerens has a high regeneration and rejuvenation potential, partially due to the
regulated expression of homeotic genes Not and Trox-2 [92]). The best-conserved regions
of corresponding proteins contain penetratin-like peptides AQVKVWFQNRRIKWRK
and KQVKIWFQNRRVKWKK. We used the bold font for residues from the T. adhaerens
peptides are identical to Drosophila pAntp penetratin residues.
Example 4: Poriferans

The Pax-6 protein XP_003387530.1 (or Uniprot entry A0A1X7UM72) from the embryo
of the sponge Amphimedon queenslandica is annotated as the homeobox domain-containing
protein (by UniProt) and as paired box protein Pax-6-like (by NCBI genome annotation
data). In both databases, the DNA binding is predicted as the transcription factor activity.
The PaxB penetratin from T. adhaerens with the sequence ARVQVWFSNRRAKWRK is
similar to the SRVQVWFQNRRAKWRK peptide in the sponge’s Pax-6. Substituted residues
are in bold font and underlined.
Example 5: Amoeboid protist

The amoeboid holozoan Capsaspora owczarzaki is one close unicellular relative of ani-
mals [84]. Authors labeled as Co_5 the homeobox domain from the protein A0A0D2VSA1.
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It contains six arginines within the penetratin sequence RVIRIWFQNRRAKQRR. Other
natural penetratins have a high number of Arg and Lys residues (Table 1). These sequences
are still underexplored candidates for transporting bioactive cargo into the cell.

3.2. The Penetratin-like Cryptides from Other Kingdoms

The search among ascomycetes (fungi) also resulted in diverse penetratins. One hit
with the Pax-6 annotation is for the Ceratocystis platani fungus causing disease on sycamore
trees. It is the Paired box protein Pax-6 (KKF93291.1) with 639 residues. The penetratin
analog from its homeobox region has a 56% identity to pAntp penetratin (see Table 1).

Another regulatory protein PHO2 (A0A1E5RMZ3) with the homeobox domain from
Hanseniaspora osmophila (wine-making yeast) has an associated penetratin analog, which
is similar in its sequence TQVKIWFQNRRMKWKR to the pAntp. The budding yeast
penetratin analog KNVRIWFQNRRAKVRKKGKL extended at its C-terminal (underlined)
from the PHO2 (Q6FKZ3) protein has a high positive charge and unknown abilities. Its CPP
probability prediction by the MLCPP server is similar (0.93) to pAntp (0.98). Hemolytic
activity prediction by the HAPPENN server is a strikingly low probability of 0.018 com-
pared to pAntp’s 0.936. Thus, exploring natural penetratin analogs from all available
sources can be the first stepping stone toward discovering nontoxic CPP candidates with a
peptide backbone.

Two representative bacterial and one archeon species are included in Table 1 because
at least one homeobox domain-containing motif with penetratin analog is found among
their expressed proteins. The similarity is modest or low to pAntp. Archeon penetratin
analog RQVSVWFTNARKRIWL is only 38% identical to pAntp penetratin (residues with
bold font are 6 out of 16 residues), raising doubts about similar functions.

Some viral proteins contain remarkably efficient CPP, such as the TAT peptide from
HIV [93,94], which has as promising drug-delivery therapeutic potential as penetratin [95].
The TAT peptide sequence GRKKRRQRRRPPQ is, however, easily cleaved by furin. Thus,
CPP is not stable enough in vivo for efficient cargo delivery [96]. Hemmati et al. [97]
identified 310 decapeptides with predicted CPP activity in the proteome of severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2). In the surface glycoprotein S (spike
protein) alone, there are 24 CPP candidates, some rich in Arg residues. Nucleocapsid
protein N is even richer in CPP candidates (54). Arginines are required firstly for binding
to negatively charged groups of viral nucleic acid [98] and secondly for penetrating the
eukaryotic cell membrane.

The superkingdom of viruses includes the class of giant viruses. The genomes with ac-
cession numbers: NC_014649, NC_020104, and NC_016072 contain homeobox proteins. The
dSPRINT server [47] examines whether the protein domain query binds DNA, RNA, small
molecules, ions, or peptides and assigns corresponding interaction probabilities to each interac-
tion type for each residue. Figure 1 illustrates these probabilities for predicted CPP peptide and
penetratin analog present within the homeodomain-containing protein QGR53678.1 of a giant
Moumouvirus maliensis virus. The corresponding residues Arg-44 to Arg-112 with underlined
Table 1 peptides for that virus are: RKNGVKMTKV(10)KKIRRSRLFT(20)TTQLQILEET(30)
YKTNKYISLN(40)EKINLSKNFG(50)VTVKQISIWF(60)ANRRAYDAR,where we highlighted
with a bold font those residues for which DNA-binding probability is higher than 0.95. The
probability of binding ligands other than DNA is less than 0.05 for all residues within both
predicted homeodomain motifs. Thus, three C-terminal residues from the predicted CPP pep-
tide (underlined N-terminal 17 residues) and ten residues from the predicted penetratin analog
(underlined C-terminal 16 residues) are strongly predicted DNA-binding residues (Figure 1).
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Figure 1. The dSPRINT server [47] prediction for DNA-binding probabilities (vertical axis, blue
lines profile) of residues from a homeodomain found in a giant virus Moumouvirus maliensis protein
QGR53678.1. Probabilities are negligible for binding residues to RNA, ions, other peptides, and small
molecules (other colors for profile lines). See the main text for details on the Pfam domains PF05920
and PF00046. We added the query sequence below the graph produced by the dSPRINT server. The
underlined residues are the predicted CPP segment (N-terminal) and the penetratin-like peptide
(C-terminal).

There are many predicted CPP cryptides from giant viruses other than penetratin
analogs. For example, the MLCPP and C2Pred servers predict with a high probability (0.94
and 0.96) that the RKNGVKMTKVKKIRRSR sequence (see Figure 1) should have the CPP
activity. We can adopt a tentative name 9RK17 for that CPP cryptide, which is hidden
in a putative homeodomain from the GenBank entry QGR53678.1 at a different sequence
location from the penetratin analog KQISIWFANRRAYDARK. We doubt that all CPP
cryptides from giant viruses (such as 9RK17) have been examined in experiments for their
cargo-transporting efficiency inside eukaryotic cells. For instance, the 21 amino acid long
cryptide ALHARRRRARQRLCQHRVSIK is present in the hypothetical Pandoravirus dulcis
(giant virus) protein YP_008318537.1. The predicted CPP probability is 0.95 (MLCPP server)
and 0.90 (C2Pred server). A longer cryptide MTWRRSCWRLLRQRRRQPRSPKMMRKR
is the N-terminal of hypothetical peptide YP_001425938.1 encoded by the Paramecium
bursaria Chlorella virus FR483 genome (also a giant virus). The peptide has associated CPP
probability predictions of 0.94 and 0.99 by MLCPP and C2Pred server.

Some bacteria and viruses tolerate the differences in the last four residues of natural
penetratin analogs (such as W14 to D14 substitution). These residues are less critical for
interaction with DNA. Examples of W14 to D14 substitution in penetratin-like peptides
from the homeobox domain are found in human sequences, too (see Homeobox even-
skipped homolog proteins 1 and 2 with the UniProt links P49640 and Q03828).

The penetratin’s biological role in a homeodomain is to serve as a major aggrega-
tion site for DNA-binding residues. The same is likely to hold for all other presented
Table 1 sequences. The dSPRINT server finds the same GO: 0003677 molecular function
by which a gene product interacts selectively and non-covalently with DNA for these
sequences. For corresponding proteins, the dSPRINT server finds PF00046_Homeodomain,
PF05920_Homeobox_KN motif, or both motifs overlapping the penetratin analog. One
example is the N-terminal part with 60 residues of the Euryarchaeota archaeon RYE98021.1
protein. For residues 11–40, the prediction for the PF05920_Homeobox_KN motif is associ-
ated with the E-value of 3.2 × 10−10. For residues 25–54, the prediction with the E-value
of 1.8 × 10−8 is for the PF00046_Homeodomain motif. The hexadecapeptide sequence
RQVSVWFTNARKRIWL extends from Arg-18 to Leu-33, thus forming a part of both home-
obox motifs. Extended sequence RQVSVWFTNARKRIWLPLRQKQARMRNKRAK, with
residues 18–48, has a higher CPP probability score of 0.93. Therefore, CPP, DNA-binding
ability, and the transcription factor DNA-binding function are frequently present in the
same protein domains.
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The UniProt database of all known and predicted proteins contains 85,650 sequences
from 1394 species with the PF00046_Homeodomain annotation. While Table 1 is far from
comprehensive, it still reports several additional species from Megaviricetes compared to
the Brandes and Linial data analysis in 2019 [99]. It is, of course, due to the fast progress
in genetic sequencing. An astonishing universality of that Pfam family motif in Animalia,
Fungi, Protista, Eubacteria, Archaea, and Viruses indicates its conservation across almost
all of life’s superkingdoms and kingdoms.

The PF05920_Homeobox-KN Pfam domain (Figure 1, thick orange line below the
x-axis) is also universal in all kingdoms of life. It belongs to the conserved homeobox
transcription factor KN domain from TALE, KNOX, and MEIS genes [100]. Current Pfam
taxonomy does not mention the presence of the PF05920_Homeobox-KN motif in bacteria
and viruses.

A caveat to keep in mind for penetratin-like peptides from bacteria, archaea, and
viruses is the hypothetical or predicted nature of some proteins containing them. Low
annotation scores in public databases may lead to failed verification for claimed associ-
ated species.

3.3. The Translocation Function of Homeobox Proteins, Homeobox, Penetratin, and
Penetratin-like Peptides

Homeodomain proteins fulfill many biological functions for which other segments in
these proteins are also crucial. The unconventional transport mechanism for these proteins
is an active research area [101]. Direct translocation of an identical protein in and out
from eukaryotic cells is complex because eukaryotic plasma membranes are asymmetric.
Their internal lipid layer has a different lipid composition from the external layer. Neutral
polar lipids, such as phosphatidylcholine, prevail among phospholipids oriented (with
their head groups) toward the cell exterior. Negatively charged phospholipids, such as
phosphatidylserine, are plentiful only among polar lipids in contact with the cell cyto-
plasm. Moreover, fatty acids’ unsaturation in the cytoplasmic plasma membrane leaflet is
about twofold higher [102]. In the case of engrailed-2 homeoprotein transfer, the anionic
phospholipid phosphatidylinositol-4,5-biphosphate is also involved [103]. It is a minor
component of the plasma membrane inner leaflet [104] and even less frequent in the outer
leaflet. Still, it is essential as a gatekeeper for cell signaling and molecular traffic among
cells [105]. Moreover, cell surface carbohydrates are probably involved in the cellular
uptake of homeoproteins from the external environment [106]. Therefore, the ability of
such proteins for unconventional bidirectional transfer across the plasma membrane of
some eukaryotic cells is likely to rely on distinct mechanisms for outside-directed and
inside-directed transport.

Distinct mechanisms imply the existence of several dedicated protein motifs for tar-
geting the plasma membrane from the cytoplasm and the cell outside. Specifically, the
bidirectional transfer function must be in-built inside an extended penetratin-like region
for each homeodomain segment. Dupont et al. [107] examined whether the penetratin
extended in its N-terminal to encompass the turn region between the second and third helix
is enough to ensure the peptide transport in and out of cells. Dupont et al. [107] named it
the SecPen peptide QSLAQELGLNERQIKIWFQNRRMKWKK, where the Sec peptide is
underlined, and the penetratin domain is highlighted with bold font.

The QSLAQELGLNE Sec peptide is a cryptide in engrailed-2 proteins Q05917
(HME2_CHICK), P52730 (HME2B_XENLA), and P09015 (HME2A_DANRE), to mention
only the reviewed Swiss-Prot proteins containing that peptide. The human analog of the
QSLAQELGLNE peptide contains glycine to serine substitution. Sec and Pen allow for
bidirectional membrane crossing [106]. These and other authors verified the validity of the
signaling homeoproteins concept with far-reaching implications [108].

Homeoproteins are rich in multifunctional cryptides. For example, let us examine the
UNIPROT Q05917 entry and structurally solved PDB 3ZOB sequence 3ZOB_1 with three
α-helices [109] for chicken engrailed 2 homeoprotein. The GAG (glycosaminoglycans at



Antibiotics 2022, 11, 1196 13 of 59

the cell surface)-binding sequence P(186)RSRKPKKKNPNKEDKRPR(204) is located just
before chicken engrailed 2 homeodomain (residues 200–259). That highly flexible protein
region contains two CW BBXB quadruplets (Cardin-Weintraub motifs [110]) and one KKK
triplet, all described as glycosaminoglycan or heparan sulfate binding motifs [111]. The
bold font for the residues at the N-terminal highlight the motif, which is part of the putative
nuclear localization signal (see Figure 1B from reference [111]). It is also a DNA-binding
motif, which has a significant probability of penetrating cells (0.88, according to the MLCPP
server). Thus, the multiplicity of functions for crucial motifs from engrailed proteins is
more a rule than an exception.

Among other examples, the N-terminal hexapeptide QRRSRT for the Pax3 and Pax7
homeodomain is also a good starting point for the design of multifunctional peptides. We
can ask what would be predicted activities for the sequence tandem peptide QRRSRT-
GQRRSRT with inserted Gly residue as a middle flexible linker. That tridecapeptide is
expected to be nontoxic by the Raghava ToxinPred server [38], highly cell-penetrating (the
MLCPP server), and strongly DNA-binding (binding probability higher than 0.7 for all
arginines according to the DP-BIND server [36]). However, predictions by the CAMPR3
and AmpGram algorithms exclude its antimicrobial function. When we fuse the QRRSRT-
GQRRSRT sequence with some antimicrobial peptide such as IKKIVSKIKKLLK (L-K6V1-
temporin-1CEb) [112], it can gain multifunctional abilities without undesirable hemolytic
and toxic effects. For instance, the hybrid peptide with the sequence KKLFKKILKYL-GG-
QRRSRTGQRRSRT (BP100-CPP conjugate) is expected to have all six considered functions
and lesser hemolytic activity compared to BP100. The same idea should work for N-terminal
decapeptide GLNRRRKKRT from the homeobox domain of the pou2f1 transcription fac-
tor (Xenopus laevis African clawed frog, Uniprot entry P16143). The sequence tandem
GLNRRRKKRTGLNRRRKKRT did not need middle Gly insertion, its cell-penetrating
probability score of 0.98 is almost maximal, and all residues 3 to 19 of that 20 residues long
peptide have DNA-binding probability higher than 0.8. Moreover, the tandem peptide
may have antimicrobial activity against intracellular pathogens. The CAMPR3 server SVM
module result is 0.925 probability for the AMP activity, while the HAPPEN server predicts
a negligible probability of 0.03 for the hemolytic activity.

The translocation function is the best researched for the homeobox protein engrailed-2
from chicken, which is 99% identical to human En2 [109,111]. However, for chick and
human engrailed-2 protein, the hexadecapeptide analog of Drosophila antennapedia pen-
etratin is different in underlined residues: SQIKIWFQNKRAKIKK (only one arginine
instead of three). A decreased number of arginines opens the question about the impor-
tance of human and chick penetratin motifs for membrane translocation of corresponding
homeodomain and intact engrailed proteins.

The previous paragraphs indicated that the translocation function might be mediated
by protein motifs outside the homeobox domain acting in concert with the recognition helix
from that domain. Suppose a minimal number of six consecutive arginines is needed for
cell penetration [113]. In that case, the question is whether these residues are close in the
3D structure but not so close in sequence. Hence, we can speculate that CPP activity can be
preserved after the number of arginines drops to the single one within the penetratin-like
peptides during biological evolution with a compensatory increase in strategically placed
arginines outside penetratin.

Firstly, it is easy to find cases when more arginines are in the homeodomain regions
preceding the penetratin segment. Secondly, space separation may exist among nega-
tive and positive charges. Anionic residues (D and E) may be located only at the one
homeodomain surface. The residues with positive charges dominate at the opposite home-
odomain surface where the penetratin motif is situated. The spatial separation of anionic
from cationic charges persists for the engrailed 2 protein when one examines only two last
homeodomain helices with a turn between them. Thus, an electrostatic dipole moment
and the corresponding electric field are more substantial for the whole homeodomain and
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the 2nd-helix-turn-3rd-helix compared to penetratin peptides, which are mostly devoid of
negative charges.

We have recently published the observation that strong 3D electrostatic and 3D-
hydrophobic moments are instrumental for better interaction between some flexible cationic
peptides with helix-turn-helix secondary structures and membranes containing polar lipids
with anionic head groups [114]. The calculated hydrophobic moment for an ideal α-helix
rod (the 2D moment) is not relevant for the peptide–membrane interaction of highly
plastic peptides such as penetratin [115]. Furthermore, a high degree of peptide helicity or
amphipathicity is not required for penetratin internalization [116].

The helix-turn-helix motif of engrailed proteins is the ultrafast independently folding
domain [117]. An additional internalization advantage for intact homeodomain is that its
20 times lower extracellular concentration of 5 × 10−8 M is enough to achieve substantial
accumulation in the cell nuclei [118]. In contrast, micromolar penetratin concentrations
must be added for efficient internalization [49].

Three arginines from the pAntp penetratin RQIKIWFQNRRMKWKK are not the
only regulators of its translocation process. The substitution of two tryptophans with
similarly bulky aromatic and hydrophobic phenylalanine residues inhibits penetration
internalization [119]. The role of two tryptophans has been examined in the tryptophan
fluorescence study after the first (Trp-6) or second Trp (Trp-14) has been substituted with
the Phe residue [49]. The first Trp from the wild-type penetratin sequence motif WF
inserts more deeply into the lipid bilayer than the second Trp. The WF motif is also better
conserved across biological kingdoms (Table 1). Penetratin membrane incorporation is
more profound in the presence of anionic polar lipids, such as phosphatidylserine.

To study the cell penetration mechanism, direct interaction with specific plasma
membrane phospholipids is as essential for penetratin-like peptides as their binding to
glycosaminoglycans at the cell surface. The mechanism and target molecules may differ
among penetratin analogs, homeoboxes, and homeoproteins. We previously mentioned the
involvement of phosphatidylinositol-4,5-biphosphate [103], a key lipid signaling molecule
important for endocytosis, exocytosis, membrane fusion, and myriad other biological
activities. In addition to cell-surface GAGs and heparan sulfate, polysialic acid is also the
surface receptor for pAntp Drosophila homeobox peptide [118].

Lysines are less critical for penetratin uptake compared to arginines. When all lysines
are replaced with arginines, a designed analog sequence RQIRIWFQNRRMRWRR-NH2
exhibits almost 50% better internalization ability than wild-type penetratin [55]. Wild-type
penetratin possesses moderate antimicrobial activity [50]. In comparison, Bahnsen et al. [55]
found that the analog with seven arginines has about four times stronger antimicrobial
activity against E. coli. However, the analog exhibits eight times greater toxicity to human
cells. These activity changes are not predicted by the servers we used (compare results
for pAntp peptide 1 from Table 2 and PenArg peptide 1 from Table 3). On the other hand,
predictions and experimental validations agree that amphipathic antimicrobial peptides
with high lysine content can have negligible hemolytic activity and low toxicity. One
example is L-K6V1-Temporin-1CEb [112] (Table 3, peptide 40).

Electrostatic interactions are important for translocation into cells [120]. These interac-
tions have been tuned during biological evolution by clustering positive charges near the
C-terminal of penetratin-like peptides and by retaining lone arginine at the first or second
N-terminal position in animals. The lengthwise charge asymmetry is accompanied by the
hydrophobic interactions of peptide middle leading to the bend conformation parallel to
the membrane surface.

Detailed molecular dynamics simulations and free energy calculations uncovered the
role of Trp-6 interaction with Arg-1 and Arg-10 at the membrane surface [121]. In observed
Trp-Arg stacking, the indol ring of W is positioned almost parallel to the guanidinium
group of R. Trp-6 is more involved than Trp-14—the observation of the importance of WR
cation–π interactions [122], which is in accordance with the better preservation of Trp−6
in penetratin-like peptides. We can safely assume that all of the presented penetratin-
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like sequences from Table 1 (and many more not present in that table) are membrane-
active peptides. The membrane-activity terminology implies that peptide conformational
plasticity and membrane curvature adaptation occurs after mostly disordered peptides from
an aqueous solution reach the membrane surface [53,121,123,124]. The structural plasticity
of penetratin (from random coil to beta-sheet and α-helix in different environments) is
relatively high among other cell-penetrating peptides [125]. It contributes to its functional
CPP versatility through clathrin-mediated endocytosis, caveolae-mediated endocytosis,
macropinocytosis, and direct translocation by forming inverted micelles [53,126,127].

Clathrin-mediated endocytosis is an active transport process requiring GTP hydrol-
ysis [128]. On the other hand, direct translocation is an energy-independent uptake. It
is a self-initiated spontaneous process producing only transient perturbation of plasma
membrane integrity [116]. Alves et al. [53] proclaimed: “penetratin usurps endocytotic cell
processes but can also translocate into the cells.” Translocation and uptake rates depend
on CPP sequence and concentration, cell type, buffer, temperature, cargo (if any), and
other experimental variables [56]. With such versatility, it is no wonder that penetratin
can induce phase separation, de-packing of membrane lipids, negative curvature, and ag-
gregation of lipid vesicles [123,129]. These macroscopic effects of penetratin are enhanced
for cases of higher membrane fluidity and the presence of anionic phospholipids at the
membrane surface.

One biological role of penetratin is the contribution to driving the translocation of its
parent homeoprotein, but the translocation of intact homeoprotein is much more efficient
(<1 nM [106]) in comparison with the penetratin uptake. Homeoproteins are natural
cargoes for at least some penetratin-like peptides. Moreover, homeoproteins are active
cargoes with non-penetratin protein regions participating in the synergetic amplification of
specific translocations. The biological roles have not been examined for most of the natural
penetratin-like peptides. That did not prevent widespread penetratin usage in life sciences
and therapeutic applications.

3.4. Penetratin Sequence Optimization and Possible Applications

Penetratin sequence optimization by Kauffman et al. [56] resulted in considerably
improved direct translocation (with different cargoes) by the RKKRWFRRRRPKWKK
analog with six arginines, five lysines, and two tryptophans. Similarly designed penetratin
analogs may be helpful delivery vehicles for biotechnological applications and systemic
therapeutics (a fast-growing market). Older results on the vectorization strategies with
penetratin are gathered in the book by Dupont et al. [130].

The mechanisms of CPP penetration and CPP-cargo transport across the blood–brain
barrier are discussed this year by Zorko and Langel [131]. Penetratin is usually linked with
a drug, protein, or nucleic acid cargo at its N-terminal. Škrlj et al. [132] used penetratin as
the linker peptide connecting two antibody fragments specific for the pathological form of
the prion protein. That vectorization strategy enabled efficient delivery across the blood–
brain barrier. Liposomal formulation using penetratin molecules is an effective treatment
strategy for delivering a therapeutic gene to the brain. The aim is, for instance, to reverse
Alzheimer’s disease pathophysiology [133]. Non-viral gene delivery for all therapeutic
goals has advantages when penetratin or similar peptides are used as nontoxic vehicles
that do not provoke an immune response.

In the proof of principle experiments, Liu et al. [134] demonstrated how penetratin-
coated nanoparticles can reach the eye fundus, thus eliminating the need for invasive eye
injection during the gene therapy treatment of diseases such as diabetic retinopathy and
age-related macular degeneration. Needle-in-the-eye application is naturally associated
with low patient compliance and increased infection risk.

The penetratin (PEN) and other cell-penetrating peptides have a promising potential
for drug targeting and oncological pharmacotherapy [57,58]. Combating drug-resistant
cancers by targeted delivery of drugs should facilitate the development of effective person-
alized therapies. The designed GEM-PEN conjugate improved the intracellular delivery
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and anticancer activity of gemcitabine (GEM) [135]. Anticancer peptides can also be co-
valently connected to penetratin. Kanovsky et al. [136] synthesized three p53 peptides
PPLSQETFS, PPLSQETFSDLWKLL, and ETFSDLWKLL in peptide linkage to reversed
penetratin analog sequence KKWKMRRNQFWVKVQRG. The authors did not explain their
rationale for reversing the Antennapedia penetratin sequence GRQIKIWFQNRRMKWKK
(in the bold font) or replacing isoleucines with valines with added terminal glycine. It is
connected to the previous observation about the absence of chiral receptor requirement for
the transduction ability of penetratin and its reversed analog (see the publication [137] cited
by Kanovsky et al. [136]). The three p53 peptides are amino-terminal parts of that tumor
suppressor protein, which can interact with oncogene-encoded ubiquitin-protein ligase
mdm-2 (MDM2 [Q00987]), targeting p53 for degradation and accelerated proliferation of
cancer cells.

Kanovsky et al. [136] reasoned that the blockage of p53-mdm-2 interactions could
inhibit cell-transforming oncogenic events by competition of the peptides mentioned above
to p53 for mdm-2 binding. Thus, these three peptides should be able to act as anticancer if
they can reach intracellular mdm-2 target proteins. The attachment of reverse penetratin
KKWKMRRNQFWVKVQRG sequence to the carboxy-terminal end of each peptide had a
dual role—to enable transport of the peptides across the plasma membrane and to stabilize
the α-helical conformation of each peptide for maximal interaction with mdm-2 proteins.
NMR experiments subsequently confirmed the helical conformation [138] (see the PDB
entry 1Q2F). Increased helical content of the peptide was not achieved when the penetratin
leader sequence was attached to the amino-terminal end of the PPLSQETFSDLWKLL
sequence. It resulted in considerably lower helical probabilities of reverse penetratin
carboxy-terminal part (with added Gly residue) and bioactive peptide amino-terminal
segment containing the Pro pair. Therefore, the N-terminal or C-terminal conjugation of
a bioactive peptide to CPP is not arbitrary. It should be guided by the maximization of
the interaction with internal targets of chimeric peptides. Chosen peptide conjugates by
Kanovsky et al. [136] were highly cytotoxic on various tumor cells and did not affect normal
cells in culture.

Interestingly, amino-terminal p53 peptides induce cell death in malignant cells without
inducing apoptosis and independently of p53 protein activation, arguing for a general
antiproliferative effect on these cells. The software tools ACPred and mACPred failed to
predict the high probability of anticancer function for reverse VV–penetratin hybrid with
N-terminal p53 peptide PPLSQETFS (see Table 2, peptide 11). Hence, the p53 peptide
conjugated to penetratin was erroneously classified as noncancer (NACP).

Selivanova et al. [139] examined the option for C-terminal p53 peptides conjugated
to penetratin. The importance of the p53 gene stems from observations that more than
half of human tumors have mutations in that gene. Transcribed protein has several DNA
binding domains. The G(361)SRAHSSHLKSKKGQSTSRHKK(382) sequence is the most
highly charged cationic domain near the C-terminal (see P04637 UniProt entry), which
regulates DNA binding. Selivanova et al. [139] investigated whether the C-terminal peptide
can restore the growth suppressor function of mutant p53 proteins. The authors used
the peptide GSRAHSSHLKSKKGQSTSRHKKWKMRRNQFWVKVQRG (named fusion
peptide 46; see peptide 19 predictions in Table 2). By bold font and underlining, we
highlighted the C-terminal p53 peptide and reversed penetratin to emphasize that CPP
is ligated to the carboxy-terminal end of the bioactive peptide without its KK pair at
the amino-terminal end because the KK pair is already present at the C-terminal of the
fusion peptide.

Subekti and Kamagata [140] proposed the role of the flexible and disordered C-
terminal p53 domain. It enables p53 to land on and twin around DNA, forming the
encounter complex at lower salt concentrations. The flexibility facilitated the protein jump-
ing along DNA at higher salt concentrations. Selivanova et al. [139] proved that the growth
suppressor function of mutant p53 could be restored by an excess of the fusion peptide 46.
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The authors proposed that the peptide can displace the C-terminal domain from its binding
site to the core p53 domain.

Restoring the ability to bind DNA worked for Ala-143, His-175, Trp-248, Ser-249,
His-273, and Lys-280 mutant forms of p53 [141]. Activated p53 induced apoptosis in Ew36
and BL41 Burkitt lymphoma cells, SW480 colon carcinoma cells, and breast cancer cells
MCF-7, MDA-MB-468, and MDA-MB-231, despite mutant p53 forms being present in these
cells [141]. Normal breast and colon cell lines were not affected. The corresponding peptide
19 from Table 2 has predicted DNA-binding, cell-penetrating, antimicrobial, antiviral,
and antifungal activity combined with toxicity absence by some of the algorithms we
used. However, peptide 19 is associated with modest probabilities of 0.61 and 0.65 for
anticancer activity as calculated by the ACPred [26] and mACPpred [27] servers. Of course,
experimental results should prevail in our minds over any theoretical predictions. We
can anticipate the therapeutic benefits of anticancer-peptide-CPP conjugates when their
pharmacokinetic parameters are improved for medical applications.

3.5. Multifunctional or Hybrid Penetratin-like Peptides

Table 2 results belong to three peptide classes. The first class contains natural sequences
1 (pAntp), and 3 (TriPaxB). Listed examples of longer natural peptides 4–6 with additional
four residues at each peptide terminal contain the TriPaxB penetratin and belong to the
second class. The first sequence (peptide 4 in Table 2) is from an uncharacterized cnidarian
protein with 445 AA from medusa Clytia hemisphaerica (jellyfish). The following peptide
(peptide 5) is found in the T2M9B9 UniProt entry for an unreviewed protein named
LIM homeobox transcription factor 1-alpha (LMX1A). The protein LMX1A is from the
fresh-water polyp Hydra vulgaris, claimed to be immortal [142,143]. The sequence for
peptide 6 (A0A183IGD8) is from the parasitic stomach-dwelling worm of American martens
Soboliphyme baturini and Loa loa eye worm. These three natural sequences were submitted
to the dSPRINT server http://protdomain.princeton.edu/dsprint (accessed on 7 August
2022) [47]. They have a common PF00046_Homeodomain motif for the first 20 residues
and the GO: 0003677 molecular functions by which a gene product interacts selectively
and non-covalently with DNA. Rationally designed peptides 2 and 7–22 are the third
class. Peptide 2 is the VV-penetratin sequence RQVKVWFQNRRMKWKK. It is present in
the predicted homeobox proteins of some birds and fishes (UniProt entries A0A7K7IKL9,
A0A7K9GUV0, and A0A1A8LZ63). The designed sequences validated in experiments have
the “/E” extension in their abbreviated name. In silico design by this author is associated
with the “/DJ” extension.

Regarding possible penetratin involvement in antimicrobial defense, Drosophila
pAntp penetratin RQIKIWFQNRRMKWKK-NH2 is fungicidal for the clinical isolates
of Cryptococcus neoformans [51]. It exhibits moderate antibacterial activity against Escherichia
coli and Staphylococcus aureus with MIC values from 32 to 64 µM [55]. Some of penetratin’s
natural analogs from Table 1 may have stronger antimicrobial potency or better therapeutic
index. Our goal was to find or design multifunctional peptides with low predicted toxicity
to healthy human cells. All Table 2 peptides have predicted cell-penetrating and DNA-
binding activity combined with a considerably lower prediction for the hemolytic activity
compared to pAntp penetratin. In addition, most Table 2 peptides have predicted antimi-
crobial, anticancer, antiviral, antifungal, and anti-inflammatory activity. For sequences 4–6,
11, and 14–15, the ACPred server does not predict anticancer activity. Some of them have
been designed and validated as ACP (peptide 11).

It is not easy to achieve strongly predicted antifungal (probability higher than 0.7)
along with other activities and low toxicity to red blood cells. At the end of Chapter
2, we explain our reasons for choosing the higher limit of 0.83 for hemolytic activity
probability, which can still ensure good selectivity. The peptides 2–11, 13–18, and 20–22
from Table 2 satisfy that criterion. Three of them are constructs involving parts of the
pexiganan antibiotic and TriPaxB or VV-penetratin (peptides 7–9). Peptide 10 is fused
TriPaxB with the antifungal sequence BP16 studied by Badosa et al. [144]. Peptide 13 is

http://protdomain.princeton.edu/dsprint


Antibiotics 2022, 11, 1196 18 of 59

reversed VV-penetratin [136] fused to the anticancer TPR peptide [145]. The Gly residue
is a flexible linker between two bioactive peptides in both cases. The N-terminal part of
peptide 15 is reversed amoebae penetratin (peptide 14 from Table 2), which we singled out
in Table 1 as a natural penetratin-like peptide with the highest number of arginines (six).
Short C-terminal sequence CGIKRTK is similar to tumor-homing peptide tLyp-1 with the
sequence CGNKRTR [146]. The tLyp-1 and CGIKRTK are nontoxic but also not associated
with other predicted activities except cell penetration (see peptide 1 from Table 5).

The optimization for better anti-inflammatory activity led to the best multifunctional
peptides 20 (with underlined activity scores) and 21 from Table 2. They consist of a reverse
penetratin analog [56] (see peptides 16 and 17) with two amino acid substitutions (A8 and
I15) and analogs to the tumor-homing peptide [146]. The predicted toxicity to red blood
cells is very low (0.01) for peptides 20 and 21. Another advantage of these peptides is their
short length (22 residues). Their overall rank among all 176 sequences from Tables 2–5 is
6th and 22nd. Peptide 21 is an example of when increasing the number of substitutions
to increase the anti-inflammatory activity impairs other functionalities. The peptide 22 is
an analog of reversed optimized penetratin [56] (see Chapter 4 for details of its design).
Its overall rank is 31st (Table 6). Still, its short length (18 residues) and predicted lack
of hemolytic activity and toxicity argue for experimental validation of cell-penetrating,
antibacterial, anticancer, and antiviral activity.

The tentative conclusions from Table 2 are the following. Searching through natural
cryptides from biological databases is always a promising initial approach. Using the
rational design may be more successful in widening the activity spectrum of bioactive-CPP
conjugates. In vitro and in vivo tests can confirm whether some of Table 2 peptides remain
viable candidates for drug development. For a hybrid pAntp–TPR anticancer sequence
(peptide 12), predicted hemolytic activity slightly decreases in comparison with pAntp
alone. The observed toxicity of peptide 12 to normal cell lines is significantly smaller than
its toxicity to cancer cell lines [145].

If confirmed, the antifungal activity might be the most interesting for several reasons.
Firstly, nature’s design for penetratins gives these peptides the specialized ability to easily
pass through the eukaryotic cell membrane and for DNA binding. Secondly, there are
precious few drugs toxic to fungal cells causing different diseases but are nontoxic to human
cells. One example is the urgent need for compounds inhibiting the growth of C. neoformans
yeasts in patients who had organ transplantation and are immunocompromised. Thirdly,
the conjugated antifungal–CPP hybrid peptide may gain additional activities, as predicted
in Table 2 (see peptide 10). The rational design option for creating antifungal hybrid pep-
tides targeting intracellular molecules is to conjugate penetratin or some penetratin analog
with known antifungal peptides such as LKLFKKILKVL or KKLFKKILKKL [144]. They
are active against pathogenic fungi Fusarium oxysporum. The probability for antifungal
activity increased from 0.22 for the TriPaxB penetratin sequence RVVQVWFQNQRAKLKK
(see Table 2, peptide 3) to 0.54 or higher for the constructs RVVQVWFQNQRAKLKK-G-
LKLFKKILKVL or RVVQVWFQNQRAKLKK-G-KKLFKKILKKL (see Table 2, peptide 10
for the second construct predictions). The sequence should be submitted to other predic-
tive algorithms (besides iAMPpred [31] and AntiFungal [32]) for serious consideration of
experimental confirmations.

Confusingly, a dedicated server for the classification of peptides according to predicted
antifungal activity—the http://webs.iiitd.edu.in/raghava/antifp (accessed on 7 August 2022)
server, predicts as non-antifungal the peptides LKLFKKILKVL (BP33; [144]), KKLFKKILKKL
(BP16; [144]), LKLFKKILKVLG, together with hybrid peptides LKLFKKILKVL-G-RVVQVWFQ
NQRAKLKK, RVVQVWFQNQRAKLKK-G-LKLFKKILKVL, and sequence 10 from Table 2.

http://webs.iiitd.edu.in/raghava/antifp
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Table 2. Hybrid penetratin-like peptides with predicted DNA binding, CPP, antimicrobial, anticancer, antiviral, antifungal, anti-inflammatory, hemolytic, and
toxic activity.

No. Peptide/Gene/Origin * Extended TriPaxB or Reverse
Penetratin/Sequence Number *

DNA-
Bind. ** CPP $ Anti-

Microbial ‡
Anti-
Cancer $$

Anti-
Viral &

Anti-
Fungal
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7 PexNC-TriPaxB-I/DJ GIGK-RVVQVWFQNQRAKLKK-ILKK + 0.731/L 0.99/0.67 0.968/0.980 0.93/0.75/1.0 0.97/0.59 0.61/0.58 0.09/− −1.51

8 PexShort-TriPaxB-II
(PexT)/DJ

GIGKLKKAKKFGKKILKK-G-
RVVQVWFQNQRAKLKK + 0.792/L 1.0/0.98 0.995/0.951 0.98/0.76/0.52 1.0/0.61 0.64/0.58 0.13/− −1.17

9 PexNC-rev. VV-pen./DJ GIGK-G-KKWKMRRNQFWVKVQR-
ILKK + 0.849/H 1.0/0.58 0.919/0.982 1.0/0.65/0.95 0.94/0.93 0.55/0.67 0.26/− −1.17

10 TriPaxB–antifungal BP16
[144]/DJ

RVVQVWFQNQRAKLKK-G-
KKLFKKILKKL + 0.816/L 0.98/0.95 0.992/0.981 1.0/0.70/0.93 0.98/0.54 0.54/0.64 0.62/+ −1.46
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VV-pen. [136]/E
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KKWKMRRNQFWVKVQRG + 0.503/H 0.41/0.53 NACP/NACP 0.40/0.90/1.0 0.15/0.05 0.62/0.62 0.13/− −1.09

12 pAntp-TPR [145]/E RQIKIWFQNRRMKWKK-
KAYARIGNSYFK + 0.834/H 0.91/0.50 0.923/0.939 1.0/0.80/0.54 0.83/0.65 0.59/0.62 0.91/+ −1.09

13 Rev.-VV-pen.
[136]-TPR/DJ

KKWKMRRNQFWVKVQR-G-
KAYARIGNSYFK + 0.766/H 0.83/0.48 0.766/0.952 1.0/0.79/1.0 0.87/0.40 0.60/0.63 0.59/+ −1.13

14
Rev. amoeba (Filasterea)
pen. with added
N-term-Arg/DJ

RRQKARRNQFWIRIVRR + 0.958/H 1.0/0.46 0.110/0.984 0.01/0.27/0.73 0.44/0.71 0.59/0.62 0.07/− −0.58

15 Rev. R-am.pen.-tLyP-1
[146]/DJ

RRQKARRNQFWIRIVRR-
CGIKRTK + 0.962/H 0.98/0.51 0.259/0.984 0.78/0.91/0.93 0.88/0.43 0.68/0.62 0.02/− −0.88

16 Optimal penetratin
(o-pen P14 [56]/E RKKRWFRRRRPKWKK + 0.992/H 1.0/1.0 0.767/0.978 0.97/0.57/1.0 0.32/1.0 0.47/0.56 0.02/− −0.89
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18 Rev.opt.pen.
(r-o-p)-tLyP-1 [146]/DJ

KKWKPRRRRFWRKKR-
CGIKRTK + 0.987/H 0.94/1.0 0.854/0.979 1.0/0.82/0.59 0.71/0.96 0.65/0.68 0.006/− −1.30
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Table 2. Cont.
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RRQKARRNQFWIRIVRR + 0.958/H 1.0/0.46 0.110/0.984 0.01/0.27/0.73 0.44/0.71 0.59/0.62 0.07/− −0.58 

15 
Rev. R-am.pen.-tLyP-1 
[146]/DJ 

RRQKARRNQFWIRIVRR- 
CGIKRTK + 0.962/H 0.98/0.51 0.259/0.984 0.78/0.91/0.93 0.88/0.43 0.68/0.62 0.02/− −0.88 

Anti-Inflamm.
Activity §

Hemo-
lytic ¥

Toxicity/
Score †

19 Fusion peptide 46
[139]/E

GSRAHSSHLKSKKGQSTSRH-
KKWKMRRNQFWVKVQRG + 0.741/L 0.76/0.87 0.61/0.65 0.98/0.48/0.15 0.81/0.44 0.67/0.59 ND −0.89

20
Rev.opt.pen. (r-o-p
A8I15)-tLyP-1
[146]-analog1/DJ

KKWKPRRARFWRKKI-
CGIKRTK + 0.987/H 0.96/0.993 0.972/0.98 1.0/0.8183/0.77 0.89/0.922 0.6674/0.647/

1.397 0.007/− −1.39

21 Rev.opt.pen. A8I15—
tLyPA3-1-analog2/DJ

KKWKPRRARFWRKKI-
CGAKRTK + 0.985/H 0.97/0.99 0.943/0.981 1.0/0.78/0.27 0.86/0.96 0.66/0.66/

1.56083 0.006/− −1.22

22 Rev. optimized
penetratin analog/DJ GKRIGKKWKPRRRRFWRK + 0.991/H 1.0/1.0 0.944/0.979 1.0/0.96/0.95 0.59/1.0 0.61/0.61 0.003/− −1.26

* Highlighted peptides (bold name) with underlined activity scores are our selection for the designed peptides with the best overall score (see Table 6). All peptides are assumed to be
amidated at their C-terminal. Letter ‘E’ after peptide name means that the sequence has been synthesized and tested in experiments. DJ abbreviation means that according to our
knowledge, we were the first to find or design that peptide. Bold sequence segments have predicted or verified CPP activity. Underlined residues are optimal substitutions for increasing
anti-inflammatory activity or decreasing peptide toxicity. ** The results of DP-Bind server http://lcg.rit.albany.edu/dp-bind/ (accessed on 7 August 2022) by Hwang et al. [36] for
sequence-based prediction of DNA-binding residues in DNA-binding proteins. The “+” sign means that the server found several DNA-binding residues. $ The probability that the
peptide is cell-penetrating peptide (CPP) or non-CPP (NCPP) with the MLCPP server http://www.thegleelab.org/MLCPP/ [22]. Predicted high and low uptake efficiency is denoted
with, respectively, letters ‘H’ and ‘L’. ‡ Antimicrobial peptide probabilities with CAMPR3 Support Vector Machine algorithm of the server http://www.camp.bicnirrh.res.in/predict
(accessed on 7 August 2022) [24] and with AmpGram (http://biongram.biotech.uni.wroc.pl/AmpGram/ [25]. $$ The ACPred server (http://codes.bio/acpred/ [26] is used to classify
peptides as anticancer (ACP) or non-anticancer (NACP) with a given probability. The mACPred server (http://thegleelab.org/mACPpred/ [27] results for the probability of anticancer
activity are added after the ‘/’ symbol. & Results of peptide antiviral prediction with servers ENNAVIA (https://research.timmons.eu/ennavia [28], sequence length restricted
between 7 and 40 residues)/FIRM-AVP (https://msc-viz.emsl.pnnl.gov/AVPR/ (accessed on 7 August 2022) [29]/Meta-iAVP (http://codes.bio/meta-iavp/ (accessed on 7 August
2022) [30].
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Table 2. Hybrid penetratin-like peptides with predicted DNA binding, CPP, antimicrobial, anticancer, antiviral, antifungal, anti-inflammatory, hemolytic, and 
toxic activity. ⁋ 

No. Peptide/Gene/Origin * 
Extended TriPaxB or Reverse 
Penetratin/Sequence Number * 

DNA- 
Bind.** CPP $ Anti- 

Microbial ‡ 
Anti- 
Cancer $$ 

Anti- 
Viral & 

Anti- 
Fungal ⁋ 

Anti-Inflamm. 
Activity § 

Hemo- 
lytic ¥ 

Toxicity/
Score † 

1 
P02833/D. melanogaster 
penetratin/E 

RQIKIWFQNRRMKWKK 
/339–254/pAntp  

+ 0.998/H 0.97/0.42 0.812/0.985 1.0/0.70/0.77 0.28/0.95 0.57/0.68 0.94/+ −0.66 

2 Rev. VV-pen. [136]/E KKWKMRRNQFWVKVQR + 0.956/H 0.96/0.53 0.649/0.981 0.10/0.44/0.28 0.15/0.68 0.52/0.66 0.19/− −0.81 
3 TriPaxB penetratin RVVQVWFQNQRAKLKK + 0.807/L 0.74/0.42 0.036/0.971 0.00/0.40/0.01 0.22/0.21 0.52/0.61 0.02/− −1.42 

4 
A0A7M5V8Y3/N/A 
/Clytia hemisphaerica 

GLSVRVVQVWFQNQRAKLKKI
QKK/227–250 

+ 0.642/L 0.96/0.32 0.189/0.980 0.44/0.47/0.82 0.56/0.59 0.65/0.62 0.03/− −1.45 

5 
T2M9B9/UP &&/Hydra 
vulgaris 

GLSVRVVQVWFQNQRAKLKKL
HRK/227–250 and 108–131 

+ 0.761/L 0.93/0.37 0.065/0.983 0.66/0.46/0.97 0.58/0.45 0.66/0.61 0.03/− −1.16 

6 
A0A1S0TPC1/UP && 

/Loa loa 
NLSVRVVQVWFQNQRAKLKKI
QRK/118–141 

+ 0.715/L 0.91/0.29 0.049/0.769 0.21/0.57/1.0 0.28/0.59 0.67/0.63 0.04/− −1.47 

7 PexNC-TriPaxB-I/DJ 
GIGK-RVVQVWFQNQRAKLKK-
ILKK 

+ 0.731/L 0.99/0.67 0.968/0.980 0.93/0.75/1.0 0.97/0.59 0.61/0.58 0.09/− −1.51 

8 
PexShort-TriPaxB-II 
(PexT)/DJ 

GIGKLKKAKKFGKKILKK-G- 
RVVQVWFQNQRAKLKK 

+ 0.792/L 1.0/0.98 0.995/0.951 0.98/0.76/0.52 1.0/0.61 0.64/0.58 0.13/− −1.17 

9 PexNC-rev. VV-pen./DJ 
GIGK-G-
KKWKMRRNQFWVKVQR-ILKK 

+ 0.849/H 1.0/0.58 0.919/0.982 1.0/0.65/0.95 0.94/0.93 0.55/0.67 0.26/− −1.17 

10 
TriPaxB–antifungal BP16 
[144]/DJ 

VVQVWFQNQRAKLKK-G- 
KKLFKKILKKL 

+ 0.816/L 0.98/0.95 0.992/0.981 1.0/0.70/0.93 0.98/0.54 0.54/0.64 0.62/+ −1.46 

11 
Anti-cancer-I-Rev. VV-
pen. [136]/E 

PPLSQETFS- 
KKWKMRRNQFWVKVQRG 

+ 0.503/H 0.41/0.53 NACP/NACP 0.40/0.90/1.0 0.15/0.05 0.62/0.62 0.13/− −1.09 

12 pAntp-TPR [145]/E 
RQIKIWFQNRRMKWKK- 
KAYARIGNSYFK 

+ 0.834/H 0.91/0.50 0.923/0.939 1.0/0.80/0.54 0.83/0.65 0.59/0.62 0.91/+ −1.09 

13 
Rev.-VV-pen. [136]-
TPR/DJ 

KKWKMRRNQFWVKVQR-G- 
KAYARIGNSYFK 

+ 0.766/H 0.83/0.48 0.766/0.952 1.0/0.79/1.0 0.87/0.40 0.60/0.63 0.59/+ −1.13 

14 
Rev. amoeba (Filasterea) 
pen. with added N-term-
Arg/DJ  

RRQKARRNQFWIRIVRR + 0.958/H 1.0/0.46 0.110/0.984 0.01/0.27/0.73 0.44/0.71 0.59/0.62 0.07/− −0.58 

15 
Rev. R-am.pen.-tLyP-1 
[146]/DJ 

RRQKARRNQFWIRIVRR- 
CGIKRTK + 0.962/H 0.98/0.51 0.259/0.984 0.78/0.91/0.93 0.88/0.43 0.68/0.62 0.02/− −0.88 

Results of iAMPpred peptide antifungal prediction by Meher et al. [31] (http://cabgrid.res.in:8080/amppred/server.php, (accessed on 7 August 2022)) and Zhang et al.
[32] (https://www.chemoinfolab.com/antifungal/, (accessed on 7 August 2022)). § Results for the prediction of anti-inflammatory activity (Anti-inf.) by the AIPpred (first number;
http://www.thegleelab.org/AIPpred/ (accessed on 7 August 2022) [33], PreAIP (second number; http://kurata14.bio.kyutech.ac.jp/PreAIP/ (accessed on) [34] server, and the score
output of the AntiInflam server (http://metagenomics.iiserb.ac.in/antiinflam/ (accessed on 7 August 2022) [35] server when it predicts the anti-inflammatory activity. ¥ The probability
that the peptide has hemolytic activity by the HAPPENN server [40] https://research.timmons.eu/happenn (accessed on 7 ugust 2022). After the peptide name, we introduced the
|lcl|cTer term to obtain the prediction for the amidated C-terminal. Symbols ‘+’ and ‘−’ are used for peptide classification as hemolytic or not. † Toxicity prediction by the ToxinPred
server https://webs.iiitd.edu.in/raghava/toxinpred/ (accessed on 7 August 2022) [37–39]. We used batch submission for peptides [37]. The design module of that server was used
when we wished to optimize the peptide for decreased toxicity after several amino acid substitutions. && UP = Uncharacterized protein.

http://lcg.rit.albany.edu/dp-bind/
http://www.thegleelab.org/MLCPP/
http://www.camp.bicnirrh.res.in/predict
http://biongram.biotech.uni.wroc.pl/AmpGram/
http://codes.bio/acpred/
http://thegleelab.org/mACPpred/
https://research.timmons.eu/ennavia
https://msc-viz.emsl.pnnl.gov/AVPR/
http://codes.bio/meta-iavp/
http://cabgrid.res.in:8080/amppred/server.php
https://www.chemoinfolab.com/antifungal/
http://www.thegleelab.org/AIPpred/
http://kurata14.bio.kyutech.ac.jp/PreAIP/
http://metagenomics.iiserb.ac.in/antiinflam/
https://research.timmons.eu/happenn
https://webs.iiitd.edu.in/raghava/toxinpred/
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Table 3. CPP bioactive peptide conjugates for intracellular targets I. Activity probabilities.

No. Peptide or Parent Protein/
Gene/Origin/Reference *

CPP Constructs/Sequence
Number * CPP Anti-Microbial Anti-Cancer Anti-Viral Anti-Fungal Anti-Inflamm. Hemo-

lytic
Toxicity/
Score

1 PenArg (Bahnsen-2013 [55])/E RQIRIWFQNRRMRWRR 0.99/H 0.99/0.57 0.32/0.98 1.0/0.7/0.4 0.24/0.96 0.60/0.66 0.94 −1.12

2 DiR6WF OLQ14316.1/
S. microadriaticum

RRRRRRWFRRRRRRWFRKI
/603–621 DiR6WF 0.99/H 1.00/0.97 0.92/0.91 1.0/0.3/1.0 0.43/0.82 0.57/0.59 0.68 −0.97

3 WFR8 from CellPPD $ scan of
DiR6WF/DJ RRWFRRRRRR 0.99/H 1.00/0.99 0.95/0.98 0.9/0.6/0.9 0.42/ND 0.53/0.53 0.21 −0.92

4 Reverse WFR8 (R8FW)/DJ RRRRRRFWRR 0.99/H 1.00/0.89 0.95/0.98 0.9/0.4/0.9 0.42/ND 0.56/0.53 0.08 −0.93

5 Ribos.-hom.-pept. (RHP)-pAntp/
[54]/E

YKWYYRGAA-
RQIKIWFQNRRMKWKK 0.90/H 0.74/0.46 0.95/0.98 1.0/0.9/0.8 0.49/0.68 0.64/0.62 0.97 −0.63

6 HK2-WFR8 [147]/DJ MIASHLLAYFFTELN-GG-
RRWFRRRRRR 0.80/H 0.62/0.19 0.15/0.99 1.0/0.8/1.0 0.17/0.45 0.62/0.59 0.30 −1.28

7 RHP [54] -WFR8/DJ YKWYYRGAA-RRWFRRRRRR 0.97/H 1.0/0.97 0.85/0.98 1.0/0.8/1.0 0.63/0.93 0.60/0.63 0.12 −1.10

8 RtLyp-1-G-VV-pen. &/DJ RCGNKRTR-G-
RQVKVWFQNRRMKWKK 0.94/H 0.78/0.49 0.12/0.98 1.0/0.5/1.0 0.57/0.83 0.58/0.61 0.24 −0.67

9 L-K6V1 temporin 1CEb
[112]-GG-WFR8/DJ

IKKIVSKIKKLLK-GG-
RRWFRRRRRR 0.97/H 0.98/1.00 0.97/0.98 1.0/1.0/1.0 0.97/1.00 0.54/0.67/1.0796 0.17 −1.35

10 CAMEL [148]-WFR8/DJ KWKLFKKIGAVLKVL-
RRWFRRRRRR 0.96/H 1.00/1.00 0.81/0.98 1.0/1.0/1.0 0.82/1.00 0.61/0.66 0.98 −1.33

11 Rev. WFR8–CAMEL [148]/DJ RRRRRRFWRR-GG-
KWKLFKKIGAVLKVL 0.96/H 1.00/1.00 0.73/0.98 1.0/0.9/1.0 0.92/0.98 0.60/0.63 0.71 −1.33

12 [R4, R10]-chensinin-1b [149]-
WFR8/DJ

VWRRWRRFWRR-GG-
RRWFRRRRRR 0.99/H 1.00/0.95 0.93/0.98 1.0/0.7/0.1 0.41/0.99 0.58/0.71 0.72 −1.02

13 ZY4 [150]-GG-WFR8/DJ VCKRWKKWKRKWKKWCV-GG-
RRWFRRRRRR 0.98/H 0.99/1.00 0.91/0.98 1.0/0.9/0.8 0.40/1.00 0.53/0.68 0.60 −0.50

14 Puroindoline [151]-WFR8/DJ FPVTWRWWKWWKG-G-
RRWFRRRRRR 0.99/H 1.00/1.00 0.87/0.98 1.0/0.9/1.0 0.21/0.99 0.61/0.66 0.85 −0.99

15 Rev. WFR8—puroindoline/DJ RRRRRRFWRR-GG-
FPVTWRWWKWWKG 0.98/H 1.00/0.95 0.85/0.98 1.0/0.9/1.0 0.23/0.99 0.61/0.62 0.49 −1.01

16 Novispirin [152] -WFR8/DJ KNLRIIRKGIHIIKKY-GG-
RRWFRRRRRR 0.95/H 1.00/1.00 0.95/0.98 1.0/1.0/1.0 0.94/0.99 0.63/0.62 0.53 −1.14

17 BP33 antifungal [144]/E LKLFKKILKVL 0.85/H 0.84/1.00 1.0/0.98 1.0/0.5/1.0 0.98/1.00 0.48/0.65 0.57 −1.30

18 BP33 antif. [144]-pAntp/DJ LKLFKKILKVL-G-
RQIKIWFQNRRMKWKK 0.86/H 1.00/0.92 0.98/0.98 1.0/1.0/1.0 0.98/1.00 0.54/0.66 1.0 −1.09



Antibiotics 2022, 11, 1196 22 of 59

Table 3. Cont.

No. Peptide or Parent Protein/
Gene/Origin/Reference *

CPP Constructs/Sequence
Number * CPP Anti-Microbial Anti-Cancer Anti-Viral Anti-Fungal Anti-Inflamm. Hemo-

lytic
Toxicity/
Score

19 TriPaxB-antifungal-BP33
[144]-with-GGG-tag/DJ

RVVQVWFQNQRAKLKK-
LKLFKKILKVL-GGG 0.62/H 0.96/0.95 0.84/0.84 0.9/0.9/1.0 0.98/0.23 0.64/0.65 0.63 −1.58

20 rWFR8-antif-BP16 [144]/DJ RRRRRRFWRR-GG-
KKLFKKILKKL 0.982/H 1.00/1.00 0.97/0.98 1.0/0.7/1.0 0.90/1.00 0.57/0.68 0.57 −1.40

21 T2R1 [88]-WFR8/DJ RHHWRRYARIGFRAVRTVIGK-G-
RRWFRRRRRR 0.901/H 1.00/1.00 0.73/0.97 1.0/1.0/0.9 0.70/0.90 0.71/0.64 0.30 −1.18

22 WFR8-DiPGLa-H [153]/DJ RRRRRRFWRR-G-
KIAKVALKALKIAKVALKAL 0.970/H 1.00/1.00 0.57/0.97 1.0/0.9/1.0 0.91/0.99 0.64/0.66 0.80 −1.09

23 WFR8-TPR [145] with G4 link/DJ RRWFRRRRRR-GGGG-
KAYARIGNSYFK 0.893/H 1.00/0.73 0.71/0.98 1.0/0.6/1.0 0.90/0.76 0.59/0.57 0.16 −1.38

24 GV1001 vaccine [154]-WFR8/DJ EARPALLTSRLRFIPK-GG-
RRWFRRRRRR 0.951/H 1.00/0.59 0.95/0.98 1.0/1.0/1.0 0.66/0.95 0.69/0.74 0.05 −1.35

25 BP100 [155]-WFR8/DJ KKLFKKILKYL-GG-
RRWFRRRRRR 0.981/H 1.00/1.00 0.45/0.98 1.0/1.0/1.0 0.92/0.97 0.60/0.69 0.71 −1.39

26 RWBP100 [156]-WFR8/DJ RRLFRRILRWL-GG-
RRWFRRRRRR 0.994/H 1.00/0.97 0.84/0.98 1.0/0.8/1.0 0.53/0.99 0.61/0.70 0.65 −1.23

27 Mitochondrial targeting [157]-
WFR8/DJ

KLLNLISKLF-GGG-
RRWFRRRRRR 0.938/L 1.00/0.98 0.43/0.98 1.0/0.9/0.8 0.81/0.99 0.62/0.67 0.82 −1.31

28 Nosangiotide [158]-WFR8/DJ RKKTFKEVANAVKISA-GG-
RRWFRRRRRR 0.917/H 0.98/0.96 0.25/0.97 0.9/0.9/0.9 0.79/0.95 0.67/0.58 0.08 −1.09

29 Buforin [159] -WFR8/DJ TRSSRAGLQFPVGRVHRLLRK-
GGG-RRWFRRRRRR 0.945/H 0.99/0.87 0.05/0.98 1.0/0.9/0.4 0.91/0.99 0.68/0.60 0.04 −0.89

30 Buforin-BR2 [160]/E RAGLQFPVGRLLRRLLR 0.879/L 1.00/0.71 0.42/0.98 0.8/0.9/1.0 0.20/1.00 0.53/0.63 0.01 −1.12

31 BR2-WFR8/DJ RAGLQFPVGRLLRRLLR-GG-
RRWFRRRRRR 0.960/H 1.00/0.97 0.43/0.98 1.0/0.9/1.0 0.68/1.00 0.53/0.63 0.25 −1.23

32 WFR8-Zp3a [161]/DJ RRWFRRRRRR-GIKAKIGIKIKK 0.98/H 0.99/1.00 0.84/0.98 1.0/0.8/1.0 0.89/0.98 0.53/0.66 0.07 −1.25

33 RHP [54]-rev. WFR8/DJ YKWYYRGAA-RRRRRRFWRR 0.97/H 1.00/0.80 0.85/0.98 1.0/0.9/1.0 0.63/0.95 0.61/0.62 0.04 −1.03

34 T2R3G3/DJ RRRHHWRRYARIGFRAVRTVIGK-
GGG 0.87/H 0.99/0.84 0.85/0.97 1.0/0.9/1.0 0.85/0.54 0.67/0.66 0.06 −1.19

35 Temporin-asparagutin
analog1/DJ

IKKIVSKILKLLKV-G-
RRWFRRRRRR 0.96/H 0.998/1.00 0.96/0.98 1.0/1.0/1.0 0.96/1.0 0.60/0.71/1.625 0.76 −1.47

36 Temporin-asparagutin
analog2/DJ

IKKIVSKIRKLLK-GG-
RRWFRSRRRR 0.96/H 0.92/0.99 0.96/0.98 1.0/1.0/1.0 0.97/0.99 0.62/0.66/1.5 0.18 −1.30

37 Temporin-asparagutin
analog3/DJ

VKKIVSKIRKLLK-GG-
RRWFRSRRRR 0.97/H 0.92/0.99 0.95/0.98 1.0/1.0/1.0 0.96/0.99 0.63/0.64/1.72 0.13 −1.27
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Table 3. Cont.

No. Peptide or Parent Protein/
Gene/Origin/Reference *

CPP Constructs/Sequence
Number * CPP Anti-Microbial Anti-Cancer Anti-Viral Anti-Fungal Anti-Inflamm. Hemo-

lytic
Toxicity/
Score

38 Novispirin
[152]-WFR8-analog1/DJ

KNLRLIRKGIHIILKY-GG-
RRWFLRRRRR 0.938/H 1.0/1.0 0.768/

0.981 1.0/0.9854/1.0 0.96/0.995 0.5814/0.648/1.5622 0.551 −1.17

39 Temporin-1CEb [162]/E ILPILSLIGGLLGK 0.453 0.789/1.0 0.991/
0.984 0.101/0.083/0.68 0.98/0.97 0.47/0.62 0.959 −1.08

40 L-K6V1-Temporin-1CEb [112]/E IKKIVSKIKKLLK 0.880/L 0.930/1.0 1.0/0.982 0.991/0.589/0.40 0.87/1.0 0.53/0.64 0.009 −1.20

41 T2R1 [88]/E RHHWRRYARIGFRAVRTVIGK 0.907/H 0.973/0.617 0.96/0.984 0.999/0.901/0.89 0.67/0.764 0.63/0.63 0.017 −1.06

42 Rev. WFR8-hinge-aurein 1.2
[3]/DJ

RRRRRRFWRR-GGGPPK-
GLFDIIKKIAESF 0.817/H 0.941/0.994 0.897/0.916 1.0/0.874/1.0 0.94/0.988 0.609/

0.575 0.082 −1.02

43 SVS-1 [163]/E KVKVKVKVDPLPTKVKVKVK 0.817/L 0.96/0.746 0.962/0.973 0.0/0.4/0.344 0.48/0.978 0.43/0.41 0.003 −0.84

44 HPRP-A1-TAT [6,164]/E FKKLKLFSKLWNW-
KRKKRQRRR 0.975/H 0.997/0.997 0.527/0.984 1.0/0.928/0.972 0.69/0.987 0.586/0.669 0.043 −0.98

45 Beclin-1-R11 [165]/E TNVFNATFEIWHDGEFGT-
RRRRRRRRRRR 0.814/H 0.987/0.034 0.516/0.846 0.83/0.834/0.36 0.26/0.268 0.565/0.552 0.005 −0.92

46 Mapegin [88]/E KIGKKILKALKGALKELA 0.707/H 0.588/1.0 1.0/0.982 0.783/0.589/0.988 0.98/1.0 0.59/0.67/1.55745 0.079 −1.32

47 MAP [166]/E KLALKLALKALKAALKLA 0.998/H 0.794/1.0 0.979/0.986 0.345/0.096/0.918 0.42/1.0 0.54/0.73/0.69540 0.973 −1.13

48 Mapegin-TAT/DJ KIGKKILKALKGALKELA-
GRKKRRQRRRPPQ 0.878/H 0.929/0.997 0.764/0.981 0.998/0.975/0.506 0.96/1.0 0.65/0.65/1.52487 0.026 −1.04

49 Mapegin-a1-TAT/DJ KIGKKILKALKLALKLLA-
GRKKRRQRRRPPQ 0.958/H 0.980/1.0 0.613/0.983 0.998/0.975/0.630 0.94/1.0 0.67/0.76/2.13612 0.717 −1.09

50 Mapegin-a2-TAT/DJ KITKKILKALKGALKELA-
GRKKRRQRRRMPQ 0.881/L 0.518/0.994 0.717/0.942 0.998/0.93/0.972 0.97/0.996 0.68/0.65/1.53687 0.077 −1.81

* We used the servers listed in Table 2 and applied them in the same order for columns CPP to Toxicity. Highlighted peptides (bold name) with underlined activity scores are
our selection for the designed peptides with the best overall score (see Table 6). Bold sequence segments have predicted or verified CPP activity. Underlined residues are optimal
substitutions for increasing anti-inflammatory activity or decreasing peptide toxicity. $ The best CPP candidates from longer peptides were found by using the protein scanning CellPPD
(http://crdd.osdd.net/raghava/cellppd/ (accessed on 7 August 2022) [167]. & See peptides 1 and 2 from Table 5 for the origin, references, and abbreviations of cancer-homing tLyP-1
peptides and their analogs.

http://crdd.osdd.net/raghava/cellppd/
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Table 4. CPP bioactive peptide conjugates for intracellular targets II. Activity probabilities *.

No. Peptide Name/Ref. Extended CPP at the N or
C-terminal * CPP Anti-Microbial Anti-Cancer Anti-Viral Anti-Fungal Anti-Inflamm. Hemo-

lytic
Toxicity/
Score

1 KW [168]/E KRKRWHW 0.99/H 1.00/ND 0.98/0.98 0.8/0.4/1.0 0.38/ND 0.62/0.54 0.01 −0.93

2 Ribosomal-homing-
peptide (RHP)-KW [54]/DJ YKWYYRGAA-KRKRWHW 0.93/H 0.97/1.00 0.99/0.98 1.0/0.9/0.8 0.62/0.74 0.51/0.61 0.02 −0.58

3 L-K6V1 temp [112]-KW/DJ IKKIVSKIKKLLK-GG-
KRKRWHW 0.89/H 0.98/1.00 1.0/0.98 1.0/1.0/0.2 0.95/1.00 0.59/0.66 0.02 −1.35

4 CAMEL [148]-KW/DJ KWKLFKKIGAVLKVL-
KRKRWHW 0.92/H 1.00/1.00 0.99/0.98 1.0/1.0/1.0 0.78/0.99 0.61/0.67 0.94 −0.90

5 R2-chensenin [149]-KW/DJ VWRRWRRFWRR-GG-
KRKRWHW 0.99/H 1.00/0.99 0.95/0.98 1.0/0.9/1.0 0.27/1.00 0.66/0.70 0.15 −1.03

6 ZY4 [150]-KW/DJ VCKRWKKWKRKWKKWCV-GG-
KRKRWHW 0.95/H 1.00/1.00 0.99/0.98 1.0/0.9/1.0 0.34/1.00 0.58/0.68 0.23 −0.36

7 Puroindoline [151]-KW/DJ FPVTWRWWKWWKG-G-
KRKRWHW 0.88/H 1.00/0.99 0.98/0.98 1.0/0.9/1.0 0.46/0.99 0.64/0.65 0.67 −0.83

8 Novispirin [152]-KW/DJ KNLRIIRKGIHIIKKY-GG-
KRKRWHW 0.90/L 0.98/1.00 0.99/0.98 1.0/1.0/1.0 0.96/1.00 0.63/0.63 0.43 −0.90

9 BP33 [144]-KW/DJ LKLFKKILKVL-G-KRKRWHW 0.93/H 1.00/1.00 0.99/0.98 1.0/1.0/1.0 0.92/1.00 0.62/0.70 0.82 −1.19

10 T2R1 [88]-KW/DJ RHHWRRYARIGFRAVRTVIGK-
KRKRWHW 0.94/H 0.99/0.94 0.92/0.98 1.0/1.0/0.8 0.71/0.86 0.66/0.62 0.12 −1.09

11 DiPGLa-H [153]-KW peptide/DJ KIAKVALKALKIAKVALKAL-
KRKRWHW 0.92/L 0.98/1.00 0.99/0.98 1.0/1.0/1.0 0.97/0.99 0.49/0.63 0.94 −0.92

12 Neoepitope4-WFR8 [169]/DJ VLSHGSFVM-GG-
RRWFRRRRRR 0.89/H 0.89/0.93 0.59/0.98 1.0/0.8/0.1 0.62/0.76 0.62/0.62 0.43 −1.22

13 WFR8 -tumor homing [170]/DJ RRWFRRRRRR-GG-IFLLWQR 0.99/H 1.00/0.78 0.48/0.98 1.0/0.5/0.8 0.46/0.96 0.63/0.63 0.07 −1.26

14 BP100 [155]-KW/DJ KKLFKKILKYL-GG-KRKRWHW 0.93/H 1.00/1.00 1.0/0.98 1.0/1.0/1.0 0.94/0.99 0.58/0.65 0.61 −1.35

15 Mitoch. target. [157]-KW/DJ KLLNLISKLF-GGG-KRKRWHW 0.80/L 0.97/1.00 0.74/0.98 1.0/1.0/0.9 0.91/0.98 0.63/0.67 0.41 −1.29

16 Nosangiotide [158]-KW/DJ RKKTFKEVANAVKISA-GG-
KRKRWHW 0.69/L 0.85/0.93 0.87/0.97 0.5/0.9/0.9 0.88/0.84 0.69/0.59 0.01 −1.03

17 Adepantin-1A [88]-WFR8/DJ GIKKAVGKALKGLKGLLKALGES
-GG-RRWFRRRRRR 0.80/L 1.00/0.99 0.95/0.98 1.0/1.0/1.0 0.98/1.00 0.60/0.66/1.30566 0.66 −1.46

18 WFR8-adepantin-1A/DJ RRWFRRRRRR-
GIKKAVGKALKGLKGLLKALGES 0.86/L 1.00/1.00 0.95/0.96 1.0/1.0/1.0 0.97/0.99 0.62/0.62/1.36028 0.63 −1.56

19 KW-pexiganan-L18 [88]/DJ KRKRWHW-
GIGKFLKKAKKFGKAFVLILKK 0.87/H 0.99/1.00 1.0/0.98 1.0/0.9/1.0 0.99/0.99 0.53/0.64 0.81 −1.04

20 RtLyp-1-flexampin [114]/DJ RCGNKRTR-
GIKKWVKGVAKGVAKDLAKKIL 0.59/L 0.92/1.00 1.0/0.97 1.0/1.0/1.0 1.00/1.00 0.44/0.63 0.68 −0.74
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Table 4. Cont.

No. Peptide Name/Ref. Extended CPP at the N or C-terminal * CPP Anti-Microbial Anti-Cancer Anti-Viral Anti-Fungal Anti-Inflamm. Hemo-
lytic

Toxicity/
Score

21 Zyk-1- [88]-WFR8/DJ GIGREIIKKIIKKIGKKIGRII
-GG-RRWFRRRRRR 0.89/H 1.00/1.00 0.99/0.98 1.0/1.0/1.0 0.96/0.99 0.60/0.66 0.88 −1.18

22 MG2-bombesin [171]/E GIGKFLHSAKKFGKAFVGEIMNS-GG-
QRLGNQWAVGHLM 0.30 0.83/0.85 0.86/0.54 1.0/0.9/0.9 0.97/0.41 0.53/0.55 ND −0.97

23 MG2-pAntp [172]/E GIGKFLHSAKKFGKAFVGEIMNS-GG-
KKWKMRRNQFWVKVQRG 0.52/L 0.95/1.00 0.93/0.81 1.0/1.0/1.0 0.99/0.81 0.56/0.52 ND −0.68

24 DP1 [173]/E RRQRRTSKLMKR-GG-
KLAKLAKKLAKLAK 0.95/L 0.84/1.00 0.91/0.98 0.7/0.7/0.2 0.95/0.55 0.50/0.65 0.03 −0.36

25 KW-BMAP-18 [174]/DJ KRKRWHW-
GGLRSLGRKILRAWKKYG 0.90/H 1.00/1.00 0.98/0.98 1.0/1.0/1.0 0.88/0.98 0.58/0.68/1.3653 0.09 −1.01

26 Chrysophin-1-KW [175]/DJ FFGWLIKGAIHAGKAIHGLI-GG-
KRKRWHW 0.59/L 0.99/1.00 0.98/0.98 1.0/1.0/1.0 0.96/0.97 0.52/0.55 0.97 −1.03

27 KW-mastoparan [176]/DJ KRKRWHW-GG-INLKALAALAKKIL 0.90/L 0.87/1.00 0.75/0.98 1.0/0.9/1.0 0.92/0.96 0.62/0.66 0.42 −1.11

28 KW-pleuricidin [177]/DJ KRKRWHW-
GWGSFFKKAAHVGKHVGKAALTHYL 0.66/L 0.89/1.00 0.99/0.98 1.0/0.9/0.9 0.96/1.00 0.60/0.65 0.37 −0.95

29 MTD [178]/E RRRRRRRRGRQ-KLLNLISKLF 0.98/H 0.28/0.60 0.58/0.96 1.0/0.6/0.9 0.73/0.97 0.67/0.70 0.06 −1.06

30 L-K6V1 temp
[112]-KW-analog/DJ IKKIVSKIRKLLKR-G-KRKRWHW 0.95/H 0.98/1.00 1.0/0.98 1.0/1.0/0.8 0.92/1.0 0.65/0.66/1.678 0.07 −1.12

31 T2R1 [88]-KW-analog1/DJ RHHWRRYARIGFRAVRSVIGK-
KTKRWHW 0.92/H 0.93/0.94 0.98/0.98 1.0/1.0/1.0 0.69/0.97 0.66/0.62/1.36406 0.03 −1.09

32 T2R1 [88]-KW-analog2/DJ RHHWRRLARIGFRAVRSVIGK-
KTKRWHW 0.93/H 0.96/0.87 0.97/0.98 1.0/1.0/1.0 0.60/0.97 0.67/0.62/1.5722 0.05 −1.30

33 KW-BMAP-18
[174]-analog1/DJ

KRKRWHW-
GGLRSLGRKLLRAWKKYG 0.91/H 1.00/0.99 0.96/0.98 1.0/1.0/1.0 0.84/0.97 0.63/0.71/1.62236 0.08 −1.05

34 BP100 [155]-KW-analog/DJ LKLFKKILKYLN-G-KRKRWHW 0.93/H 0.996/0.999 0.966/0.981 1.0/0.961/1.0 0.87/1.0 0.635/0.687/1.80571 0.894 −1.32

35 Zyk-1 [88]-WFR8-analog/DJ GIGLEIVKKIILKIGKKIGRII-GG-
RRWFRRRRRR 0.83/L 0.999/0.998 0.986/0.977 1.0/0.985/0.964 0.98/0.99 0.60/0.614/1.599 0.938 −1.33

36 KW-BMAP-18
[174]-analog2/DJ

KRKRWHW-
GGLASLGRKLLRAWKKYG 0.85/H 0.988/0.986 0.951/0.982 1.0/0.971/1.0 0.85/0.97 0.684/0.708/1.85648 0.399 −1.09

37 R8FW-GGGPPKG-
temp [112] R9R14/DJ

RRRRRRFWRR-GGGPPKG-
IKKIVSKIRKLLKR 0.95/H 0.997/1.0 0.954/0.968 1.0/0.958/0.822 0.97/0.99 0.71/0.60/1.25133 0.032 −1.18

38 R8FW-GGEPPKG-
temp [112] R9R14/DJ

RRRRRRFWRR-GGEPPKG-
IKKIVSKIRKLLKR 0.94/H 0.998/0.988 0.926/0.973 1.0/0.96/0.996 0.96/0.944 0.70/0.596/1.51442 0.028 −1.20

39 R7A5FW-GGEPPKG temp
[112]/DJ

RRRRARFWRR-GGEPPKG-
IKKIVSKIRKLLKR 0.92/H 0.998/0.968 0.916/0.973 1.0/0.9654/0.95 0.97/0.927 0.72/0.597/1.80807 0.010 −1.25
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Table 4. Cont.

No. Peptide Name/Ref. Extended CPP at the N or
C-terminal * CPP Anti-Microbial Anti-Cancer Anti-Viral Anti-Fungal Anti-Inflamm. Hemo-

lytic
Toxicity/
Score

40 L-K6V1 temp.
[112]-GGEPPKG-KW/DJ

IKKIVSKIKKLLK-GGEPPKG-
KRKRWHW 0.72/L 0.971/0.986 0.996/0.955 0.994/0.985/0.97 0.94/0.839 0.50/0.624 0.007 −1.15

41 R8FW-GGGPPKG-IDR-1002 [9]/DJ RRRRRRFWRR-GGGPPKG-
VQRWLIVWRIRK 0.97/H 1.0/0.944 0.181/0.979 1.0/0.862/0.854 0.71/0.40 0.633/0.606 0.064 −1.17

42 R8FW-GGGPPKG-IDR-1018 [9]/DJ RRRRRRFWRR-GGGPPKG-
VRLIVAVRIWRR 0.95/H 1.0/0.978 0.344/0.980 1.0/0.863/0.982 0.79/0.33 0.612/0.602 0.039 −1.17

43 R8FW-GGGPPKG-
IDR-1018-R6/DJ

RRRRRRFWRR-GGGPPKG-
VRLIVRVRIWRR 0.96/H 1.0/0.929 0.406/0.980 1.0/0.832/0.354 0.81/0.59 0.626/0.605 0.027 −1.21

44 R8FW-GGEPPKG-IDR-1018-R6/DJ RRRRRRFWRR-GGEPPKG-
VRLIVRVRIWRR 0.96/H 1.0/0.702 0.356/0.983 1.0/0.854/0.99 0.78/0.21 0.612/0.607/1.16498 0.026 −1.23

45 R8FW-GGEPPKG-IDR-1018-
L1R6/DJ

RRRRRRFWRR-GGEPPKG-
LRLIVRVRIWRR 0.96/H 1.0/0.939 0.277/0.983 1.0/0.86/0.04 0.77/0.338 0.623/0.622/1.43256 0.025 −1.20

46 Pexiganan-L18 [88]/E GIGKFLKKAKKFGKAFVLILKK 0.75/L 0.997/1.0 1.0/0.976 0.46/0.299/0.22 1.0/1.0 0.598/0.661 0.892 −0.94

47 Flexampin [114]/E GIKKWVKGVAKGVAKDLAKKIL 0.56/L 0.990/1.0 1.0/0.977 0.993/0.937/0.544 0.99/1.0 0.423/0.531 0.817 −0.78

48 Zyk-1 [88]/E GIGREIIKKIIKKIGKKIGRII 0.65/L 0.978/0.998 0.998/0.97 1.0/0.933/0.946 0.88/1.0 0.526/0.662 0.583 −0.86

49 Adepantin-1A [88]/E GIKKAVGKALKGLKGLLKALGES 0.39 0.980/1.0 1.0/0.977 1.0/0.972/0.398 0.99/1.0 0.554/0.659/1.35587 0.17 −1.51

50 Novispirin [152]-KW-analog2/DJ KNLRIFRKGIHIHKKY-GG-
KRKRWHW 0.903/H 0.972/0.946 0.994/0.983 1.0/0.939/0.822 0.96/0.989 0.5884/0.6 0.195 −1.63

51 WFR8-adepantin-1A-
analog2/DJ

RRWFRRRRRR-
GIKKAVGKALKGLKLLLKALGES 0.878/L 0.999/1.0 0.923/0.9485 1.0/0.987/0.908 0.96/0.983 0.616/0.622/1.62411 0.826 −1.63

52 KW-second-bovine-
BMAP-18 [179]/DJ

KRKRWHW-
GRFKRFRKKFKKLFKKIS 0.961/H 0.999/1.0 0.995/0.981 1.0/0.845/1.0 0.91/1.0 0.565/0.698 0.176 −1.09

* We used the servers listed in Table 2 and applied them in the same order. Highlighted peptides (bold name) with underlined activity scores are our selection for the designed peptides
with the best overall score (see Table 6). Bold sequence segments have predicted or verified CPP activity. Underlined residues are optimal substitutions for increasing anti-inflammatory
activity or decreasing peptide toxicity.
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Table 5. Activity probabilities for CPP conjugated magainin analogs, MF constructs, and Arg-Pro rich peptides *.

No. Parent-Protein/Gene/
Origin/Reference * Extended CPP at the N or C-terminal * CPP Anti-Microbial Anti-Cancer Anti-Viral Anti-Fungal Anti-Inflamm. Hemo

-lytic Tox./Score

1 Tumor-homing-tLyP-1
peptide [146]/E CGNKRTR 0.91/L 0.00/ND N/0.88 N/N/N ND/ND 0.38/0.47 0.01 −0.42

2 A7RG57 C-term. from
N. vectensis RCGIKRTK 0.93/L 0.03/ND 0.93/0.95 0.6/0.5/0.5 0.92/ND 0.47/0.62 0.00 −0.88

3 MFC/DJ RCGNKRFRWHW 0.94/H 0.43/0.91 0.97/0.98 1.0/0.8/1.0 0.38/0.98 0.47/0.63 0.01 −0.92

4 NLS-CE [180]/E WRFVWMNPKKKRKV 0.92/H 0.99/0.54 0.46/0.98 0.8/0.5/0.8 0.13/0.76 0.47/0.59 0.11 −1.11

5 Zp3a [161]/E GIKAKIGIKIKK 0.77/L 0.94/1.00 1.0/0.97 0.2/0.1/0.3 0.86/1.00 0.48/0.63 0.03 −0.68

6 Magainin 2 (MG2) [181]/E GIGKFLHSAKKFGKAFVGEIMNS 0.22 0.95/1.00 1.0/0.98 1.0/1.0/1.0 0.99/0.98 0.56/0.55 0.83 −0.58

7 MG2-tLyP-1 [146]/DJ GIGKFLHSAKKFGKAFVGEIMNS-GG-
CGNKRTR 0.26 0.88/0.99 0.99/0.93 1.0/1.0/1.0 0.99/0.94 0.53/0.52 0.76 −0.35

8 MG2-KW [168]/DJ GIGKFLHSAKKFGKAFVGEIMNS-GG-
KRKRWHW 0.43 0.94/1.00 0.99/0.96 1.0/1.0/1.0 0.99/0.92 0.57/0.52 0.63 −0.68

9 MG2-WFR8/DJ GIGKFLHSAKKFGKAFVGEIMNS-GG-
RRWFRRRRRR 0.74/L 0.93/1.00 0.95/0.97 1.0/1.0/1.0 0.98/0.99 0.61/0.52 0.72 −0.90

10 9P0-1 [182]/E GIKKWLHSAKKFGKKFVKKIMNS 0.72/L 0.99/1.00 1.0/0.98 0.8/0.9/1.0 0.99/0.98 0.61/0.64 0.96 −0.42

11 MFC-9P0-1-analog [182]/DJ RCGNKRFRWHW-
GIKKWLHSAKKFGKKFVKKIMNS 0.76/H 0.92/1.00 1.0/0.93 1.0/1.0/0.9 0.95/0.96 0.63/0.70 0.86 −0.59

12 MFC-Zp3a [161]/DJ RCGNKRFRWHW-GIKAKIGIKIKK 0.89/H 0.98/0.99 0.98/0.98 1.0/0.7/0.9 0.97/1.00 0.57/0.68 0.01 −1.05

13 9P1-3 [182]/E GIKKWLHSAKKFPKKFVKKIMNS 0.73/L 0.99/1.00 1.0/0.98 0.9/0.9/0.6 0.97/0.98 0.63/0.64 0.94 −0.30

14 MFC-9P1-3 [182]/DJ RCGNKRFRWHW-
GIKKWLHSAKKFPKKFVKKIMNS 0.78/H 0.88/1.00 1.0/0.92 1.0/1.0/0.8 0.93/0.96 0.64/0.69 0.77 −0.49

15 MFC-PexShort/DJ RCGNKRFRWHW-
GIGKLKKAKKFGKKILKK 0.86/H 0.99/1.00 1.0/0.98 1.0/0.9/1.0 0.99/1.00 0.52/0.64 0.03 −1.19

16 MFC-PexNC/DJ GIGK-G-RCGNKRFRWHW-ILKK 0.83/H 0.99/0.99 0.92/0.98 1.0/0.5/1.0 0.94/0.99 0.61/0.61 0.01 −0.65

17 MG2-I6V9W12T15I17 [183]/E GIGKFIHSVKKWGKTFIGEIMNS 0.26 0.97/0.99 1.0/0.85 1.0/0.9/1.0 0.93/0.99 0.55/0.57 0.93 −0.64

18 tLyP-1-MG2-
I6V9W12T15I17 [183]/DJ

CGNKRTR-
GIGKFIHSVKKWGKTFIGEIMNS 0.33 0.87/1.00 1.0/0.27 1.0/0.9/1.0 0.95/0.97 0.50/0.63 0.78 −0.52

19 KW-MG2-I6V9W12T15I17
[183]/DJ

KRKRWHW-
GIGKFIHSVKKWGKTFIGEIMNS 0.46 0.80/1.00 1.0/0.50 1.0/1.0/1.0 0.85/0.98 0.55/0.64 0.57 −0.75

20 WFR8 -MG2-
I6V9W12T15I17 [183]/DJ

RRWFRRRRRR-
GIGKFIHSVKKWGKTFIGEIMNS 0.82/H 0.97/1.00 0.97/0.98 1.0/1.0/1.0 0.91/0.98 0.68/0.63 0.84 −1.08

21 MG2-Q19 [184]/E GIGKFLHSAKKFGKAFVGQIMNS 0.48 0.99/1.00 1.0/0.98 1.0/1.0/1.0 1.00/1.00 0.54/0.58 0.89 −0.50

22 MG2-Q19-tLyP-1
[184]/DJ

GIGKFLHSAKKFGKAFVGQIMNS-GG-
CGNKRTR 0.32 0.93/1.00 0.97/0.96 1.0/1.0/0.9 1.00/0.99 0.51/0.57 0.82 −0.23
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Table 5. Cont.

No. Parent-Protein/Gene/
Origin/Reference * Extended CPP at the N or C-terminal * CPP Anti-Microbial Anti-Cancer Anti-Viral Anti-Fungal Anti-Inflamm. Hemo

-lytic Tox./Score

23 MG2-Q19-KW [184]/DJ GIGKFLHSAKKFGKAFVGQIMNS-GG-
KRKRWHW 0.61/L 0.96/1.00 0.99/0.97 1.0/1.0/0.5 0.99/0.99 0.56/0.54 0.72 −0.58

24 MG2-Q19-WFR8 [184]/DJ GIGKFLHSAKKFGKAFVGQIMNS-GG-
RRWFRRRRRR 0.77/L 0.93/1.00 0.94/0.98 1.0/1.0/1.0 0.99/0.99 0.60/0.58 0.83 −0.82

25 Max-TI-MG2/DJ && GIAKFLDSAKKFGKKFVKTIMQL 0.31 0.99/1.00 1.0/0.98 0.8/0.9/1.0 1.00/0.98 0.57/0.59 0.97 −0.56

26 Max-TI-MG2-tLyP-1/DJ
GIAKFLDSAKKFGKKFVKTIMQL-GG-
CGNKRTR 0.44 0.95/1.00 1.0/0.99 1.0/1.0/1.0 1.00/0.87 0.61/0.57 0.98 −0.38

27 RtLyP-1-Max-TI-MG2/DJ RCGNKRTR-
GIAKFLDSAKKFGKKFVKTIMQL 0.51/L 0.86/1.00 1.0/0.92 1.0/0.9/1.0 1.00/0.97 0.64/0.63 0.86 −0.41

28 Max-TI-MG2-KW/DJ
GIAKFLDSAKKFGKKFVKTIMQL-GG-
KRKRWHW 0.55/L 0.98/1.00 1.0/0.98 1.0/1.0/0.5 1.00/0.95 0.69/0.57 0.98 −0.75

29 Max-TI-MG2-WFR8/
DJ

GIAKFLDSAKKFGKKFVKTIMQL-GG-
RRWFRRRRRR 0.77/H 0.97/1.00 0.97/0.98 1.0/1.0/1.0 0.99/0.97 0.64/0.58 0.98 −1.00

30 KAF5879953.1 36–47 MFCA RCNRKRFRWQWK 0.97/H 1.00/0.64 0.86/0.98 0.1/0.6/1.0 0.14/0.75 0.56/0.66 0.01 −0.43

31 tLyp-1-RHP [54]/DJ CGNKRTR-YKWYYRGAA 0.78/H 0.21/0.57 0.94/0.96 0.8/0.2/0.7 0.88/0.21 0.47/0.62 0.01 0.07

32 R-tLyP-1-RHP/DJ RCGNKRTR-YKWYYRGAA 0.83/L 0.76/0.65 0.87/0.98 1.0/0.3/0.9 0.89/0.14 0.57/0.63 0.01 0.12

33 MFC-RHP/DJ RCGNKRFRWHW-YKWYYRGAA 0.84/H 0.96/0.86 0.96/0.98 1.0/0.7/0.8 0.72/0.46 0.64/0.62 0.04 −0.51

34 MFC2/DJ RCGNKRFRWHW-GG-RRAKWRR 0.97/H 1.00/0.97 0.60/0.98 1.0/0.9/1.0 0.37/0.91 0.64/0.64 0.01 −0.69

35 MFC-PexSa/DJ RCGNKRFRWHW-
GIGKLLKRKKFGKKILKK 0.90/H 0.99/1.00 1.0/0.97 1.0/1.0/0.5 0.99/1.00 0.58/0.65/1.60059 0.054 −1.34

36 MFC2-analog/DJ RCGNKRLIWHW-GG-RRAKTRR 0.95/H 0.97/0.93 0.22/0.98 1.0/0.9/0.9 0.50/0.84 0.65/0.64/1.61375 0.005 −0.43

37 MG2-analog/DJ GIGKLLKSALKFGKAFVGEIMNS 0.177 0.986/1.0 0.998/0.988 0.982/0.9643/0.926 1.0/0.994 0.6163/0.627/1.76783 0.98 −1.28

38 WFR8-MG2-analog/DJ RRWFRRRRRR-
GIGKLLKSALKFGKAFVGEIMNS 0.783/H 0.99/1.0 0.839/0.971 1.0/0.99/1.0 0.96/0.98 0.723/0.646/1.5622 0.952 −1.44

39 CA-MA2 [185]/E KWKLFKKI-P-KFLHSAKKF 0.895/L 0.997/1.0 1.0/0.98 0.983/0.73/0.56 0.94/0.996 0.62/0.645 0.008 −0.09

40 K6L9 [186]/E LKLLKKLLKKLLKLL 0.958/H 0.918/1.0 0.996/0.92 0.999/0.927/0.71 0.13/1.0 0.62/0.607 0.907 −1.00

41 PR-39 pig P80054 RRRPRPPYLPRPRPPPFFPPRLPP
RIPPGFPPRFPPRFP 0.760/L 1.00/1.0 0.993/0.92 1.0/0.857/0.064 0.82/0.965 0.50/0.550 ND −0.71

42 Pyrrhocoricin [187]/E VDKGSYLPRPTPPRPIYNRN 0.48 0.35/1.0 0.12/0.576 0.248/0.175/0.064 0.20/0.965 0.481/0.488 0.004 −1.25

43 R8FW-Pyrrhocoricin/DJ RRWFRRRRRR-
GVDKGSYLPRPTPPRPIYNRN 0.864/L 0.964/1.0 0.41/0.98 1.0/0.61/0.984 0.80/0.96 0.561/0.588 0.064 −1.31

44 PR-35/E RRRPRPPYLPRPRPPPFFPPRLPPRIPPGFPPRFP 0.762/L 1.0/1.0 0.978/0.9198 1.0/0.805/0.0 0.81/0.925 0.512/0.55 0.001 −0.66

45 PR-35-analog/DJ RRRVRPPYLPRVRPQPFFPLRLLKRISPGFPPRFP 0.821/L 0.993/0.995 0.481/0.854 1.0/0.984/0.962 0.90/0.919 0.637/0.581/2.18407 0.012 −1.44

46 CA-MA2-analog1/DJ KWKLFKKILKLLHSVKKF 0.895/H 0.996/1.0 1.0/0.9786 0.999/0.875/0.184 0.96/1.0 0.6326/0.735/1.8861 0.848 −0.84

47 L-K6V1-temp [112]-
revP9 [188]/DJ IKKIVSKIKKLLK-PPWWRRRRR 0.972/H 0.984/1.0 0.956/0.983 0.998/0.953/0.828 0.75/1.0 0.591/0.664 0.017 −1.17
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Table 5. Cont.

No. Parent-Protein/Gene/
Origin/Reference * Extended CPP at the N or C-terminal * CPP Anti-Microbial Anti-Cancer Anti-Viral Anti-Fungal Anti-Inflamm. Hemo

-lytic Tox./Score

48 L-K4V1-temp-revP9-
analog/DJ IKKIVSLILKLLK-LPWWRRRRR 0.959/H 0.999/1.0 0.451/0.982 0.999/0.959/1.0 0.65/1.0 0.74/0.764/1.965 0.190 −1.30

49 CA-MA2-analog2/DJ KWRLFKKI-P-RFLRSARRF 0.954/H 1.0/0.948 0.977/0.980 1.0/0.935/0.758 0.87/0.992 0.605/0.625 0.054 −1.11

50 Sub-5 [189]/E RRWKIVVIRWRR 0.932/H 1.0/0.994 0.935/0.975 0.784/0.579/0.762 0.30/1.0 0.516/0.643 0.037 −0.76

51 Sub-5-G-nuclear-
loc.-signal [190]/DJ RRWKIVVIRWRR-G-PKKKRKV 0.973/H 1.0/0.999 0.494/0.984 0.999/0.930/0.998 0.57/0.993 0.656/0.603 0.007 −0.93

52 temp V1R9
(analog-3)-Sub-5/DJ

VKKIVSKIRKLLK-GG-
RRWKIVVIRWRR 0.940/H 0.983/1.0 0.972/0.976 0.999/0.974/0.916 0.92/1.0 0.528/0.641/1.49473 0.098 −0.94

* We used the servers listed in Table 2 and applied them in the same order. All peptides are assumed to be amidated at their C-terminal. MF abbreviation stands for multifunctional.
Highlighted peptides (bold name) with underlined activity scores are our selection for the designed peptides with the best overall score (see Table 6). Bold sequence segments
have predicted or verified CPP activity. Underlined residues are substitutions for increasing anti-inflammatory activity or decreasing peptide toxicity. && Repeated applications or
our “Mutator” algorithm (http://split4.pmfst.hr/mutator/ (accessed on 7 August 2022); Kamech et al. [46] suggested amino acid substitutions (underlined) for predicted maximal
therapeutic index of the magainin analog Max-TI-MG2.

Table 6. Ranking of predictions for the best multifunctional peptide constructs with the reward for a predicted negative mean of hemolytic and toxic activity.

Length-Amph-AMP * Table-
Peptide # CPP Anti-

Microbial &
Anti-
Cancer &

Anti-
Viral &

Anti-
Fung &

Anti-
Inflamm. $ Sum/6 Rank † Hemol.

Probab. Tox. Score Reward
Low tox. Total Score § Overall

Rank
CPP
Part

25-αd-temp V1R9 T3-37 0.97/H 0.955 0.965 1.00 0.975 0.997 0.9869 1 0.130 −1.27 0.570 0.92734 1st WFS6R7

31-αtαd-temp R9R14 T4-39 0.92/H 0.983 0.9445 0.972 0.949 1.0412 0.9682 6 0.010 −1.25 0.620 0.91846 2nd WFA5R7

25-αd-temp R9 T3-36 0.96/H 0.955 0.97 1.00 0.98 0.927 0.9670 7 0.180 −1.30 0.560 0.90886 3rd WFS6R7

31-αtαd-temp R9R14 T4-38 0.94/H 0.993 0.9495 0.985 0.952 0.9368 0.9594 10 0.028 −1.20 0.586 0.90606 4th WFR8

22-αd-temp T4-30 0.95/H 0.99 0.99 0.927 0.96 0.996 0.9688 5 0.070 −1.12 0.525 0.90540 5th KW

22-αd-r-o-p A8I15 T2-20 0.987/H 0.977 0.976 0.863 0.906 0.9038 0.9353 0.007 −1.39 0.692 0.90047 6th tLyP-1

29-βαd-PexS T5-35 0.90/H 0.995 0.985 0.83 0.995 0.9435 0.9414 21 0.054 −1.34 0.643 0.89877 7th MFC

25-αd-temp T3-9 0.97/H 0.99 0.975 1.00 0.985 0.757 0.9461 19 0.170 −1.35 0.590 0.89523 8th WFR8

31-αtαd-temp R9R14 T4-37 0.95/H 0.9985 0.961 0.927 0.98 0.8538 0.9450 20 0.032 −1.18 0.574 0.89200 9th WFR8

22-αtαd-temp T5-48 0.959/H 1.00 0.7156 0.986 0.825 1.1563 0.9472 18 0.190 −1.30 0.555 0.89119 10th rP9a

31-αtαd-mapegin-a2 T3-50 0.881/L 0.756 0.8295 0.967 0.983 0.9556 0.8953 0.077 −1.81 0.867 0.89118 11th TATa

25-αd-BMAP T4-33 0.905/H 0.991 0.9715 0.993 0.905 0.9868 0.9567 12 0.080 −1.05 0.485 0.88931 12th KW

35-βtαd- PR-35a T5-45 0.821/L 0.994 0.6675 0.982 0.910 1.134 0.9180 0.012 −1.44 0.714 0.88886 13th whole

http://split4.pmfst.hr/mutator/
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Table 6. Cont.

Length-Amph-AMP * Table-
Peptide # CPP Anti-

Microbial &
Anti-
Cancer &

Anti-
Viral &

Anti-
Fung &

Anti-
Inflamm. $ Sum/6 Rank † Hemol.

Probab. Tox. Score Reward
Low tox. Total Score § Overall

Rank
CPP
Part

25-αd- temp L9V14 T3-35 0.96/H 0.999 0.97 1.00 0.98 0.978 0.9738 4 0.760 −1.47 0.355 0.88540 14th WFR8

28-αd-T2R1-L7S17-a2 T4-32 0.93/H 0.914 0.974 0.997 0.785 0.9557 0.9260 0.050 −1.30 0.625 0.88300 15th KT2W

25-αd-BMAP-18 T4-25 0.90/H 1.00 0.98 1.00 0.930 0.875 0.9475 17 0.090 −1.01 0.460 0.87787 16th KW

27-αtβd-temp V1R9 T5-52 0.940/H 0.992 0.974 0.963 0.960 0.888 0.9528 14 0.098 −0.94 0.421 0.87684 17th Sub 5

25-βαd-BMAP-a2 T4-36 0.849/H 0.987 0.9665 0.990 0.912 1.0828 0.9646 8 0.399 −1.09 0.346 0.87616 18th KW

33-αd-adepantin-1A T4-18 0.86/L 1.00 0.955 1.00 0.98 0.8668 0.9436 0.630 −1.56 0.465 0.87525 19th WFR8

25-αtβd-novispirin-a1 T4-50 0.903/H 0.959 0.9885 0.920 0.975 0.5942 0.8899 0.195 −1.63 0.7175 0.87307 20th KW

33-αd adep-1a-L15 T4-51 0.878/L 0.9995 0.9358 0.965 0.972 0.954 0.9506 16 0.826 −1.63 0.402 0.87225 21 WFR8

22-r-o-pA8I15 T2-21 0.985/H 0.98 0.962 0.683 0.91 0.960 0.9134 0.006 −1.22 0.607 0.86963 22 tLyPA3-1

20-αβ BP100 T4-34 0.927/H 0.9975 0.9735 0.987 0.935 1.0426 0.9772 3 0.894 −1.32 0.213 0.86803 23 KW

19-αβ BP33 T4-9 0.93/H 1.00 0.985 1.00 0.96 1.001 0.9793 2 0.820 −1.19 0.185 0.86583 25 KW

28-αtα-novispirin-a1 T3-38 0.94/H 1.00 0.8745 0.995 0.978 0.9305 0.9526 15 0.551 −1.17 0.310 0.86073 26 WFL5R7

35-α adep1a T4-17 0.80/L 0.995 0.965 1.00 0.99 0.8552 0.9342 0.660 −1.46 0.400 0.85789 29 WFR8

31-αtα mapegin-a1 T3-49 0.958/H 0.990 0.798 0.868 0.97 1.1887 0.9621 9 0.717 −1.09 0.187 0.85127 30 TAT

18-αtα r-o-p-analog T2-22 0.991/H 1.00 0.962 0.97 0.795 0.61 0.8879 0.003 −1.26 0.629 0.85091 31 whole

25-α-BMAP2-18 T4-52 0.961/H 0.9995 0.988 0.948 0.955 0.6315 0.9139 0.176 −1.09 0.457 0.84862 32 KW

34-αtα-Zyk1a T4-35 0.833/L 0.9985 0.9815 0.983 0.987 0.9377 0.9534 13 0.938 −1.33 0.196 0.84520 33 WFR8

* The amphiphilic character of the peptide was assessed by the SPLIT 3.5 server (http://split.djpept.com/split/ accessed on 7 August 2022 [42]). Bold or normal font α, β, and t symbols
are stronger or weaker predicted profiles of hydrophobic moments for helix, beta-strand, and turn secondary structure. The “d” symbol is for predominantly disordered structure when
indicated by the flDPnn server [191] for the first 20 peptides. The same server predicts DNA and RNA binding sites for all 20 best peptides from 41% to 100% of their residues. Peptide’s
abbreviations are in Tables 2–5. For instance, the temp abbreviation stands for the L-K6V1 temporin 1CEb with the sequence IKKIVSKIKKLLK [112]. The a1 or a2 abbreviation is for
analog1 or analog2. The single code letter with the subscript for the residue sequence position is used for substituted amino acids. In the asparagutin case (WFR8), R7 or R8 means the
total number of arginines. # The peptide code number is “Tn-m” for “n” = 2,3,4,5, referring to the corresponding Table, and “m” for the peptide number in Table n. & Mean values of
predicted probabilities for antimicrobial, anticancer, antiviral, and antifungal activity. See Table 2 for server addresses and corresponding references. We used the gray background
to highlight cases among 20 best peptides when the probability for anticancer and antiviral activity is close to 1.0 (>0.95). $ Mean value of predicted scores by AIPpred, PreAIP, and
AntiInflam servers. See Table 2 for server addresses and corresponding references. The AntiInflam server was included in the calculated mean for the cases when three or fewer amino
acid substitutions were enough to raise the predicted score above 1.0 (except for the PR-35 analog with seven substitutions). † Peptides are first ranked (yellow background) regardless
of their predicted hemolytic activity and toxicity. § Total score is calculated as: (CPP probability + mean antimicrobial probability + mean anti-cancer probability + mean antiviral
probability + mean antifungal probability + mean anti-inflammatory score)/6 − (hemolytic activity probability + toxicity score)/2. The subtracted number is a positive reward for low
toxicity. We used the blue and green background to rank the 20 best peptides according to their total score.

http://split.djpept.com/split/
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4. Design of Cell-Penetrating Multifunctional Peptides
4.1. Advantages of Cell-Penetrating Antimicrobial Peptides

Conventional antibiotics often have difficulties reaching pathogens in mammalian cells.
The challenge of eliminating intracellular pathogens reflects in the persistence of related
diseases, rising antibiotic resistance, and severe side effects [192,193]. Fortunately, many
different drug delivery systems have been developed in recent years. One such delivery
mechanism is covalently connecting a bioactive molecule to some cell-penetrating peptide
that can target specific cell types, malignant cells, or intracellular pathogens [54]. In this
chapter, we shall consider peptide–CPP hybrids. Noninvasive applications of therapeutic
peptides conjugated to CPP offer new solutions to the problem of how to overcome the
barriers in a body such as the plasma membrane, blood–brain barrier, intestinal lumen, skin
barrier, air–lung barrier, blood–lung barrier, nasal cavity, or the posterior segment of the
eye [194]. The CPP choice must consider the cell-penetrating ability or probability, uptake
efficiency, toxicity, stability, half-life, immunogenicity, and other features that can all change
depending on the attached cargo molecule. A short-length CPP conjugate has the practical
advantage of being less expensive for synthesis and testing. For a peptide as bioactive cargo,
we mainly chose among known antimicrobial or anticancer peptides. Homing peptides are
a good choice for targeting specific populations of cells or intracellular organelles.

Peptide–CPP hybrids designed by other authors and us are in Tables 3–5. Our primary
design goal was to have a broad spectrum of highly predicted functional activities (cell-
penetrating, antibacterial, anticancer, antiviral, antifungal, and anti-inflammatory) and
as low toxicity as possible. The short conjugate length was the secondary goal because
combining many different functions in a short hybrid peptide is difficult.

4.2. Potential for Clearing Intracellular Drug-Resistant Bacteria

Besides cancer cells as targets for CPP-cargo molecules, there is a pressing need to
discover nontoxic last-resort drugs to eliminate intracellular multidrug or pan-resistant
bacteria [195]. Colistin is a peptide-fatty acid conjugate that belongs to the last-resort
class of antibiotics against hard-to-treat bacteria. For several decades it was abandoned in
medical practice due to its nephrotoxicity. Its toxicity and additional resistance induction
are obstacles to clinical usage [196,197]. After multidrug resistance proliferated, medical
doctors are again treating endangered patients with colistin by carefully balancing positives
(saving patient’s life) and negatives (a certain degree of damage to some organs).

It would be better to widen the availability of nontoxic peptides capable of clearing re-
sistant intracellular bacterial targets [198]. Fortunately, some bacteriocins are highly specific
bactericides for their target bacteria and nontoxic to eukaryotic cells. Among them, pepti-
doglycan hydrolases induce bacterial lysis by cleaving specific conserved bonds within the
peptidoglycan (PG) of the bacterial cell wall. PG target bonds are well conserved, making
it difficult for bacteria to develop resistance against PG hydrolases. These advantages
are enhanced when PG hydrolases are fused to penetratin or some other cell-penetrating
peptide. Such constructs eradicate intracellular drug-resistant Staphylococcus aureus [199].
These authors used the bacteriocin enzyme lysostaphin fused to penetratin or TAT peptide
from HIV. Both constructs were equally efficient in clearing intracellular antibiotic-resistant
strains of S. aureus responsible for recurrent infections. Therefore, CPP-fused PG hydrolases
are promising therapeutic applications of penetratin and other cell-penetrating peptides.

Some cationic antimicrobial peptides (AMPs) are selective and refractory to resis-
tance mechanisms developed by microbial pathogens and cancer cells [171]. Ribosomally
synthesized peptides are more costly than small molecular weight drugs but less expen-
sive compared to recently developed immunotherapy. As host defense peptides, AMPs
are an essential component of our immune system, with some able to translocate across
membranes without the need to design artificial AMP–CPP hybrids. There should be no
undesired immune response to peptides recognized as innate by the human body, even if
some slight modifications are introduced to enhance their stability.



Antibiotics 2022, 11, 1196 32 of 59

Unfortunately, the research about AMPs is underfunded by pharmaceutical compa-
nies and governmental agencies charged with supporting health-oriented innovations.
There was an initial failure of AMPs to achieve clinical applications, which resulted in
a widespread bias against them, despite all evidence that AMPs can be used as multi-
functional agents effective against bacteria, fungi, viruses, drug-resistant biofilms, and
cancer [200–205]. Nevertheless, the promise of multifunctional AMPs will eventually come
to fruition [206].

4.3. Short Cell-Penetrating Peptides and Their Conjugates

Optimized penetratin analog RKKRWFRRRRPKWKK [56] has six arginines, five
lysines, and two tryptophans. Besides its high cell-penetrating ability, in silico predictions
make a case for antibacterial, anticancer, and antiviral activity with considerably lower
hemolytic activity than the pAnp penetratin (see prediction results for peptide 16 from
Table 2). In known homeoproteins, there is no natural penetratin-like peptide of similar
length (15–16 residues) with such a large number of positive charges (≥+10). However,
the hypothetical protein OLQ14316.1 from coral dinoflagellate symbiont Symbiodinium
microadriaticum [207] contains a similar sequence R(603)RRRRRWFRRRRRRWFRKI(621),
named DiR6WF (Table 3, peptide 2), with an even higher number of arginines.

The decapeptide RRWFRRRRRR (abbreviation WFR8) from that domain has the best
chance of being a short CPP peptide, according to the CellPPD server [167]. Both peptides
have a high CPP probability (0.99) and are predicted as nontoxic with antimicrobial, an-
tiviral, and anticancer activity (see prediction results for peptides 2 and 3 from Table 3).
Identical decapeptide R(122)RWFRRRRRR(131) from the asparagus plant (Asparagus offic-
inalis) uncharacterized protein A0A5P1FK94 with 142 residues is also the best predicted
CPP in that protein. We shall name it asparagutin. The natural function of asparagutin is
unknown. The WF doublet from asparagutin is conserved in all penetratin-like peptides
from homeodomains (see Table 1).

In Table 3, we mostly use pAntp penetratin and short CPP candidates—the decapep-
tide RRWFRRRRRR and its reversed version RRRRRRFWRR (peptides 3 and 4 from Table 3),
which to our knowledge, have never been synthesized and tested. Asparagutin is con-
siderably shorter than penetratin, but it may be more difficult for solid-state synthesis.
Wender et al. [208] proposed a better pathway for synthesizing polyarginine peptides. We
assume that difficulties synthesizing the RRWFRRRRRR sequence or its reversed analog
should no longer be a serious issue. According to the VaxiJen server by Doytchinova and
Flower [209] for the immunogenicity prediction (http://www.ddg-pharmfac.net/vaxijen/
VaxiJen/VaxiJen.html, (accessed on 7 August 2022)), the asparagutin is the probable antigen
for parasites and fungi and probable non-antigen for bacterial, viral, and tumor cell targets.
The predicted cleavage site for different proteases is after the Phe residue (the result of
Song et al. [210] server analysis at the link: https://prosper.erc.monash.edu.au/, (accessed
on 7 August 2022)). Six terminal arginines after protease cleavage should still have the
CPP ability, with somewhat lesser uptake efficiency than the widely used eight arginine
CPP [211]. The hemolytic activity is negligible for the reversed sequence RRRRRRFWRR
(0.08 probability).

Wei et al. [168] used molecular simulations to design the KRKRWHW peptide (named
KW), which exhibited little cytotoxicity and high penetrating efficiency into mammalian
cells. For that peptide and its 30 conjugates (see Table 4 peptides 1–11, 14–16, 19, 25–28,
30, 33, 34, 36, 40, 50, and 52 and Table 5 peptides 8, 19, 23, and 28), we obtained variable
predictions for the hemolytic activity. Due to the importance given to low toxicity estimates,
five KW-containing peptides with a low probability of harming red blood cells (0.4 or lesser
probability) and low toxicity score (−1.01 or less) entered among the 20 best multifunctional
constructs with a high overall score (see Table 6). These are hybrid peptides 25, 30, 33, 36,
and 50 from Table 4. Despite different bioactive cargo (temporin, novispirin, or BMAP
antimicrobial peptides), an excellent multifunctional activity is possible for all of them.

http://www.ddg-pharmfac.net/vaxijen/VaxiJen/VaxiJen.html
http://www.ddg-pharmfac.net/vaxijen/VaxiJen/VaxiJen.html
https://prosper.erc.monash.edu.au/


Antibiotics 2022, 11, 1196 33 of 59

Identical septapeptide KRKRWHW is present in the C-terminal segment GQEQR
KRKRWHWRKFHKK of bacterial protein A0A1G1FKX2 from Nitrospiraceae bacterium
named the PSP1 C-terminal domain-containing protein (preliminary data). The segment
is also predicted with a high uptake efficiency (CPP probability of 0.91) and increased
antibacterial and antifungal activity compared to its KRKRWHW fragment. Its binding
affinity for bacterial or eukaryotic mRNA may be more important according to the PROSITE
pattern https://prosite.expasy.org/doc/PS51411 (accessed on 7 August 2022) for the PSP1
C-terminal domain profile. The DP-Bind server predicts DNA-binding sites for all but the
first three residues: QRKRKRWHWRKFHKK. When the whole A0A1G1FKX2 protein (pre-
liminary data) is examined with the RNABindRPlus web server http://ailab1.ist.psu.edu/
RNABindRPlus/ (accessed on 7 August 2022), thirty binding sites to RNA are predicted,
but none of them are even close to the C-terminal sequence GQEQRKRKRWHWRKFHKK.

The biological significance of the PSP1 C-terminal domain for cell cycle regulation is
still under investigation [212]. Anyway, it is possible that rationally optimized molecular
docking and dynamics simulations by Wei et al. [168] rediscovered short nontoxic CPP,
which nature has already developed as a protein motif in some bacteria. The KRKRWHW
peptide (KW) exhibits non-covalent binding to disaccharide trehalose. Trehalose provides
an exceptional stabilization of proteins during the desiccation procedure for extended
storage [213,214]. Loading trehalose in mammalian cells is considerably more efficient in
combination with the KW peptide and less damaging than other procedures for introducing
that disaccharide into cells [168].

Anticancer and antiviral activities are well predicted for the KW peptide fused to
BMAP-18 cathelicidin fragment GGLRSLGRKILRAWKKYG of BMAP-28 antimicrobial
peptide, which targets mitochondria [174] (peptide 25, Table 4). BMAP antibiotics cause
mitochondrial depolarization and cytochrome c release by opening the mitochondrial
permeability transition pore.

We used peptides CGIKRTK, CGAKRTK, CGNKRTR, RCGNKRTR, and RCGIKRTK
as short CPPs for designing multifunctional constructs (see Table 2 peptides 15, 18, 20, and
21; Table 3 peptide 8; Table 4 peptide 20; Table 5 peptides 1, 2, 7, 18, 22, 26, 27, 31, and 32).
The tLyP-1 tumor-homing peptide CGNKRTR [146] is found in predicted helicases from
Ferroplasma species (Archaea) HII82410.1, A0A1V0N279, and A0A7K4FM37. Ferroplasma
sp. loves a hot acid, heavy-metal rich environment (pH from 0 to 2 and temperatures from
35 to 55 ◦C. The archeon exhibits strange ancient bioenergetics dependent on oxidizing
ferrous iron (Fe2+) to ferric iron (Fe3+). Helicases containing the CGNKRTR motif from
Ferroplasma sp. are classified as DEAD/DEAH-box helicases—the essential enzymes for
the survival of advanced invasive melanomas [215], lung adenocarcinoma [216], and renal
cell carcinoma [217]. Hence, a connection may exist spanning billions of years of biological
evolution with the evolution of invasive cancer cells.

Unsurprisingly, helicases have been popular study subjects from 1976 onward due to
their ability to unwind duplex DNA [218]. The CGNKRTR peptide is also present in the
unchanged or slightly changed form at the C-terminal of integral membrane protein for
sodium-dependent phosphate transport from Actinia tenebrosa and Nematostella vectensis (sea
anemones): respectively, XP_031563687.1, and XP_032222729.1 (A7RG57). Septapeptides
are too short of having solid evidence about their biological significance in the absence of
broad conservation. Octapeptide RCGIKRTK from the C-terminal of N. vectensis predicted
protein A7RG57 has higher probabilities for multifunctional activity than CGNKRTR (see
peptide 2 prediction results in Table 5). All conjugates mentioned above with the CGNKRTR
or its analogs are interesting for synthesis and testing. All have a well-predicted broad
activity spectrum, and only two (peptides 26 and 27 from Table 5) have higher predicted
toxicity to healthy mammalian red blood cells than magainin-2.

The predicted probability for anticancer activity is high for some hybrid peptides. It
is 0.92 or higher as the output of both ACP servers for peptides 20 and 21 from Table 2,
20 from Table 4, and peptides 2, 7, 22, 26, 27, and 31 from Table 5 containing tLyP-1 or
its analogs. The IFLLWQR septapeptide (IF7, see peptide 13 from Table 4) binds to the

https://prosite.expasy.org/doc/PS51411
http://ailab1.ist.psu.edu/RNABindRPlus/
http://ailab1.ist.psu.edu/RNABindRPlus/
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annexin-1 protein, which is over-expressed on the endothelial caveolae surfaces of different
tumors [219]. Through endocytosis, annexin family proteins are internalized, allowing IF7
conjugates with anticancer drugs (such as anticancer peptides) to penetrate tumor cells
freely. Many other short tumor-homing peptides are described in the literature [170].

Xia Xu developed with collaborators several additional short CPP for helping anti-
cancer drugs enter tumor cells. These are RRRRRWW [220], RRRRQWWQW [221], and
RRRRRWWPP [188]. Employed servers suggest an antibacterial, antiviral, and antifungal
activity for the IKKIVSKIKKLLK-PPWWRRRRR conjugate, good cell-penetrating ability,
and low toxicity (see peptide 47, Table 5). The reversed sequence of the RRRRRWWPP
positioned the proline residues near the peptide middle due to expectations of increased
selectivity [185,222].

The high electric field of energized mitochondria attracts arginine-rich CPPs after
they pass through the plasma membrane. Peptide 13 from Table 4 may have multiple
means for internalizing tumor cells and reaching mitochondria due to its asparagutin
moiety. Peptide 6 from Table 3 is an example of how attached asparagutin RRWFRRRRRR
can promote the uptake of mitochondrial-homing peptide MIASHLLAYFFTELN (dubbed
pHK). Woldetsadik et al. [147] fused the homing peptide with the penetration-accelerating
sequence GKPILFF [223]. The hybrid peptide MIASHLLAYFFTELN-GKPILFF-amide (pHK-
PAS) disrupted the association of hexokinase II (HK2) with mitochondria in cancer cells.
It led to mitochondrial dysfunction and apoptosis of cancer cells without substantially
increased cytotoxicity to normal cells [147]. Thus, the hybrid peptide containing pHK
and either RRWFRRRRRR or GKPILFF can be the artificial death signal for malignant
mitochondria with potential therapeutic applications (see peptide 6, Table 3). The pHK-
PAS peptide is predicted as non-ACP by both servers for anticancer peptides illustrating
difficulties in constructing such servers.

Malignant mitochondria and their protein–protein interactions contributing to can-
cer phenotype are key targets for chemotherapy because the respiratory metabolism of
mitochondria is crucial for cancer survival despite the Warburg effect. Mitochondrial
structure and function are different between normal cells and cancer cells. These differ-
ences offer a potential for the design of anticancer compounds acting on mitochondria
for the selective killing of cancer cells [224]. The peptide pHK prevents the hexokinase II
association with outer mitochondrial membrane VDAC porin [225]. The pentadecapeptide
M(1)IASHLLAYFFTELN(15) is the VDAC-binding N-terminal domain of human HK2
(Uniprot entry P52789), acting as a surrogate peptide for HK2. HK2-VDAC association
helps keep mitochondrial permeability transition pores in closed conformation when bound
to the ATP–synthasome complex [226]. Mitochondria die together with the cell containing
mitochondria when transition pores are continuously open due to the inhibition of the
HK2-VDAC association. HK2 enzymes are gatekeepers of life and death [227].

There are, of course, many other possibilities to fuse the pHK peptide with some
cell-penetrating peptide for easier access to malignant mitochondria. One such option
for targeting cancer cells with a designed artificial death signal has been explored by
Chiara et al. [225]. These authors used the HIV-1 TAT CPP peptide to create the MIASHLLA
YFFTELN(β-Ala)-GYGRKKRRQRRRG-amide hybrid, called HK2-TAT. Unfortunately, sub-
sequent experiments revealed that a low concentration of that hybrid peptide (1 µM
HK2-TAT) causes rat heart ischemia [228]. Hence, additional study is needed with different
pHK-CPP conjugates. One possibility is the MIASHLLAYFFTELN-GG-RCGNKRTK con-
struct that uses the tLyp-1 analog for the penetration acceleration of pHK. Its advantage
would be considerably lower toxicity (0.09 probability for hemolytic activity) in comparison
with HK2-asparagutin (0.44), HK2-TAT (0.34), and HK2-PAS (0.29).

Designed short tumor-homing peptides KW and tLyP-1 (peptide 1 from Table 4 and
peptide 1 from Table 5) are similar in N-terminal and C-terminal parts. The hybrid construct
CGNKRFRWHW may have a good combination of CPP and other multifunctional activities
for its short length. We added the Arg residue at its N-terminal because it is present as
a natural tLyP-1 analog RCGIKRTK. Central KRFR motif is present in some cathelicidin
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antimicrobial peptides. The resulting RCGNKRFRWHW conjugate (peptide 3 from Table 5)
will be named MFC for the Multi-Functional Construct. A likely membrane-stabilized
structure of the MFC is an amphipathic beta-strand for residues 5–11 (SPLIT prediction).
The DP-Bind server predicts DNA binding for all RCGNKRFRWHW residues. The most
interesting expected features are low toxicity and the absence of any hemolysis combined
with high cell-penetrating, anticancer, and antiviral activity of that undecapeptide. Two
C-terminal tryptophans are natural fluorescence probes for examining the location and
microenvironment of MFC added to membrane vesicles, organelles, or living cells. A high
density of positive charges and hydrophobic residues should help MFC accumulation
by topologically closed membranes with active bioenergetics. Histidine presence should
make it sensitive to pH changes. The presence of reactive cysteine facilitates chemical
modification for fine-tuning desired effects.

BLASTP search discovered only one natural MFC analog (peptide 30 from Table 5
named MFCA) with a similar sequence RCNRKRFRWQWK. The MFCA peptide is found
as the 36–47 segment of the uncharacterized protein (partial) KAF5879953.1 during a
recent genome analysis of walking catfish Clarias magur. Its predicted CPP probability
is promising 0.97 with a high score of 0.76 for uptake efficiency, but other predicted
multifunctional activities are not enhanced compared to MFC. The equally low likelihood
for the hemolytic activity of 0.01 leaves enough space for fine-tuning that peptide without
making it toxic to healthy human cells. Hybrid peptides 11, 12, 14–16, and 33–35 from
Table 5 illustrate how adding bioactive cargo sequences to MFC can result in widely
different hemolytic activity predictions. Seven conjugates are associated with predicted
hemolytic activity of 0.06 or less (peptides 12, 15, 16, and 33–35 from Table 5). For three
of them (peptides 15, 16, and 35), we used the same design approach as before by adding
a shorter pexiganan sequence (PexShort) or pexiganan’s N and C terminal tetrapeptides
(PexNC) (see peptides 8–10 from Table 2) to respective MFC terminals.

The peptides 15 and 35 from Table 5 with sequences RCGNKRFRWHW-GIGKLKKAKK
FGKKILKK and RCGNKRFRWHW-GIGKLLKRKKFGKKILKK have a maximal probability
(between 0.97 and 1.0) for clearing antibacterial, antifungal, and anticancer intracellular
targets. Peptide 35 is optimized for anti-inflammatory activity after two amino acid sub-
stitutions (bold and underlined residues), and its overall rank is seventh among all of
the considered peptides from Tables 2–5. An unexpected finding is a high probability
(0.93 or higher) for the antifungal activity of MFC conjugates 11, 12, 14–16, and 35. The
pexiganan analog cargo of these peptides may have a similar capability of depolarizing
mitochondria and killing fungi and parasitic intracellular protozoans as the pexiganan but
must be stabilized against proteolytic degradation [229].

For peptide 12 from Table 5, the bioactive cargo is Zp3a sequence GIKAKIGIKIKK
(see also peptide 32 from Table 3). That peptide was recently designed by Zeng et al. [161]
to eradicate the resistant Vibrio species pathogens, a frequent cause of disease outbreaks
related to seafood consumption. When combined with our MFC construct, or asparagutin,
a good compromise is achieved for Zp3a hybrids for predicted toxicity absence and broad-
spectrum multifunctional activity. These molecules are more likely than Zp3a to enter the
cytoplasm and disrupt mitochondrial membranes.

Mitochondrial-targeting peptide KLLNLISKLF is the prodeath domain MTD of the
Noxa, the BH3-only Bcl-2 family protein [157,178,230]. It causes cellular death by open-
ing the mitochondrial permeability transition pore and needs some cytosolic factor to
become toxic. Moreover, the peptide requires help to penetrate the cytoplasmic membrane
to reach mitochondria. Seo et al. [178] used the CPP-MTD sequence RRRRRRRRGRQ-
KLLNLISKLF (peptide 29, Table 4) to study MTD killing mechanism. Jeong et al. [157] used
the cationic RIMRILRILKLAR segment from the S5 subunit of a voltage-gated potassium
channel (Kv2.1) connected to KLLNLISKLFCSGT via glycine triplet. We fused it with the
asparagutin (peptide 27, Table 3) or the KRKRWHW CPP sequence (peptide 15, Table 4). All
multifunctional predictions are pretty good for these three hybrid peptides. Low toxicity
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predictions are, however, questionable because all cell types can be penetrated, and the
selectivity for cancer cells is not expected without some tumor-homing mechanism.

There are tumor-homing peptides that can be fused to the MTD. Seo et al. [178]
used CGNKRTRGC and CNGRCVSGCAGRC tumor vascular-targeting motifs discov-
ered by Arap et al. [231] to design selective MTD–CPP hybrids. The C2Pred server by
Tang et al. [23] predicts that the hybrid peptide CGNKRTRGCGGKLLNLISKLF (named
TU3: MTD) gains the CPP ability. That was verified in experiments by Seo et al. [178]. The
Chosun University from South Korea patented TU3: MTD and similar peptides in 2012 (US
patent 2012/0165269 A1).

Pfeiffer et al. [176] discovered that the antimicrobial peptide mastoparan (INLKALAA
LAKKIL-amide) facilitates the mitochondrial permeability transition. Mastoparan peptide
from wasp venom has a broad spectrum of activities. Among others, it causes cell death of
malignant melanoma cells by activating the mitochondrial apoptosis pathway [232]. The
hybrid peptide KW–mastoparan (peptide 27 from Table 4) has promising multifunctional
potential too.

Peptide 24 from Table 4 is the DP1 pro-apoptotic peptide constructed by Mai et al. [173]
with the sequence: RRQRRTSKLMKR-GG-KLAKLAKKLAKLAK. The N-terminal half is
the protein transduction domain PTD-5 [233], which is connected via Gly-Gly linker to the
C-terminal antimicrobial peptide (KLAKLAK)2 [234]. The DP1 is an efficient killer of tumor
cells from accessible solid tumors both in vitro and in vivo. The probable mechanism is
disrupting the mitochondrial membranes from these cells [173].

4.4. Magainin-2 Analogs Fused to Cell-Penetrating Peptides

Our Mutator server for predicting the therapeutic index TI [46] results in the maximal
possible TI = 94.9 for the magainin analog GIAKFLDSAKKFGKKFVKTIMQL (peptide 25
from Table 5). We underlined substituted residues regarding magainin-2. Maximal TI is the
best compromise between low hemolytic and robust antimicrobial activity. That magainin
analog entered before or after CGNKRTR CPP into constructs 26 and 27, which we designed
for the present paper. The HAPPENN server by Timmons and Hewage [40] rejects both
magainin conjugates after a probability prediction of 0.98 and 0.86 for their hemolytic
activity. It illustrates how different algorithms for predicting the same functionality can
produce contrasting results.

Some examples when predictions agree with experimental results are magainin-2-
pAntp [172] and magainin-2-bombesin conjugate [171,235] (see prediction results for pep-
tides 22 and 23 from Table 4). Magainin-2 and bombesin were both isolated from frog
skin. Bombesin is a cancer-homing peptide apt to recognize various human cancer cells.
The magainins exhibit a modest anticancer activity (see peptide 6 from Table 5 and refer-
ences [236–238]. Liu et al. [235] provided a positive answer to whether the conjugation
of magainin 2 (MG2) to the bombesin could enhance the selectivity and cytotoxicity of
hybrid peptide MG2B against tumor cells. It induced apoptosis of tumor cells in vivo
and in vitro. The killing mechanism involves increased binding to cancer cell membranes
and increased translocation into these cells. Cellular uptake of MG2B was confirmed by
Liu et al. [235] after using fluorescein-labeled MG2B and fluorescence-activated cell sorting.
Hence, we have the experimental confirmation for the CPP activity of MG2B despite Table 4
(peptide 22) prediction of the smallest CPP probability (0.30) for MG2B among all 52 pep-
tides from that table. Unconfirmed MG2B ability is for treating polymicrobial co-infections
(bacterial, viral, and fungal) and cancer. Immunocompromised persons receiving common
anticancer drugs, patients with organ transplants exposed to immunosuppressants, or
patients with a partially destroyed immune system (after HIV infection, for instance) are
prone to co-infections. They can benefit from antimicrobial peptide conjugates with the
unique potential to fight such infections [171].

Liu et al. [172] also examined magainin-2-penetratin conjugate (MG2A abbreviation,
peptide 23 from Table 4) for its selective anticancer activity. They observed that penetratin
binds to chondroitin sulfate (CS), which is overexpressed on the surface of some tumor cells.
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Thus, penetratin should be able to act as a tumor-homing and cell-penetrating peptide at the
same time while enhancing the anticancer activity of magainin 2. Achieved selectivity was
not outstanding because the therapeutic index was not higher than three to five, meaning
that cytotoxicity to normal cells was only five times lower. Still, MG2A performed better
than MG2B, according to predictions for all beneficial activities (Table 4). Liu et al. [172,235]
did not examine these peptides’ antiviral and antifungal efficacy.

Magainin analogs coupled to shorter CPP are in Table 5 (peptides 7–9, 18–20, 22–24,
26–29, and 38). Some of them have better predicted overall performance than MG2A.
In the absence of experimental confirmation, there is no way to ensure their therapeu-
tic index is also better, but we have some reasons to expect so. Tumor-homing peptide
CGNKRTR and other short CPPs, such as KRKRWHW, RCGIKRTK, RCGNKRFRWHW,
RRWFRRRRRR, and RRRRRRFWRR may be able to provide good selectivity. Little cytotox-
icity to mammalian cells and high penetrating efficiency was confirmed for the KRKRWHW
peptide [168] (peptide 1 from Table 4). However, the predicted hemolytic activity for
hybrids 7–9, 18–20, 22–24, 26–29, and 38 is spread around the probability for magainin 2
(0.83) with no value lower than 0.57 for peptide 19 (the conjugate with KRKRWHW).

One can find in the literature multiple confirmations for the broad-spectrum activity
of magainin 2, its analogs and hybrids. It includes antibacterial [182,239], antiviral [240],
antiprotozoal [241], and antifungal activity [242] in addition to antitumoral properties. To
lower production costs, recombinant expressing systems have been developed to obtain
large amounts of biologically active peptides [239]. Certain magainin analogs from Table 5
also have confirmed antimicrobial activity (peptides 10 and 13 [182]; peptide 17 [183];
peptide 21 [184]). Peptides 10 (9P0-1) and 13 (9P1-3) exhibited, respectively, 8 to 125
and 4 to 65 times stronger antibacterial activity than their parent peptide 6 (magainin-
2) in Azuma et al. [182] experiments with Escherichia coli ATCC25922 and Staphylococcus
epidermidis ATCC12228 strain. That would be difficult to anticipate based on a slight
probability increase (from 0.95 to 0.99) for antimicrobial activity of analogs 10 and 13 by the
CAMPR3 algorithms (the SVM module) reported in Table 5. The CAMPR3 Discriminant
Analysis (DA) classifier obtains the same (correct) ranking for the antimicrobial potency,
that is, 9P0-1 > 9P1-3 > MG2.

Older designed MG2 analogs are peptide 17 [183] and peptide 21 [184] from Table 5.
Predicted SVM probabilities by the CAMPR3 server are 0.965 and 0.985 for the antimicrobial
activity of these peptides. The peptide 17 has confirmed antibacterial potency is from 6 to
40 times more potent in comparison to MG2 against, respectively, Pseudomonas aeruginosa
and Escherichia coli. A slight increase from 0.946 (for MG2) to 0.965 (for peptide 17) for the
probability of AMP activity cannot be easily interpreted as confirmation of the server’s
accuracy in predicting an order of magnitude stronger antibacterial activity detected in
experiments. Instead, it is a possible indication that the applied design principles of
Dathe et al. [183] are a good choice. For peptide 21, one amino acid substitution (Q19)
was enough for Matsuzaki et al. [184] to observe 4 to 8 times stronger antibacterial activity
against the Acinetobacter calcoaceticus ATCC 14987 and Escherichia coli ATCC 8739 strains.
That significant improvement also corresponded to a slight increase in predicted SVM
probability, from 0.946 for MG2 to 0.985 for Q19MG2. Attached asparagutin to peptide 17
significantly increased the probability for the CPP activity of the hybrid peptide 20 (also
from Table 5) without any apparent decrease in its potential for other MF activities. Two
CPP hybrids with peptide 21 with similar predicted features are peptides 23 and 24.

4.5. Imperfect and Perfect Activity-Enhancing Palindromes

The palindromic motifs RLLRRLLR and RWQWR enhance the antibacterial activity
against Gram-negative and Gram-positive strains [243] when chimeric peptides are con-
structed based on buforin 2 sequence TRSSRAGLQFPVGRVHRLLRK [159] and lactoferricin
fragment RRWQWRMKKLG [244]. Both buforin 2 and lactoferricin have confirmed strong
antibacterial, anticancer, antifungal, anti-endotoxin, DNA-binding, and cell-penetrating prop-
erties (see [8,159,245–247] for validated activities of buforin-like peptides, and [248–251] for
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lactoferricin-like peptides). Those and similar palindromic motifs can be employed as LEGO
pieces to achieve the desired fine-tuning of desired specificity and selectivity. Asparagutin
decapeptides RRWFRRRRRR and RRRRRFWRR are imperfect arginine-rich palindromes with
an excellent CPP potential (peptides 3 and 4 from Table 3).

In silico tests were performed with 48 asparagutin hybrids, including some analogs
with one amino acid substitution, which decreased the number of arginines to seven.
These are peptides 3, 4, 6, 7, 9–16, 20–29, 31–33, 35–38 and 42 from Table 3, peptides
12, 13, 17, 18, 21, 35, 37–39, 41–45, and 51 from Table 4, and peptides 9, 20, 24, 29, 38,
and 43 from Table 5. Summary Table 6 lists 8 asparagutin hybrids among the best 20
multifunctional peptides according to the overall score. All magainin analogs fused to
asparagutin retained the hemolytic activity and toxicity predictions similar to or worse
than magainins. That eliminated them from the ranks of the 20 best peptides (Table 6) due
to the strict requirements of the overall score for significantly lower hemolytic activity and
toxicity predictions.

Some authors concluded that the guanidino groups from arginines play a crucial role
in the membrane permeability of various molecules having different structures [211,252].
Designed penetratin analogs underlined the importance of the cell-penetrating role of the
last seven residues of Drosophila pAntp penetratin [253,254], namely, residues R(10)RM
KWKK(16). It is the motif BBXBXBB when B stands for cationic residues (R, K) and
X stands for hydrophobic residues. Alanine substitutions at each sequence position of
that septapeptide destroyed the cell-penetrating function of penetratin analogs except
for position 12 (Met-12 to Ala-12 substitution). Table 1 illustrates that natural evolution
during the last billion years also tolerated alanine substitution at the twelfth position of
all penetratin analogs. Examples of penetratin-like peptides from all animals (including
sponges and Placozoa) contain the same BBXBXBB palindromic motif. Exceptions from that
septapeptide palindromic rule are easier to find in homeotic proteins from other kingdoms
of life. Degenerate peptidic palindrome would probably be a better description [255]
because palindromic BB sides are connected with an asymmetric linker region (XBX is
usually MKW or AKW).

Binding to palindromic DNA sequences with perfect dyad symmetry does not re-
quire an equally ideal arrangement of the recognition helix from a transcription factor.
The DNA-binding proteins often contain imperfect palindromic motifs, which medi-
ate interaction with the DNA palindromic sequence. For instance, the RRSRARK sep-
tapeptide from DNA-recognition helix L(230)KRARNTEAARRSRARKLQRMKQL(253)
or A(229)LKRARNTEAARRSRARKLQRMKQ(252) [256] of yeast transcriptional activator
GCN4 (2DGC PBD identification for the P03069 protein) is anchored inside the major
groove of the palindromic ATF/CREB site and conforms to the same BBXBXBB peptide
palindrome with an asymmetric linker [257,258].

The BBXB is the simpler of two Cardin–Weintraub motifs [110] for heparin sulfate
proteoglycan recognition [259], indicating that penetratin-like peptides can first bind to
negatively charged glycosaminoglycans before they enter eukaryotic cells. Most cationic
CPP conform to this motif due to the high density of positively charged residues [260]. Cell
surface proteoglycans promote the uptake of arginine-rich penetratin-like peptides [261],
but the uptake mechanism is still disputed [53,262]. Peptide-phospholipid interaction at the
plasma membrane surface may mediate internalization at low, while accumulated peptide-
glycosaminoglycan clusters activate endocytosis at higher, peptide concentrations [263].
By the way, both choices for the recognition helix (see above) from the GCN4 master
regulator of gene expression (which activates more than 500 genes [264]) also have a high
probability (0.95 to 0.96 according to the MLCPP server) to act as cell-penetrating peptides.
So does the recognition helix ERKRLRNRLAATKCRKRKLERIAR [256] from the JunB
prokaryotic transcription factor (CPP probability 0.96), which contains shorter BBXB and
longer BBBXXB CW motifs (underlined). A dual role of CW motifs is essential for exported
morphogens such as Sonic hedgehog protein and growth factors midkine and pleiotrophin,
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which bind to heparan sulfate in the form of monomers or multimers and show bactericidal
activity [265,266].

4.6. Construction of Chimeras Containing Bacterial Pheromones or Ribosomal-Homing Peptide

Almost all chimeric peptides from Tables 3–5 are predicted to exhibit antibacterial, an-
tiviral, and anticancer activity. Homing peptides often gain multifunctional abilities when
fused to CPP sequences. Adding the N-terminal ribosomal-homing peptide YKWYYRGAA
(RHP) to penetratin produces peptide 5 from Table 3 with the sequence YKWYYRGAAR-
QIKIWFQNRRMKWKK, which readily enters into and kills all eukaryotic cells, whether
healthy or malignant [54]. A killing mechanism involves binding to the ribosomal pro-
tein RPL29 and disrupting ribosomal function. Both algorithms for predicting anticancer
activity, the ACPred [26] and mACPred [27], agree on predicting high ACP probability
(respectively, 0.95 and 0.98). Antiviral activity for that peptide is also possible (probabilities
equal to or higher than 0.8). In vivo usefulness is doubtful due to the peptide’s nonselective
cytotoxicity, which agrees with the probability of 0.97 for its hemolytic activity.

Sequence 7 from Table 3 contains the same ribosomal-homing motif, but its CPP part
is our WFR8 peptide. Predictions are better for almost all activities calculated in that Table
than the peptide 5 results. The most encouraging is the prediction by the HAPPENN
server for hemolytic activity. The peptide YKWYYRGAARRWFRRRRRR is expected to be
non-hemolytic (with a small probability of 0.12 for the hemolytic activity). The predicted
absence of hemolytic activity is even better for peptide 2 from Table 4 (0.02 probabil-
ity), which we constructed as fused ribosomal-homing peptide YKWYYRGAA and short
cell-penetrating sequence KRKRWHW designed by Wei et al. [168]. Hexadecapeptides
YKWYYRGAAKRKRWHW and KRKRWHWGYKWYYRGAA (also 0.02 probability for
hemolytic activity) look like promising lead compounds for selective anticancer activity
(probability range from 0.97 to 0.99). Cell-penetrating peptide-based anticancer therapies
provide the advantage of rapid delivery to intracellular targets and low toxicity compared
to other drugs [267,268].

We can also consider designed hybrids when ribosomal-homing peptide YKWYYR-
GAA is fused with other shorter CPPs of minimal toxicity, such as reverse-WFR8, CGNKRTR,
RCGIKRTK, and RCGNKRFRWHW (respectively, peptides 4 from Table 3, and 1–3 from
Table 5). These are sequences YKWYYRGAARRRRRRFWRR (peptide 33 from Table 3),
CGNKRTRYKWYYRGAA, RCGIKRTKYKWYYRGAA, and RCGNKRFRWHWYKWYYR-
GAA (peptides 31–33 from Table 5). All of them should have good cell-penetrating activity
(probability range from 0.78 to 0.97) without any hemolytic activity (probability predictions
of 0.04 or less). If some other well-predicted activities are confirmed (anticancer, antiviral,
or antifungal) among these four MF candidates, this would be an additional motivation for
drug development.

The significant achievement in using pheromones for targeting specific pathogenic bacteria
is the construction of the C16G2 peptide TFFRLFNRSFTQALGKGGGKNLRIIRKGIHIIKKY,
which is specifically targeted toward dental caries causing Streptococcus mutans [269,270]. The un-
derlined domains in the peptide’s tripartite structure have different functions. The N-terminal
part is the targeting sequence TFFRLFNRSFTQALGK derived from S. mutans competence-
stimulating peptide, quorum-sensing bacterial pheromone. By itself, this domain has weak
antibacterial activity. The GGG triplet is introduced next to provide a flexible linker. Underlined
C-terminal domain KNLRIIRKGIHIIKKY is well-known broad-spectrum peptide antibiotic
novispirin G10 [152,271] derived from sheep AMP ovispirin-1 by glycine for isoleucine sub-
stitution at the sequence position 10 to decrease ovispirin toxicity to human cells. It is the
“killing domain” forming kinked amphipathic alpha helix in a membrane with resulting high
hydrophobic moment. The HAPPENN and ToxinPred offer conflicting predictions. Expected
hemolytic activity is very high (0.986 probability), while toxicity is low (−0.98 score).

Just-described discoveries opened a new field of specifically targeted chimeric an-
timicrobial peptides with a bright perspective of being used daily as a mouth rinse or
as an essential ingredient in toothpaste to prevent caries. The importance of research in
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the case of C16G2 is illustrated by many clinical NIH-funded trials involving voluntary
participants, with seven already completed: https://clinicaltrials.gov/ct2/results?term=
C16G2&Search=Search (accessed on 26 July 2022).

One can use the same principle to construct other chimeric antimicrobial peptides
with a flexible linker connecting the AMP region and the pheromone for targeted bac-
teria. One possibility to test is combining the S. mutants UA 159 mature pheromone
GLDWWSL [272,273] with short but powerful broad-spectrum antimicrobial peptide RRL-
FRRILRWL [156]. With the same GGG linker, we designed specifically targeted chimeric
AMP: GLDWWSLGGGRRLFRRILRWL, which is considerably shorter (21 amino acid
residues) and cheaper to synthesize than the C16G2 peptide (35 amino acid residues). It
has a very high hydrophobic moment for an amphipathic helix in the second half of its
sequence. The hemolytic activity prediction for that peptide decreased to an acceptable
magainin 2 probability (0.823). The predicted toxicity score is substantially lower (−1.52).

For gangrene-causing Streptococci sp., some other Streptococci-specific pheromones
can be helpful, either alone [274], or when combined with a broad-spectrum AMP. For
instance, it may be interesting to test the SilCR competence-stimulating peptide DIFK-
LVIDHISMKARKK linked with GGG triplet to RRLFRRILRWL or KNLRIIRKGIHIIKKY
AMP when Streptococcus pyogenes or Streptococcus dysgalactiae is detected in necrotizing
tissue. In the case of Streptococcus oralis, implicated in throat infection or dental plaque
formation, the pheromone choice can be DWRISETIRNLIFPRKK. For multi-drug-resistant
Streptococcus strains, it would be advantageous to have an alternative option of antibiotics.
The few examples we described for chimeric-targeted AMPs are only a minuscule portion
of all possibilities. Still, the critical point here is that we can perform the rational design of
promising chimeric peptides in silico before testing in the laboratory.

4.7. The Optimization of Multifunctional Constructs

Table 5 peptides 31–52 represent in silico attempts to answer different questions
about the design of multifunctional peptides. A rational approach toward better anti-
inflammatory activity increased the overall score of MFC (peptide 3) fused with short
pexiganan analog (peptide 35) enough to classify it among the best 20 multifunctional
peptide constructs (seventh). The same approach was successful with the PR-35 analog
(peptide 45), the 13th peptide in the overall rank (Table 6). The parent peptide for the PR-35
analog is the antimicrobial PR-39 cathelicidin from the pig (the P80054 UniProt entry).
Interestingly, all seven automatic substitutions replaced prolines to increase the predicted
anti-inflammatory activity without decreasing the potential for CPP and most other PR-39
and PR-35 functionalities (compare peptides 41, 44, and 45 from Table 5).

Cecropin-magainin-2 hybrid peptide 39 (dubbed P18 by Shin et al. [185]) is the oppo-
site example when suggested amino acid substitutions by the Anti-inflammatory server
by Gupta et al. [35] produced its analog (peptide 46) with a high probability for hemolytic
activity and no toxicity decrease. Substitution of central Pro residues with Leu elimi-
nated low hemolytic activity predicted and observed for P18. However, substitutions
suggested by the ToxinPred server by Gupta et al. [37,38] and the HeliQuest server by
Gautier et al. [275] decreased the predicted hemolytic and toxic activity. In the optimized
sequence KWRLFKKI-P-RFLRSARRF (peptide 49 from Table 5), we selected substitu-
tions that replaced all but the first cationic residue with Arg. We rejected all substitutions
for central proline residue to maintain the high selectivity [222]. The other five servers
predicted better multifunctional activities for that highly amphipathic helical peptide
CA-MA2-analog2, including its cell-penetrating ability.

The amphipathic peptide LKLLKKLLKKLLKLL-NH2 (peptide 40, named K6L9) does
not look promising due to observed and predicted potent hemolytic activity [186]. Still, its
good antimicrobial and anticancer properties [276] stimulated the search for non-hemolytic
analogs. For helical peptides with a continuous hydrophobic face, the selectivity can be
increased together with the reduction in the hemolytic activity by inserting charged or
D-amino acid residues into that helix face [277,278]. The LKlLKkLlkKLLkLL-NH2 analog of
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K6L9, named D-K6L9, has five D-amino acid residues (lower case letters indicate D-amino
acids). It does not show any hemolytic activity, and it is better protected from in vivo
cleavage by proteases [186]. Another ingenious chemical modification is the introduction
of the site-specific isopeptide bond switch in K6L9. One such peptide, Amp1EP9 [279],
is a stable and non-toxic antimicrobial peptide with other possible beneficial functions,
such as anticancer and cell-penetrating. Unfortunately, the servers used in this review
work only for the proteinogenic amino acids interconnected with peptide bonds. We
can, however, imitate the D-K6L9 peptide by Gly and Arg substitutions into sequence
locations 3 and 8 (Gly substitutions) and 6, 9, and 13 (Arg substitutions). The resulting
LKGLKRLGRKLLRLL-NH2 peptide has a considerably lower probability of hemolytic
activity (0.153 instead of 0.907) with similar predictions for all other functionalities.

Like PR-39, pyrrhocoricin is also a proline-rich antibacterial peptide (peptide 42 from
Table 5). That host defense peptide from insects is devoid of in vitro or in vivo toxicity
and has confirmed low hemolytic activity [187,280] (probability of 0.004 according to the
HAPPENN server). Akin to other proline-rich peptides, pyrrhocoricin can enter a cell’s
cytoplasm and exhibits multiple functions [280]. A recent finding is that the PRP repeat
from pyrrhocoricin blocks the exit tunnel of 70S bacterial ribosome, which is essential for
synthesizing all proteins [281,282]. Together with its cell-penetrating ability, this would
explain the very high selectivity index and nanomolar concentration of pyrrhocoricin,
which is enough to kill E. coli D22 and Agrobacterium tumefaciens [187]. It may be possible to
broaden and strengthen the activity spectrum of pyrrhocoricin by fusing it with asparagutin
(see Table 5 results for peptide 43).

4.8. Antimicrobial Peptides with Anticancer Activity Fused to Cell-Penetrating Peptides

A common theme in research about cancer and multidrug-resistant bacteria is the
toxic side effects of last-resort drugs and natural obstacles impeding them from reaching
their targets. Multifunctional peptides have the potential to overcome both hindrances.
Besides magainins, many other natural peptides have verified antimicrobial and anticancer
activity. Antibacterial AMPs with anticancer activity (ACP) are often cytotoxic to healthy
human cells, but some are highly potent against bacteria and cancer cells while harmless to
normal mammalian cells. Hoskin and Ramamoorthy [1] introduced classifications based
on two general modes of AMP anticancer activity and several structural features in their
influential review.

The structure of BMAP peptides, cecropins, LL-37, hCAP-18, magainins, tempo-
rins, fowlicidins, gaegurins, aureins, citropins, brevinins, ranatuerins, melittins, and their
analogs is predominantly amphipathic α-helical in the membrane environment. Melittins
are cytotoxic to all cells. Defensins, lactoferricins, and tachyplexins form amphiphilic β-
sheet structure, while Pro-Arg-rich cathelicidin PR-39 and pyrrhocoricin lack the secondary
structure. Some ACPs have a cyclic structure usually formed by disulfide bonds. Gomesin,
tachyplexin I, and defensins are well-known examples. Our DADP database of anuran
defense peptides ([283]; http://split4.pmfst.hr/dadp/, accessed on 7 August 2022) contains
108 peptides with dual AMP and ACP functions.

Gaspar et al. [2] enlisted 18 primary sequences for peptides with published data about
their anticancer activity toward solid and hematological tumors. They concluded that
the remaining challenges are delivery to tumor cells and lowering toxicity profile against
healthy cells. The review of Deslouches and Di [171] lists 18 representative AMPs exhibiting
anticancer activity as promising targets for drug development. The ADP database version
3 ([284]; https://aps.unmc.edu/AP/, accessed on 7 August 2022) contains 266 AMPs with
anticancer activity. That is close to 8% of all their entries for antimicrobial peptides (a total
of 3425 peptides). A richer CAMPR3 database with more than ten thousand antimicrobial
peptides contains even more ACPs. The CancerPPD database [285] encompasses more
than 600 experimentally confirmed anticancer peptides. Felício et al. [3] concluded their
review of dual AMP and ACP activities with a statement that at least 10 of these peptides
can be approved for clinical applications during the next five years. Low selectivity, high

http://split4.pmfst.hr/dadp/
https://aps.unmc.edu/AP/
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production costs, and low resistance to proteolytic cleavage slowed down the progress in
the drug delivery pipeline. Still, some peptide candidates exhibited cytotoxic activity and
good selectivity against multidrug-resistant cancer cells.

A more recent review by Tornesello et al. [286] mentions only one natural dual-
action peptide (AMP and ACP), which reached phase II of clinical trial steps for the
melanoma target. It is the LL-37 peptide with the primary structure: LLGDFFRKSKEKIGKE-
FKRIVQRIKDFLRNLVPRTES.

The LL-37 is one of the best-known multifunctional peptides and the only cathelicidin
expressed in humans. Nijnik and Hancock [287] enumerated 12 different experimentally
confirmed functions for LL-37, including immune modulation, wound healing, and an-
giogenesis, besides its antimicrobial and inhibition of biofilm formation activity. They did
not discuss early indications of its anticancer, antiviral, antifungal, DNA binding, and
cell-penetrating activity. Two LL-37 weaknesses are its weak potential for cell penetration
(probabilities 0.68 and 0.45 for, respectively, CPP activity and uptake efficiency according
to the MLCPP server) and low therapeutic index between 3 to 5 due to its toxicity to
eukaryotic cells at slightly higher concentrations [1]. The selectivity index measured by
hemolysis and minimal inhibitory concentration for bacterial growth is about 20 [288].
Regarding anticancer activity, LL-37 suppresses tumorigenesis in gastric cancer, but there is
a perplexing implication for LL-37 in promoting breast, ovarian, and lung cancers [289].

Efforts to minimize the cost of peptide synthesis identified the LL-37 central helical
region as the most important for its antibacterial, antibiofilm, and antiviral activity [290].
The same author (Guangshun Wang) subsequently added glycine at the N-terminal of their
peptide GF-17 with the primary structure FKRIVQRIKDFLRNLV, which retained some
antimicrobial and anticancer activity. To make it more resistant to proteases and more
potent against multidrug-resistant ESKAPE bacterial species, Wang et al. [291] substituted
two L-isoleucines and one L-leucine with three D-leucines. They also introduced several
chemical modifications to make it more hydrophobic [291]. In the most active stable version
of the GF-17 peptide, these authors replaced both phenylalanines with biphenylalanines.
Substitution of Phe for biphenylalanine residues increases peptide hydrophobicity and self-
assembly propensity. The resulting GF-17 analog, named 17BIPHE2 by Wang et al. [291],
was equally potent against the S. aureus USA300 MRSA strain and the Gram-negative
multidrug-resistant strains (MIC = 3.1 µM) with considerably higher SI = 73 compared to
its parent peptide LL-37.

In our studies on how peptide antibacterial performance changes between Gram-
negative and Gram-positive species [292], we have seen that high selectivity is more difficult
to achieve against Gram-positive species such as Staphylococcus aureus. One possible reason
is that more active peptides against S. aureus strains are more hydrophobic and more
toxic to human cells. This makes it challenging to find the best compromise between low
toxicity to healthy human cells and high wide-spectrum potency against most pathogenic
bacteria and cancer cell types. Nevertheless, the 17BIPHE2 peptide exhibits 16 times better
performance PE = SI/MIC than pexiganan’s performance against S. aureus strains (see
reference [292] for antibacterial performance definition and estimates). Still shorter LL-37
dodecapeptide with one D-Leu residue in its primary structure KRIVKLILKWLR, named
KR-12-a5(6-DL) by Kim et al. [293], had a mean MIC = 3.4 µM, and SI = 61.2 (D-Leu at 6th
location is in italic font).

In our experience, the majority of natural or designed peptide antibiotics with an excel-
lent performance against a broad spectrum of Gram-negative and Gram-positive bacteria
(including some multidrug clinical isolates) are likely to exhibit some degree of selective an-
ticancer activity too. Good examples are the peptides we designed and named trichoplaxin-
2a, pexiganan-L18, flexampin, zyk-1, adepantin-1a, and mapegin [88]. Their respective
sequences are: RHHWRRYARIGFRAVRTVIGK (T2R1), GIGKFLKKAKKFGKAFVLILKK
(PEXA), GIKKWVKGVAKGVAKDLAKKIL (FLEX), GIGREIIKKIIKKIGKKIGRII (ZYK1),
GIKKAVGKALKGLKGLLKALGES (A1A), and KIGKKILKALKGALKELA (MAPA). For
prostate cancer PC-3 cells, the IC50 concentrations ranged from 1.5 (Zyk-1) to 12 µM (A1A),
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which is 40 to 5 times stronger anticancer activity compared to the Polybia-MP1 anticancer
peptide IDWKKLLDAAKQIL-NH2 [88,294].

There are other examples when experimental confirmations exist for the conjugates
to target cancer cells or their organelles [146,147,158,160,295]. Conjugates with reversed
optimal penetratin (peptides 17, 18, 20, and 21 from Table 2) belong to the same category.
Their cancer-homing C-terminals are tLyP-1 peptides or their analogs (see peptide 1 from
Table 5). Such peptides can be the artificial death signal for malignant mitochondria and
tumors. The associated probability for hemolytic activity is negligible (see the HAPPENN
server results from Table 2). Thus, therapeutic applications are possible for nontoxic or
weakly toxic anticancer peptide conjugates with tLyP-1, even when one of the two servers
we used does not predict anticancer activity.

A particular class of anticancer peptides can elicit tumor eradication through cytotoxic
T-cell responses. For instance, cancer vaccination is performed with telomerase peptide
EARPALLTSRLRFIPK named GV1001 [296]. The peptide can internalize into the cell
cytoplasm [154]. Uptake efficiency prediction is boosted from low to high when the GG
linker is introduced, and asparagutin is attached to construct the hybrid peptide 24 from
Table 3.

Transforming dual-function (antimicrobial and anticancer) into a multiple-function
peptide is easy in silico. One example is the asparagutin–adepantin hybrid sequence
(peptide 18 from Table 4), which ranks 19th without substitutions (see overall rank from
Table 6). This would not be possible if the conjugate did not excel at all six predicted
activities in combination with low toxicity. One amino acid substitution in the adepantin
1A (Gly15 replacement with Leu15) increased the anti-inflammatory activity score from 1.36
to 1.62, according to the AntiInflam server. Still, the overall score decreased from 19th to
21st (see peptide 51 in Tables 4 and 6). It illustrates how easily optimizing anti-inflammatory
activity can increase hemolytic activity and decrease other beneficial functions.

4.9. Design Examples for Low Toxicity and Multiple Activities

The design for common antimicrobial, anticancer, and cell-penetrating ability can start
with known AMP to which CPP is fused to increase the cell-penetrating efficiency of a hybrid
peptide. It can also begin with known CPP by introducing amino acid substitutions to widen
its activity spectrum. Let us first describe how we achieved the goal of in vitro antibacterial
and anticancer activity for a modified CPP named mapegin [88]. Its parent CPP is well-known
MAP sequence KLALKLALKALKAALKLA [166]. Rational design by Juretić et al. [88] resulted
in the mapegin sequence KIGKKILKALKGALKELA (named MAPA). It differs from the MAP
sequence in highlighted and underlined amino acid residues I2, G3, K4, I6, G12, and E16,
which increased flexibility (due to two glycines) but did not decrease the high amphipathicity
feature of the parent peptide. We confirmed the predicted decrease in hemolytic activity and
good antibacterial and anticancer activity. Minimal inhibitory concentrations of mapegin
against E. coli and S. aureus bacteria (including drug-resistant strains) ranged from 0.5 to 8 µM,
while IC50 against PC-3 prostate cancer cells was 8 µM [88].

Selectivity (toxicity absence) was not so good. For healthy human fibroblasts, the
therapeutic index was about three. Regarding the hemolysis of human erythrocytes, the
selectivity index was variable for different bacterial strains but more often on the low side.
For E. coli and S. aureus the SI range was 10 < SI < 40. The 50% hemolysis after mapegin
application was reached already with the peptide concentration of 20 µM. It is still an
improvement in the hemolytic activity of the parent peptide (MAP), which is toxic to red
blood cells. Moreover, mapegin is at least two times stronger antibacterial compound than
MAP. The probability of hemolytic activity is low for mapegin, according to the HAPPENN
server (0.079). Predicted cell-penetrating, antifungal, and anti-inflammatory activity of
the mapegin await experimental confirmation. The cell-penetrating activity is expected to
decrease due to six amino acid substitutions introduced into already excellent MAP CPP.

If we want to regain an excellent CPP function, the mapegin can be fused to some
known CPP, such as the TAT peptide. We formed hybrid peptides mapegin–TAT (T3-
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48), mapegin–TAT analog1 optimized for higher anti-inflammatory activity (T3-49), and
mapegin–TAT analog2 optimized for lower toxicity (T3-50). These are peptides 48–50 from
Table 3. Their good overall rank (27th, 30th, and 11th, Table 6) makes all of them interesting
for various applications. The disadvantage of hybrid peptides is their longer length and
the increased cost to synthesize them.

We performed the rational design to obtain wide-spectrum antibacterial compounds
before any tests on cancer cell lines [88]. Some dual-function peptides (PEXA, FLEX,
ZYK1, A1A, and T2R1) are as good initial choices for creating hybrid peptides as the
mapegin (see predictions for peptides 17–21, 35, 46–49, and 51 from Table 4). Observed MIC
concentration values against E. coli ATCC 25922 and S. aureus ATCC 29213 were around
one micromolar for all these peptides. The activity and the therapeutic index TI were
surprisingly good against human prostate PC-3 cancer cells. After comparing peptide
toxicity toward healthy human fibroblasts, we observed that the TI range was from about 3
(for mapegin and pexiganan-L18) to 10 (trichoplaxin-2a) [88]. Thus, for these six peptides,
the therapeutic index tested on PC-3 cancer cells is not as high as the selectivity index for
bacteria, which ranges from about 10 to more than 1000. Nevertheless, it is better than
the TI for the anticancer peptide MP1 [294,297], which we used as a control. Since MP1
exhibits a moderate anticancer activity on tumor cell lines (around IC50 = 50 µM), our
peptide antibiotics also have considerably better activity against cancer cells. There are, of
course, other examples of how one can modify CPP or AMP templates for designing their
anticancer or multifunctional analogs [1,3,5,6,12,166,298–301].

Our choice of online servers, mACPpred and ACPred, for anticancer activity is sub-
jective and subject to flaws. There are some contradictory predictions for the anticancer
activity (peptides 3–6, 14, and 15 from Table 2; peptides 6, 8, 28, and 29 from Table 3; peptide
41 from Table 4; and peptide 36 from Table 5). The reader can notice that the ACPred server
frequently gives the ACP probability of around 0.98. This would be difficult to falsify in
experiments because there is always the possibility that the peptide is active against a
particular cancer cell line but inactive against other malignant cell types.

The lack of toxicity for proliferating human cells is questionable if a permanent
blockage occurs for selected transcription sites in human DNA. On the other hand, a
surrogate peptide that inhibits DNA binding of transcription factors needed for cancer cell
proliferation may be useful in cancer treatments. It would be a welcome outcome for our
hybrid peptides to directly prove their worth as anticancer peptides. Novel short CPP can
serve as penetratin to import anticancer cargo drugs to desired internal targets in tumor
cells. There are many other DNA/RNA-binding cryptides that can be used directly or in
a modified form to increase libraries of multifunctional peptide assets. All transcription
factors (TF) are prospective parent proteins for such peptides.

5. Summary Comments about Peptide Constructs

All the 20 best peptides (1st to 20th in the overall rank) have a high probability of
intrinsic disorder throughout their length (see Table 6 legend). Due to their plasticity, there
is no conflict with assuming a partially ordered structure in a suitable microenvironment.
They often obtain an amphipathic secondary structure consisting of two arms with a flexible
linker between them (α-helix or β-strand-hinge-α-helix or β-strand) when bound to an
anionic membrane surface. After cell penetration and interaction with internal macro-
molecules, the peptides can change their conformation again. There is a high probability of
forming DNA or RNA contacts, but it differs in the extent and sequence location among
different peptides and their segments. For the best 20 peptides, the predicted binding sites
with nucleic acids encompass 41% (sixth) to 100% (first and third) of their length (see Table 6
legend). Predicted protein binding residues make up from 10% to 70% of their length.

The spectrum of the most disordered and malleable structures adapting the conforma-
tion to different targets is not reserved for the listed Table 6 sequences of two-arm peptides.
From the remaining nine Table 6 peptides and other Tables 2–5 sequences, there are also
examples when all of their residues are predicted with disordered conformation and high
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binding probability to nucleic acids. This is the case for the 22nd peptide, which is the con-
jugate of reversed optimal penetratin analog with the tLyp-1 analog (see peptide 21 Table 2),
and the T2R3G3 construct with an overall score of 0.7981 (see peptide 34 from Table 3).
The T2R3G3 is a modified trichoplaxin 2 analog sequence after adding two N-terminal and
three C-terminal residues. It is a highly amphipathic α-helix membrane-binding structure
for its central 6–21 segment (SPLIT algorithm prediction). The only outstanding feature of
the first peptide (temporin analog fused to asparagutin analog) is its absence of predicted
protein-binding contacts and the perfect separation between DNA-binding (1–11) and
RNA-binding segment (residues 12–25).

We verified that with different scoring methods, temporin-CPP hybrids with a central
bend interrupting helical structure are still top-ranking multifunctional peptides. Glycine, as a
single or double linker in the central position, allows for a greater freedom of movement and
better exploration of targets for the hybrid peptides. Increased flexibility contributes to better
selectivity and lesser toxicity of hybrid peptides containing such a linker. Higher selectivity
is the outcome for some of the designed peptides when central proline residue or proline
doublet introduces the hinge between bioactive and cell-penetrating peptide segments.

Temporins were described and named by Simmaco et al. [302] as the smallest natural
antibacterial peptides known at that time. They were first found from the skin secretion
of Rana esculenta [303] and Rana temporaria [302], amphibian species widely distributed
in Western and Central Europe. The top-listed in silico-designed candidates (Table 6) are
certain temporin analogs fused to the RRWKIVVIRWRR, RRWFRRRRRR, or KRKRWHW
cell-penetrating peptides. Natural temporins are amidated at their C-terminal, have a
low net charge (from −1 to +3), and have a short length of between 8 and 17 amino
acid residues [304,305]. Typically, they exhibit an amphipathic α-helical conformation
in a nonpolar environment. Low toxicity to healthy mammalian cells, low cost for their
synthesis, and multifunctional activity against bacteria, viruses, filamentous fungi, yeasts,
protozoa, and cancer cells are well-known advantages of some natural temporins [304].
Temporin L, with the highest net charge (+3), has the broadest activity spectrum [306].

The therapeutically promising ability of temporins is that they do not harm macrophages
at concentrations lethal to these cells’ intracellular parasites [304]. Anti-protozoa activity was
not considered in our review, but neither were the anti-endotoxin, chemotactic, synergistic,
and anti-biofilm formation activities attributed to temporins [307,308]. Of special interest are
anticancer, antiviral, and fungicidal abilities of some temporins [304,309,310].

Synthetic analogs are often better than their “parent” peptides for desired activity.
Shang et al. [112,311] examined highly charged analogs of temporin 1CEb starting from
its sequence ILPILSLIGGLLGK-NH2 [162]. One of these analogs with six lysines and the
sequence IKKIVSKIKKLLK-NH2 was named L-K6V1 [112]. It forms considerably less
hydrophobic and more amphipathic helix in a membrane environment. Regarding their
functionality spectrum, the analog gained better cell-penetrating and antimicrobial ability
while losing its hemolytic activity (compare peptides 39 and 40 from Table 3). These
improvements are much more apparent in experimental validations [112]. The L-K6V1
peptide (peptide 40, Table 3) still does not enter among the 20 best peptides from Tables 2–5
(Table 6). It, however, served in turn as the “parent “peptide for fusing it with short and
powerful CPP, such as the KW peptide (peptide 1, Table 4) or asparagutin (peptide 3,
Table 3).

The broadest spectrum of best predictions is with the asparagutin analog RRWFRSRRRR,
Gly-Gly linker, and L-K6V1 analogs. One of these sequences, the temporin-asparagutin analog
3 (peptide 37, Table 3) with the sequence VKKIVSKIRKLLK-GG-RRWFRSRRRR, ranked as
the best one. The preliminary score (when toxic and hemolytic activity is not considered) and
the overall score (when low toxicity is also considered in the overall mean score) agree on the
highest ranking for that hybrid peptide.

Other temporin-asparagutin analogs with the G, GG, GGEPPKG, or GGGPPKG linker
(Table 4, peptide 39; Table 3 peptide 36; Table 4, peptides 38 and 30; Table 3 peptide 9;
Table 4 peptide 37; Table 3, peptide 35) ranked 2nd to 5th, 8th, 9th, and 14th, respectively,
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in the overall multifunctional score. The TA peptide 9 from Table 3 is already predicted
with potent anti-inflammatory activity without needing any amino acid substitution. Se-
quences 30 from Table 4 (5th) and 48 from Table 5 (10th) are the shortest temporin-CPP
conjugates with only 22 residues. To construct the 10th best peptide (peptide 48, Table 5),
we used the novel P9 CPP carrier, RRRRRWWPP [188], as the reversed version (revP9)
and added it to the C-terminal of L-K6V1 temporin [112]. One Pro residue remained near
the central position after optimizing a hybrid peptide with the AntiInflam server. These
nine temporin analogs are predicted with a nearly perfect score for antiviral activity. All of
them enter among the 15 multifunctional peptides with the best overall score. The design
of the 17th best peptide consisted in adding the N-terminal part of the first best peptide
(VKKIVSKIRKLLKGG) to the CPP construct RRWKIVVIRWRR without any additional
optimization. Among many possible applications, we can mention treating skin ulcers
caused by the herpes virus. In any case, it is encouraging that in silico search for sequences
with the best combination of multifunctional activities, intracellular targeting, and low
toxicity zeroed on the class of temporin–CPP hybrids as 60% of the 15 best and 50% of the
20 best peptides. In contrast, ten temporin construct “winners” make up only about 6% of
all peptides (176) we considered.

The second class of predicted top performers encompasses optimized penetratins and
their analogs fused to the tumor-homing peptide tLyP-1. Optimal penetratin sequence
GKRIGKKWKPRRRRFWRK with 18 residues (Table 2, peptide 22) ranks 31st among
the best multifunctional peptides. We used the reversed optimal penetratin [56] as the
parent peptide. The design consisted in increasing its alpha hydrophobic moment and
applying several methods for improving its therapeutic index: locating the proline in the
sequence middle, forming a hydrophobic sector interrupted with a charged residue, and
introducing the small GXXXG motif at its N-terminal for stimulating peptides association
in membrane environment [312]. We removed two C-terminal residues from the parent
sequence KKWKPRRRRFWRKKR and added the pentapeptide GKRIG to its N-terminal
to achieve these goals. A different approach is additional optimization for better anti-
inflammatory activity and adding the tumor-homing peptide tLyp-1 [146] or its analog
CGAKRTK to the C-terminal. The overall rank increased for hybrids 20 and 21 from Table 2
(6th and 22nd).

Our multifunctional construct RCGNKRFRWHW (peptide 3, Table 5) was useful
when conjugated with the pexiganan analog optimized with two substitutions for better
anti-inflammatory activity (T5-35). It ranked as the seventh best peptide. The predicted
membrane-associated structure of MFC-PexS has a low profile of alpha and beta hydropho-
bic moments, distinguishing it from most other top-ranking peptides.

When fused mapegin and TAT CPP are optimized for low toxicity, the 11th peptide is
obtained with 31 residues (Table 3, peptide 50). It has the lowest toxicity score of −1.81 and
the highest reward score of 0.867 for the mean of low hemolytic probability and toxicity
score. Any remaining confirmed activity (antiviral, antifungal, and anti-inflammatory)
would be beneficial.

BMAP peptide analogs target mitochondria and cause apoptosis [174,313]. The most
active peptide part (the 18 residues cathelicidin fragment from bovine) is fused to short
CPP (the KW peptide). The top-scoring conjugates are peptide 33 from Table 4 (12th), and
peptides 25 and 36 from Table 4 (16th and 18th). Optimizing peptide 25 from Table 4 for higher
anti-inflammatory activity (with conservative substitution Leu for Ile) did not impair other
beneficial functionalities of the peptide 33 sequence KRKRWHW-GGLRSLGRKLLRAWKKYG
(Table 4).

Recently, experimentalists confirmed broad activity against enveloped viruses by the
second bovine cathelicidin fragment with the sequence GRFKRFRKKFKKLFKKIS [179].
It was derived from BMAP-27 [314]. Its variant GRFKRFRKKFKKLFKKLS exhibited
anti-parasitic activity [315]. We verified in silico that the hybrid peptide KRKRWHW-
GRFKRFRKKFKKLFKKIS (peptide 52 from Table 4) is nontoxic for mammalian cells.
Adding KW peptide conferred high multifunctional activities (32nd in the overall rank)



Antibiotics 2022, 11, 1196 47 of 59

without optimization. Thus, cathelicidin-CPP constructs are also promising lead com-
pounds for multifunctionality.

We optimized only the best peptide candidates for higher anti-inflammatory activity.
As a rule, we limited substitutions to three. One exception is the proline-arginine-rich pep-
tide PR-35 (peptide 44 from Table 5). The optimized sequence RRRVRPPYLPRVRPQPFFP
LRLLKRISPGFPPRFP has seven substituted residues (peptide 45 from Table 5). Its pre-
dicted toxicity to mammalian cells is low, and the overall rank is high (13th). There is,
however, a decrease in expected cell-penetrating and anticancer activity compared to parent
peptide PR-35.

Novispirin analogs also deserve several comments. The novispirin analog sequence
KNLRIIRKGIHIIKKY (dubbed G2) lacks arginine at the fifth sequence location of novispirin-
G10. It is used for anti-biofilm and anti-caries applications [269,270,316,317]. This was our
starting peptide for creating and optimizing CPP chimeras. With KW CPP linked via Gly
doublet after the G2 peptide, the optimization for lower toxicity resulted in the sequence
KNLRIFRKGIHIHKKY-GG-KRKRWHW (T4-50), which scored 20th in the overall rank.

Intriguingly, 11 out of 20 best multifunctional peptides exhibit anticancer and antiviral
probability close to 1.0 (>0.95, see Table 6 results from columns 5 and 6 highlighted in the
gray background). A common feature of cancer phenotype and cell transformation into the
viral factory is intensive bioenergetics [227], which is likely to be inhibited by antimicrobial
peptides, such as temporin, BMAP, adepantin-1, and trichoplaxin-2 analogs.

6. Conclusions

Nature endowed host defense peptides with multifaceted activity. Natural AMPs
with CPP activity, or CPP fragments, can interact with multiple sites of bacterial or fungal
cells. There are hundreds of internal protein targets for penetratin, lactoferricin B, and
PR-39, to name just a few well-known peptides explored with the protein microarray
technique [318–320]. Thus, we should not constrain rational design to the “magic bullet“
goal. Some short synthetic CPP, such as Sub 5 [189] (see last rows of Table 5), have
remarkably diverse internal protein targets [321]. Multiple targeting and rapid action
minimize the chance of resistance development in targeted microorganisms or cancer cells.
Marketed single-target drugs are frequently unable to reach internal targets and are prone to
mistargeting with associated side effects. Fast-evolving microbes or malignant cells quickly
develop resistance to such drugs. Deleterious effects then predominate benefits. However,
targeting sequences conjugated to CPP offer a precision medicine tool for acting on well-
protected organelles [322], intracellular pathogens, hijacked processes in pathological
conditions, and foreign molecules in our cells.

Advanced prediction tools combined with expert design allow the construction of
about 20 nontoxic CPP-hybrids with a high score for anti-inflammatory activity and a
high probability (≥0.7) for the intrinsic disorder, cell-penetrating, antibacterial, antifungal,
antiviral, and anticancer activity. Such flexible peptides with a high cationic charge often
adapt the two arms structure after coming into contact with anionic molecules. For instance,
an amphipathic helix-hinge-helix conformation can bridge different molecules and exhibit
complex functionality. Designed peptides should pass easily through the plasma membrane
in the eukaryotic cells. Their likely internal targets are respiring mitochondria, unprotected
parts of nucleic acids, or negatively charged molecules in the cell wall and cytoplasmic
membrane of bacterial cells. Multiple protein targets are also possible due to the wide
range of predicted functions. In conclusion, the review is the argument for exploring
wide-spectrum multifunctionality in silico, in vitro, and in vivo. Let us hope pharmaceutical
companies and governmental regulations become less refractory to the multifunctional
drug potential of cell-penetrating antimicrobial peptides and their conjugates.
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