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Abstract: Pseudomonas spp. are ubiquitous microorganisms that exhibit intrinsic and acquired
resistance to many antimicrobial agents. Pseudomonas aeruginosa is the most studied species of
this genus due to its clinical importance. In contrast, the Pseudomonas fluorescens complex consists
of environmental and, in some cases, pathogenic opportunistic microorganisms. The records of
antimicrobial-resistant P. fluorescens are quite scattered, which hinders the recognition of patterns. This
review compiles published data on antimicrobial resistance in species belonging to the P. fluorescens
complex, which were identified through phylogenomic analyses. Additionally, we explored the
occurrence of clinically relevant antimicrobial resistance genes in the genomes of the respective species
available in the NCBI database. Isolates were organized into two categories: strains isolated from
pristine sites and strains isolated from human-impacted or metal-polluted sites. Our review revealed
that many reported resistant phenotypes in this complex might be related to intrinsic features, whereas
some of them might be ascribed to adaptive mechanisms such as colistin resistance. Moreover, a
few studies reported antimicrobial resistance genes (ARGs), mainly β-lactamases. In-silico analysis
corroborated the low occurrence of transferable resistance mechanisms in this Pseudomonas complex.
Both phenotypic and genotypic assays are necessary to gain insights into the evolutionary aspects of
antimicrobial resistance in the P. fluorescens complex and the possible role of these ubiquitous species
as reservoirs of clinically important and transmissible ARGs.

Keywords: Pseudomonas fluorescens; antimicrobial resistance; intrinsic resistance; adaptive resistance;
acquired resistance

1. Introduction

The genus Pseudomonas comprises a wide range of ubiquitous metabolically versa-
tile microorganisms found in diverse ecosystems, including water, soil, and the rhizo-
sphere [1,2]. From a clinical perspective, Pseudomonas aeruginosa is the most important
and extensively characterized species belonging to this genus [3,4]. Nevertheless, other
members of the genus Pseudomonas might act as opportunistic pathogens, causing infec-
tions mainly in immunocompromised patients or individuals subjected to invasive medical
procedures. For instance, Pseudomonas fluorescens and related species have been reported
to cause bloodstream, urinary, pulmonary, cerebrospinal, joint-fluid, skin, and soft-tissue
infections [5–14]. Furthermore, epidemiological studies of nosocomial infections have
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revealed that resistant P. fluorescens strains can be transported into hospitals by water or
other materials used in medical procedures, as well as by insects such as moth flies [15–19].

The description of new species and the reclassification of those previously defined as
Pseudomonas, such as Burkholderia, Ralstonia, Comamonas, Acidovorax, and Hydrogenophaga,
is a continuous process [20,21]. Based on 16S rDNA analysis and multi-locus sequence
analysis (MLSA), the genus comprises three main lineages recognized as P. aeruginosa,
P. fluorescens, and P. pertucinogena, which have been divided into fourteen groups [22].
The P. fluorescens complex comprises eight groups occupying various ecological niches,
namely P. fluorescens, P. gessardii, P. fragi, P. mandelii, P. koreensis, P. jessenii, P. corrugata, and
P. chlororaphis [22,23].

Over the last 30 years, antimicrobial resistance has been described in isolates of the
P. fluorescens complex obtained from non-medical sources. However, the phenomenon of
intrinsic resistance in Pseudomonas poses a challenge when studying the role of these species
as environmental reservoirs of transferable resistance genes. This review compiles literature
reports on antimicrobial resistance detected in strains belonging to the P. fluorescens complex
occupying different environmental niches, thus establishing a theoretical basis for the
evaluation of the possible role of these bacteria as environmental reservoirs of antimicrobial
resistance genes.

2. Material and Methods
2.1. Whole-Genome Sequencing Analysis

A phylogenomic approach based on genomes from type strains of all species al-
ready described for the genus Pseudomonas was used to identify species belonging to the
P. fluorescens complex. Pseudomonas spp. with valid publications and correct names (exclud-
ing synonyms) according to the List of Prokaryotic names with Standing in Nomenclature
(https://lpsn.dsmz.de/genus/pseudomonas, accessed on 26 October 2021) were included
in this analysis.

Out of the 269 retrieved species, 243 were selected for further analysis based on the
availability of a published type strain genome. After generating a phylogenomic tree
using the Type Strain Genome Server (https://tygs.dsmz.de/ accessed on 26 October
2021), 98 species associated with the P. fluorescens complex (Figure S1) were identified. To
understand the composition of the groups, digital DDH estimation (dDDH) was calculated
with the GGDC 3.0 web service (http://ggdc.dsmz.de accessed on 26 October 2021) using
the BLAST+ alignment tool and formula 2 (identities/HSP length). The dDDH data were
plotted on a heatmap (Supplementary Figure S1) and detailed in Table S1. Species with
more than 31.8% dDDH were considered to belong to the same group [23].

Data obtained from whole-genome sequencing (WGS) of species belonging to the
P. fluorescens complex were further analyzed. WGS data from these species were obtained
from the PATRIC database (https://www.patricbrc.org accessed on 28 November 2021),
after which the available data were filtered according to genome status (WGS; Complete),
assembly accession (empty spaces were removed), and isolation source (empty spaces
were also removed), resulting in 619 genomes. The genomes were downloaded using
the NCBI assembly accession with the ncbi-genome-download software (version 0.3.1;
https://github.com/kblin/ncbi-genome-download accessed on 28 November 2021). Next,
acquired antimicrobial resistance genes (ARGs) were identified using ABRicate version 1.0.0
(https://github.com/tseemann/abricate accessed on 28 November 2021) and the ResFinder
database (https://cge.cbs.dtu.dk/services/ResFinder/ accessed on 28 November 2021)
(Table 1).

2.2. PubMed and Google Scholar Research Approach

A comprehensive review was conducted using the names of species belonging to
the P. fluorescens complex as keywords. These included the species identified via the phy-
logenomic analysis presented in this study (Figure S1), as well as a recent phylogenetic
MLSA based on four genes [22–24], alongside the words “antibiotics”, “antimicrobial”,
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“susceptibility”, or “resistance” in the PubMed platform. Google Scholar was used when a
given study was unavailable in the PubMed database. No time frame was defined. Overall,
the selected studies were categorized based on the origin of the isolates and were critically
evaluated in light of current knowledge on intrinsic, adaptive, and acquired resistance. The
recovered data was organized in two tables. Table 1 summarizes the available literature de-
scribing antimicrobial resistance phenotypes of isolates collected in pristine environments.
In contrast, Table 2 focuses on isolates from urban, human-impacted, or metal-polluted
sites. Both tables indicate the resistance phenotypes typically recognized as intrinsic in
non-fermentative gram-negative bacteria or P. aeruginosa. Genotypic characteristics were
also included when available.

3. Antimicrobial Resistance in the P. fluorescens Complex
3.1. Intrinsic Resistance

The European Committee on Antimicrobial Susceptibility Testing (EUCAST) guideline
“Expected Resistant Phenotypes” (http://www.eucast.org accessed on 12 May 2022) reports
that non-fermentative gram-negative bacteria are intrinsically resistant to benzylpenicillin,
first- and second-generation cephalosporins, glycopeptides, lipoglycopeptides, fusidic acid,
macrolides, lincosamides, streptogramins, rifampicin, and oxazolidinones. Concerning
other antimicrobials not cited above, the same document stated that P. aeruginosa is expected
to be resistant to ampicillin and amoxicillin, as well as their combinations with β-lactamase
inhibitors, ceftriaxone, cefotaxime, ertapenem, chloramphenicol, selected aminoglycosides
such as kanamycin and neomycin, trimethoprim, tetracycline, and tigecycline [25]. Knowl-
edge of the intrinsic resistance of P. fluorescens is still limited; however, the trends appear to
be similar to those of P. aeruginosa.

Regarding β-lactams, Rocha et al. evaluated 39 endophytic strains of Pseudomonas
sp. isolated from a metal-accumulating plant, after which they correlated the resistance
phenotypes with the distribution of strains in a dendrogram [26]. The authors recognized
three clusters. The first cluster, composed of a few isolates from five different species,
was associated with resistance to ampicillin and amoxicillin, and was susceptible to most
of the β-lactams tested. The second cluster, formed mainly by P. koreensis (P. koreensis
group, n = 10) and Pseudomonas simiae (P. fluorescens group, n = 4), showed resistance to
ampicillin, amoxicillin, amoxicillin–clavulanic acid, and cefotaxime. Many isolates were
also resistant to aztreonam, sulfamethoxazole–trimethoprim, and chloramphenicol. In
contrast, the third cluster formed mainly by Pseudomonas sabulinigri (n = 11) included
isolates that were resistant to the same β-lactams as in the second cluster, in addition to
piperacillin and piperacillin–tazobactam. Some isolates belonging to the third cluster also
displayed resistance to cefepime and ceftazidime but were susceptible to other classes of
antimicrobial agents. Acquired resistance genes for β-lactams (blaSHV, blaTEM, blaCTX-M,
blaGES, blaKPC, blaVIM, blaIMP, blaOXA-2-like, blaOXA-10-like, blaOXA-30-like), sulfonamides (sul1),
and chloramphenicol (cat), as well as the integrase genes intI1 and intI2, were not detected in
these strains, supporting the hypothesis that the phenotypes were associated with intrinsic
features [26].

The production of an inducible chromosomal β-lactamase called AmpC contributes to
Pseudomonas resistance to most penicillins and to first- and second-generation cephalosporins
(such as cefoxitin and cefuroxime). In P. aeruginosa, de-repression of this gene can result in
resistance to antipseudomonal penicillins, oxyiminocephalosporins, and cefepime [27,28].
Accordingly, among several β-lactamase genes searched, only the chromosomal class C
β-lactamase gene blaAmpC was detected in two P. koreensis isolates from urban wastewater
treatment plants in Italy, showing low susceptibility to several β-lactams [29].

Recently, acquired β-lactamase genes have not been identified among isolates be-
longing to the P. fluorescens complex resistant to aztreonam and carbapenems isolated
from chicken meat in Norway. Besides genes encoding efflux pumps, the isolates carried
blaAmpC and the penicillin-binding protein gene mrcA; however, mutations in these genes or
their promoters have not been addressed. In some isolates, the authors also reported the
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detection of the pbpC gene, which encodes a PBP3 homolog [30]. PBP3, a penicillin-binding
protein encoded by ftsI, is the target of aztreonam, and mutations in this gene may affect
the activity of the drug [31]. Further studies are necessary to investigate the relevance of
this gene in aztreonam resistance.

The intrinsic resistance of P. aeruginosa to chloramphenicol, trimethoprim, and tetracy-
clines can be ascribed to the presence of chromosomally expressed resistance-nodulation-
division (RND)-type multidrug efflux systems on the cell surface. Notably, multidrug-
resistance (MDR) efflux pumps are conserved in different microorganisms, which are likely
involved in the extrusion of many toxic compounds [32]. For example, environmental
P. aeruginosa strains isolated prior to the discovery of quinolones can extrude this class of
antimicrobial agents, suggesting that antimicrobial extrusion is not the primary function of
some efflux pumps [33,34]. Likewise, the RND-type efflux pump MexAB–OprM has been
detected in a β-lactam resistant Pseudomonas strain submitted to WGS [30].

In this context, genes encoding an RND efflux pump for polycyclic aromatic hydrocar-
bons (PAHs) termed EmhABC have been described in the P. fluorescens strain cLP6a [35].
Disruption of the emhB gene increased the activity of chloramphenicol and nalidixic acid,
but not tetracycline, erythromycin, trimethoprim, or streptomycin, suggesting a more lim-
ited spectrum of substrates compared to other RND pumps [35,36]. Later, it was suggested
that an alternative EmhABC efflux pump conferred resistance to ampicillin, chlorampheni-
col, tetracycline, ethidium bromide, and crystal violet in the P. fluorescens strain 2P24, which
was isolated from wheat roots [37]. Complementary studies showed that incubation tem-
perature and other physicochemical factors may affect EmhABC activity in P. fluorescens
cLP6a [38,39].

Likewise, the knockout of some putative transporters increased the susceptibility of
Pseudomonas protegens (P. protegens group) to rifampicin, among other toxic compounds [40].
Also, genes encoding many efflux-pump proteins, β-lactamases, and a macrolide glycosyl-
transferase have been described in the genome of the plant growth-promoting bacterium
Pseudomonas sp. UW4 (P. jessenii, according to the authors; P. jessenii group). This strain was
resistant to ampicillin, erythromycin, and novobiocin [41].

Aminoglycosides are cationic drugs, and the incubation temperature might affect
their activity. Papapetropoulou et al. reported that temperatures higher than 37 ◦C low-
ered the minimum inhibitory concentration (MIC) of P. fluorescens to gentamicin and
amikacin, suggesting that higher temperatures promote changes in cell-wall lipids, which
increases the permeability to these aminoglycosides [42]. P. aeruginosa harbors the chro-
mosomally encoded aminoglycoside phosphotransferase APH(3′)-IIb, having kanamycin
and neomycin as substrates [25,42,43]. However, in a search for “APH(3′)” in the NCBI
database, only a few results report this gene associated with other Pseudomonas species,
including P. fluorescens.

Colistin is a cationic drug that is used to treat P. aeruginosa infections [25,44]. Still, all
five P. koreensis isolates obtained from urban wastewater-treatment plants in Italy were
resistant to this polymyxin [29]. Moreover, many Pseudomonas species with plant-beneficial
properties, such as P. protegens and P. chlororaphis, have been reported as intrinsically
resistant to cationic compounds [45]. According to the authors, the phenotype is dependent
on the presence of O-specific side chains on the cell surface [45]. Among clinical isolates of
P. aeruginosa, adaptive resistance to polymyxins can occur due to the addition of 4-amino-4-
deoxy-L-arabinose (Ara4N) to the lipid A moiety of lipopolysaccharide through induction
of the arn operon under the control of two-component regulatory systems [46]. Recently,
six genes related to colistin resistance (emrA, lpxA, lpxD, pgsA, phoP, phoQ), but not the
plasmid-mediated mcr, have been detected in the genome of colistin-resistant Pseudomonas
spp. obtained in the Norwegian food chain [30].

3.2. Antimicrobial Resistance in Pristine Sites

Atypical antimicrobial resistance profiles in Pseudomonas sp. obtained from pristine
sites have been reported in many studies. Shivaji et al. (1989) obtained 10 isolates of
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Pseudomonas spp. (including P. fluorescens) from Antarctic soil samples, which were suscep-
tible to kanamycin, gentamicin, tobramycin, polymyxin B, tetracycline, rifamycin, colistin,
streptomycin, and nalidixic acid [47]. At that time, considering that these strains grow at
low temperatures (4 ◦C), authors suggested that such a distinct phenotype compared to
mesophilic Pseudomonas strains may have resulted from adapting to harsh conditions [47].
Later, the psychrophilic species P. antarctica, P. meridiana, and P. proteolytica (P. gessardii
group) obtained from cyanobacterial mats in Antarctica were characterized [48]. Curiously,
P. antarctica was also susceptible to antimicrobial agents considered ineffective against
P. aeruginosa due to intrinsic resistance, such as penicillin, ampicillin, chloramphenicol,
sulfamethoxazole–trimethoprim, erythromycin, kanamycin, and tetracycline. In contrast,
P. meridiana and P. proteolytica were resistant to all the antimicrobials mentioned above,
except for kanamycin and tetracycline. Similar to P. aeruginosa, the three Pseudomonas
strains tested were resistant to trimethoprim [25,48]. More recently, Orellana-Saez et al.
isolated the Pseudomonas sp. strain MPC6 (closely related to P. fluorescens, according to
the authors) of a soil sample from Deception Island (Antarctica) [49]. This isolate was
susceptible to antimicrobials that are ineffective against most of the Pseudomonas analyzed
and had a similar resistance profile to the environmental isolates P. putida KT2440 and
P. antarctica (P. fluorescens subgroup). Genes encoding antibiotic-inactivation enzymes
found in the genome of reference strains P. aeruginosa PA7 and P. aeruginosa PAO1 such as
aminoglycoside phosphotransferases (APHs), chloramphenicol acetyltransferases (CATs),
bleomycin-binding proteins, and β-lactamases, were absent in the genome of Pseudomonas
sp. MPC6. The genome of Pseudomonas sp. MPC6 also lacked genes encoding modifications
in cell-wall charges that are reported as determinants of antimicrobial resistance. However,
the genome was well equipped with efflux pumps [49]. An uncommon susceptible pheno-
type to penicillin, kanamycin, neomycin, and tetracycline was also detected in Pseudomonas
sp. strain AHD-1 (closely related to P. azotoformans, P. gessardii, and P. libanensis, according
to the authors), which was isolated from wastewater in Tunisia [50].

Furthermore, recent studies have reported P. fluorescens members that are resistant to
clinically relevant antibiotics such as piperacillin, aztreonam, ceftazidime, carbapenems,
and colistin. These strains were isolated from diverse environments such as Antarctica soil
samples, rhizosphere of desert plants in Atacama, and calcite moonmilk deposits from caves
in the Czech Republic [51–53]. Known acquired resistance mechanisms associated with
these unexpected phenotypes have not been detected, although genomic islands and other
likely acquired mobile genetic elements have been reported in P. fildesensis (P. fluorescens
group) [51]. Therefore, further studies are needed to characterize the pathogenic potential
and the presence of transmissible ARGs in such Pseudomonas sp. strains.

Although Antarctica is the most remote continent in the world, antimicrobial resistance
may be transferred to this region due to the migration of animals and humans. Recently,
Na et al. evaluated isolates from animal feces, soil, and sediments with varying human
and animal impacts in the Fildes Peninsula, Antarctica [54]. Pseudomonas was the dominant
genus that showed resistance to sulfamethazine, and a strong correlation between mobile
genetic elements and antimicrobial resistance genes was recognized, considering isolates of
different genera included in the study [54]. In contrast, in a study that included isolates
either from human-impacted or pristine sites in Antarctica, most of the strains displaying
multi-resistance were collected from areas without human intervention, suggesting that
antimicrobial resistance is likely a natural and ancestral process [55]. Yet, in the characteriza-
tion of two multidrug-resistant isolates belonging to the P. fluorescens, Marcoleta et al. (2022)
reported that although these strains lack genes found in the reference P. aeruginosa PA7
strain, they showed a higher number of genes associated with ATP-binding cassete (ABC)
and small multidrug resistance (SMR) efflux pumps [55]. Genes for putative β-lactamases
have also been detected, including a homolog of LRA-3 β-lactamase, which was previously
described in soil metagenomic DNA from Alaskan soil [55,56].
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3.3. Antimicrobial Resistance in Human-Impacted Sites

In human-impacted sites, the selective pressure caused by antimicrobial pollution may
promote the dissemination and persistence of acquired resistance mechanisms. Chow et al.
exposed one strain of P. aeruginosa and one of P. protegens to kanamycin, tetracycline, or
ciprofloxacin at 1/10 of the MIC in a serial streaking over 40 passages, thus mimicking
environmental pollution with antimicrobial agents. Higher MICs and increased genome
changes were detected in P. protegens, suggesting that this type of antimicrobial pollution
might generate new resistant strains [57].

Compared to contemporary samples, ancient and well-conserved samples are power-
ful tools to measure the degree to which the rates of antimicrobial resistance have changed
over the years. Addressing this issue, Lugli et al. characterized a P. veronii (P. fluorescens
group) strain isolated from a frozen and mummified human body found in an Italian
Alpine glacier [58]. Screening for ARGs revealed an abundance of putative β-lactamases,
glycopeptide-resistance proteins, ABC transporters, and major facilitator superfamily (MFS)
efflux pump. Notwithstanding, modern strains of P. veronii harbor 24% more ARGs than
the ancient strain P. veronii, which might be due to horizontal gene transfer (HGT), account-
ing for the rapid spread and persistence of antimicrobial resistance determinants in the
environment [58].

As an example of exceptional resistance phenotypes identified in highly human-
impacted sites, P. fluorescens strains resistant to clinically available antimicrobial agents,
such as piperacillin-tazobactam, ceftazidime, cefepime, imipenem, meropenem, gentamicin,
and ciprofloxacin, were isolated from the multinational Danube River [59,60].

3.3.1. Metal-Polluted Sites

Metal resistance can be accompanied by antimicrobial resistance, as suggested by
several references listed in Table 3 [26,61–66]. Metals are not easily degraded and occur in
various environments, especially those receiving hospital and industrial effluents, as well as
mining areas [67]. Furthermore, metal pollution causes a persistent selective pressure that
favors the development and transmission of antimicrobial resistance traits [68]. There are
two known mechanisms through which metal and antimicrobial resistance are co-selected.
So-called “co-resistance” refers to the presence of metal- and antimicrobial-resistance
determinants encoded in the same mobile genetic element, whereas “cross-resistance”
refers to the same mechanism conferring resistance to both metals and antimicrobial
agents (e.g., efflux pumps) [68,69]. In addition to the data on P. fluorescens found in this
review, previous studies have evaluated metal and antimicrobial resistance in hospital and
environmental isolates of members of the genus Pseudomonas [67,70–73].

Ramos et al. detected P. saponiphila (n = 13; P. chlororaphis group), P. humanensis
(n = 5) and P. asiatica (n = 2) (P. putida group), and P. aeruginosa (n = 3) in water samples
obtained from the state of São Paulo and Brasília (Brazil) [73]. Most of these isolates
were resistant to heavy metals and clinically relevant antimicrobial agents, such as the
β-lactams piperacillin-tazobactam, ceftazidime, cefepime, imipenem, meropenem, and
aztreonam, as well as the quinolones ciprofloxacin, levofloxacin, and norfloxacin, and
the aminoglycosides gentamicin and tobramycin. The ARGs blaGES (β-lactam resistance),
tetB (tetracycline resistance), qnrS and qepA (quinolone resistance), and aac(3′)-IIa and
ant(2”)-Ia (aminoglycoside resistance) were identified for the first time in P. saponiphila.
Even so, plasmids were not detected, suggesting that the identified genes could be located
in the chromosome. These findings suggested that the resistant phenotype for most of
the antimicrobial agents and heavy metals analyzed might be attributed to alternative
mechanisms that were not evaluated, such as efflux pumps of the RND superfamily [73].

3.3.2. Other Reservoirs of Human Importance

Resistant P. fluorescens strains have been found in food products such as chicken and
camel meat, salad vegetables, fish and mushroom farms, as well as in cheese [30,74–81].
Notably, Pseudomonas spp. is one of the main microorganisms causing food spoilage [30,82–85].
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Likewise, Poirel et al. isolated P. synxantha (P. fluorescens group) from chicken meat, which
harbored a likely-acquired chromosomal metallo-β-lactamase PFM-1 [80]. PFM-1 showed
high amino-acid identity with Sfh-1 and CphA-1 carbapenemases, which were initially
reported in species of Serratia and Aeromonas, respectively. Variants of PFM-1 were also
detected in P. libanensis (PFM-2) and P. fluorescens (PFM-3), suggesting that the P. fluorescens
group may behave as reservoir of PFM-like encoding genes [80]. Recently, one isolate of
P. fluorescens harboring the β-lactamase blaSHV was identified in Benin. The isolate was
resistant to amoxicillin, amoxicillin-clavulanic acid, ceftriaxone, cefotaxime, ertapenem,
imipenem, aztreonam, gentamicin, and ciprofloxacin [86].

Members of the P. fluorescens complex have also been recognized as veterinary pathogens,
causing infections in bovines, canines, dolphins, fish, wild animals, and even frog oocytes.
Common resistance phenotypes observed in these strains include tetracycline, chloram-
phenicol, sulfamethoxazole-trimethoprim, amoxicillin, amoxicillin–clavulanic acid, cefox-
itin, cefotaxime, and ticarcillin resistance. Moreover, most of these animals were living in
environments under the human influence [87–93].

Due to the clinical importance of P. aeruginosa, breakpoints for effective antimicrobial
agents against this pathogen are available in the Clinical and Laboratory Standards Institute
(CLSI) and EUCAST guidelines. The β-lactams ticarcillin, piperacillin, ceftazidime, ce-
fepime, cefiderecol, ceftolozane, aztreonam, imipenem, doripenem, and meropenem, some
of which are associated with β-lactamase inhibitors, as well as the quinolones ciprofloxacin
and levofloxacin, the aminoglycosides gentamicin, amikacin, tobramycin, and polymyxins
colistin or polymyxin B, should be effective against this microorganism [94,95]. Tables 1
and 2 list the P. fluorescens isolates with resistant phenotypes to one or more of the drugs
listed above. However, few reports have described their genetic features, and further
studies identifying ARGs in P. fluorescens are needed to infer whether the resistance profile
was acquired or adaptive. Still, β-lactamases are the most reported among the ARGs listed
in Tables 2 and 3.

3.4. Horizontal Gene Transfer (HGT) of Antimicrobial Resistance

Possible HGT from hospitals and health facilities to the environment is a serious
public health concern. Forsberg et al. analyzed the transfer of resistance determinants
between soil and clinical bacteria. Resistance genes present in the environmental bacterium
Pseudomonas sp. K94.23 (according to the authors, a member of the P. fluorescens complex)
shared a complete nucleotide identity with clinical pathogens [96]. Likewise, Herrick et al.
suggested that transmissible plasmids from environmental Pseudomonas that confer re-
sistance to tetracycline (commonly used in agriculture) would cause the persistence of
co-carried genes that confer resistance to clinically available antimicrobial agents such as
gentamicin, ticarcillin, and ciprofloxacin [97]. In the 1990s, Chandrasekaran et al. suggested
that even viable but non-culturable P. fluorescens can transfer plasmids to other bacteria
in marine environments [98]. The same group also reported the transference of an MDR
plasmid (pSCL) from rifampicin-resistant P. fluorescens isolated from polluted soil to E. coli
and P. putida. It appears that pSCL conferred rifampicin resistance to the transformants,
presumably through an efflux pump [99].

Efficient transference of plasmids carrying resistance genes to chloramphenicol (cat) [100]
and colistin (mcr-variants) have been reported for P. putida and/or P. aeruginosa [101–103]. Re-
garding P. fluorescens, the gene mcr-1 was detected in one isolate from a community/household
environment in the Republic of Congo [104]. A gene encoding BIC-1, a class A carbapen-
emase capable of hydrolyzing penicillins, cephalosporins (except ceftazidime), and car-
bapenems, was detected in the chromosome of a P. fluorescens isolate from the Seine River
(France). Three months later, the β-lactamase gene was also found in the chromosomes of
two other P. fluorescens isolates from the same site [105]. Furthermore, the class B metallo-β-
lactamase IMP-22, encoded by the blaIMP-22 gene, located in a class 1 integron and capable
of hydrolyzing narrow and extended-spectrum β-lactams, was detected in two strains
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of P. fluorescens from urban wastewater, as well as in a clinical isolate of P. aeruginosa in
Italy [64].

The risk of human infection by exposure to contaminated rivers was illustrated by
a case of a patient admitted to an intensive care unit for near-drowning in a river in
France, who was colonized and infected by carbapenem-resistant bacteria of probable
environmental origin. Among the isolates characterized, six strains belonging to the
P. fluorescens complex collected from the river had the same carbapenem-resistant pheno-
type as a P. fluorescens strain colonizing the patient’s respiratory tract [106]. In another
country, an isolate of P. cedrina (P. fluorescens group) was identified in water bodies in Los
Angeles, which was resistant to cefotaxime, meropenem, and imipenem [107]. However,
none of these studies reported carbapenemase production, suggesting that other genotype
features, transmissible or not, might be responsible for the observed phenotype.

In 2012, Maravić et al. published the first report of a TEM-type ESBL in P. fluo-
rescens [108]. The blaTEM-116 gene was present in the chromosome of isolates from a Croatian
bay highly impacted by agricultural, industrial, and municipal effluents. In the same study,
out of 185 P. fluorescens isolates investigated, 70 presented a multidrug resistant phenotype,
with the highest resistance rates for cefotaxime, ceftazidime, meropenem, aztreonam, and
tetracycline [108]. Later studies have reported the presence of blaTEM in isolates belonging
to the P. fluorescens group in South Africa and India [109,110].

Some results from studies whose focus was not on the genus Pseudomonas are worth
mentioning. Pseudomonas was one of the most abundant genera recovered under selective
pressure with cefotaxime or imipenem from Lake Bolonha in the Brazilian Amazon. Among
37 Pseudomonas strains displaying the above-mentioned resistance phenotypes (species
were not determined), 25 carried the likely acquired β-lactamase genes blaTEM, blaSHV,
blaCTX, blaIMP, and blaVIM either alone or in combination. Many of these isolates were
also resistant to non-β-lactams such as gentamicin [111]. Similarly, Chakraborty et al.
reported that Pseudomonas was the most abundant genus contributing to the occurrence
of ARGs, including multidrug-efflux pumps, glycopeptide, bacitracin, tetracycline, and
aminoglycoside-resistance genes, in the Lonar soda lake (India) [112].

3.5. Research of Resistance Genes in Genome Public Databases

Congruent with the data collected in the scientific literature, the analysis conducted
herein identified a small number of genomes of species belonging to the P. fluorescens com-
plex (n = 17, 2.7%) carrying one or more transferable ARG. Genes associated with resistance
to β-lactams, aminoglycosides, phenicol, fosfomycin, sulfamethoxazole, or tetracycline
classes have been found in isolates of different species, which were recovered from variable
sources and countries (Table 3).
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Table 1. Isolates of the Pseudomonas fluorescens complex obtained from pristine environments and their resistance phenotypes/genotypes.

Isolation Site Isolates Identified and Characterized as Belonging to the
Pseudomonas fluorescens Complex (Group) Phenotype/Genotype (Number of Isolates) Ref.

Soil/Schirmacher Oasis,
Antarctica P. fluorescens (P. fluorescens)

Resistance to P, AM, CB, E, VAN, TMP, and BAC, and to
the antifungal NY. Susceptibility to C varied (undefined
number of isolates) A

[47]

Cyanobacterial mat/McMurdo region, Antarctica
Description of P. antarctica strain CMS35T (P. fluorescens),
P. meridiana strain CMS38T (P. gessardii), and P. proteolytica
CMS64T (P. gessardii)

Resistance to TMP and FUZ in P. antarctica (1); resistance to
P, AM, AMX, CB, E, LIN, C, TMP, SXT, GM, CL, PB,
BAC, FM, FUZ, and NY in P. meridiana (1) and resistance to
P, AM, AMX, CB, E, LIN, C, TMP, SXT, FUZ, NY, BAC,
FM, and NFZ in P. proteolytica (1) A

[48]

Rhizosphere of Amaranth/Northwestern
Indian Himalayas

Pseudomonas sp. NARs9 (closely related to P. lurida, according
to the authors) Resistance to AM, P, PB, and C (1) B [113]

Drinking water from karstic ecosystems/Le Havre,
France P. fluorescens (P. fluorescens) and P. brenneri (P. gessardii)

P. fluorescens (6) and P. brenneri (1) were resistant to CF,
AMX, AMC, CTX, CFS, TIC, TIM, C, and SXT. Resistance
to ATM, FOS, and NA was frequent among the isolates A

[114]

Soil/Isla de los Estados, Ushuaia, Argentina Description of P. yamanorum strain 8H1T (P. gessardii)
Resistance to P, OX, CF, CXM, SAM, CTX, CAZ, E, CM,
TEC, VA, C, SXT, and CL (1) A [115]

Brook sediment/Whalers Bay, Deception
Island, Antarctica
Ornithogenic soil/Galindez Island, Antarctica

Metal-resistant P. migulae (P. mandelii), P. gessardii (P. gessardii),
and P. fluorescens (P. fluorescens)

P. migulae was intermediate to CIP and TM, resistant to GM,
NB, LIN, AM, TE, C, VA, E, CZ (1) A

P. gessardii was intermediate to GM and resistant to NB,
LIN, TE, AM, C, VA, E, and CZ (1) A

P. fluorescens was intermediate to CZ and E, resistant to NB,
LIN, AM, and VA (1) A

[116]

Soil from the northern
deglaciated part of Ulu
Peninsula/James Ross
Island, Antarctica

Description of P. gregormendelii strain CCM 8506T (closely
related to P. migulae, according to the authors) Resistance to β-lactams TIC, TIM, CAZ, and ATM (2) A [117]

Rhizospheres of wild cranberry plants/Cape Cod
National Seashore,
Massachusetts, USA

Draft genome of Pseudomonas sp. strain MWU12-2534b
(closely related to P. protegens, according to the authors)

Detection of efflux-pump genes, β-lactamases,
aminoglycoside N(6′)-acetyltransferase, and
fluoroquinolone resistance (1)

[118]
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Table 1. Cont.

Isolation Site Isolates Identified and Characterized as Belonging to the
Pseudomonas fluorescens Complex (Group) Phenotype/Genotype (Number of Isolates) Ref.

Soil sample/King George
Island, Antarctica Description of fildesensis KG01T (P. fluorescens) Resistance to CAZ and IPM C [51]

Rhizosphere of desert bloom plant/Atacama, Chile Description of P. atacamensis M7D1T (P. koreensis)
Intermediate to MEM; resistance to CTX, CAZ, AM, and
SAM A [52]

Calcite moonmilk deposits from caves/Moravian
Karst, Czech Republic

Description of P. karstica HJ/4T and P. spelaei SJ/9/1T

(P. gessardii)
Strain HJ/4T: resistance to ATM, PIP, and TZP. Strain
SJ/9/1T: resistance to ATM and CL D [53]

Antartic Peninsula Soil Pseudomonas ArH3a and Pseudomonas YeP6b (P. fluorescens)
Strains resistant against 9 to10 antimicrobial agents A with
arbitrary breakpoints. Detection of genes encoding ABC
and SMR efflux pumps

[55]

Antimicrobials to which P. aeruginosa is considered intrinsic resistant are indicated in bold. Antimicrobials in both bold type and underlined are generally recognized as ineffective against
non-fermentative gram-negative bacteria. T: type strain; A: disc-diffusion method; B: minimum inhibitory concentration (MIC) by agar dilution; C: MIC by Etest; D: Mikrolatest MIC
based on the Neferm kit (Erba Lachema, Czech Republic). AM: ampicillin; AMC: amoxicillin–clavulanic acid; AMX: amoxicillin; ATM: aztreonam; BAC: bacitracin; C: chloramphenicol;
CAZ: ceftazidime; CB: carbenicillin; CF: cephalothin; CFS: cefsulodin; CZ: cefazolin; IPM: imipenem; MEM: meropenem; CIP: ciprofloxacin; CL: colistin; CM: clindamycin; CTX:
cefotaxime; CXM: cefuroxime; E: erythromycin; FM: nitrofurantoin; FOS: fosfomycin; FUZ: furazolidone; GM: gentamicin; LIN: lincomycin; NA: nalidixic acid; NB: novobiocin; NFZ:
nitrofurazone; NY: nystatin; OX: oxacillin; P: penicillin; PB: polymyxin B; SAM: ampicillin–sulbactam; SXT: sulfamethoxazol—trimethoprim (or cotrimoxazole); TE: tetracycline; TEC:
teicoplanin; TIC: ticarcillin; TIM: ticarcillin–clavulanic acid; PIP: piperacillin; TZP: piperacillin–tazobactam; TMP: trimethoprim; TM: tobramycin; VA: vancomycin.
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Table 2. Isolates of the Pseudomonas fluorescens complex obtained from human-impacted or metal-polluted environments and their resistance phenotypes/genotypes.

Isolation Site Isolates Identified and Characterized as Belonging to the
Pseudomonas fluorescens Complex (Group) Phenotype/Genotype (Number of Isolates) Ref.

Sewage from sixteen sites/Casablanca, Morocco Heavy metal-resistant P. fluorescens (P. fluorescens) Notable resistance to all antibiotics tested, including AM, AMX, CRO, RIF, C,
TE, CIP, and SPIR. (Undefined number of isolates) A [61]

Subtropical and temperate soils from maize
fields/Sikkim Himalaya, India P. corrugata (P. corrugata) Resistance to P, AM, and CB at high concentrations (2) B [119]

Sea water Arsenic-resistant P. fluorescens strain MSP3 (P. fluorescens) Resistance to AM, RIF, NB, and BAC (1) C [120]

Kiwi-fruit plants/Korea and Japan P. marginalis (P. fluorescens) Streptomycin-resistance genes (strA and strB) (1) [121]

Soil artificially polluted with 1000 mg chromate
(Cr(VI)) kg−1 P. corrugata (P. corrugata) Resistance to AM, CF, CRO, C, BLE, and FOS (2) D [63]

Hydrotherapy swimming pool/Northwestern
Greece P. fluorescens (P. fluorescens) Resistance to TIC, TIM, AZT, SUT, FM, and TM; intermediate resistance to TZP

and IPM (2) E [122]

Rape roots of Brassica napus in heavy
metal-contaminated soils/Nanjing, China P. fluorescens (P. fluorescens) Resistance to AM, K, STS, and SPT (1) B [62]

Urban wastewater/L’Aquila, Italy P. fluorescens (P. fluorescens) Presence of the gene blaIMP-22, which encodes the metallo-β-lactamase IMP-22,
capable of hydrolyzing narrow- and extended-spectrum β-lactams (2) [64]

Blowhole, gastric fluid, and feces of Tursiops
truncatus dolphins from estuarine
waters/Charleston and Indian River Lagoon, USA

P. fluorescens (P. fluorescens) Frequent resistance to AM, AMC, CF, TE, E, C, SUT, and FM. Less-frequent
resistance to PIP and EN (82) C [123]

Soil contaminated with wastewater/Sfax, Tunisia Description of Pseudomonas sp. strain AHD-1 (closely related to P.
azotoformans, P. gessardii, and P. libanensis, according to the authors) Resistance to E and C (1) C [50]

Water from the Seine River/Paris, France P. fluorescens (P. fluorescens)
Production of BIC-1, an Ambler class A carbapenemase capable of hydrolyzing
penicillins, carbapenems, and cephalosporins (except CAZ). Resistance to TIC,
TIM, PIP, and ATM, among others (1) E

[105]

Seawater/Algiers, Algeria P. fluorescens (P. fluorescens)
All 7 isolates tested were resistant to AMX, AMC, and FOX; 6 to CTX, TIC,
TIM, and NA; 5 to CFS; 4 to TMP; 2 to IPM, TE, and SUT; 1 to RIF and CIP (7)
C

[124]

Freshwater and wastewater/Eastern Cape Province,
South Africa P. fluorescens (P. fluorescens)

Resistance to P, OX, CM, VAN, TMP, and RIF; varied resistance rates to CF,
CTX, SAM, and FM C.
Detection of blaTEM in 57.14% of isolated P. fluorescens (14.28% and 31.25% of
isolates in freshwater and wastewater, respectively)

[109]

Liver of wedge sole fish Dicologlossa cuneate/Coast
of Spain P. baetica a390T (P. koreensis)

Resistance to AM C

Tolerant to OT B

Detection of orthologs of MexAB–OprM and MexEF–OprN RND efflux pumps
[125,126]
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Table 2. Cont.

Isolation Site Isolates Identified and Characterized as Belonging to the
Pseudomonas fluorescens Complex (Group) Phenotype/Genotype (Number of Isolates) Ref.

Coastal waters/Kaštela Bay, Croatia P. fluorescens (P. fluorescens) First report of a chromosomally located blaTEM-116 in P. fluorescens. 70 (of 185)
isolates were MDR, with the highest rates for CTX, CAZ, MEM, ATM, and TE E [108]

Soils under distinct management (with or without
manure/antibiotic history)/Masuria, Warka, and
Lesznowola, Poland

P. jessenii (P. jessenii), P. mandelii, and P. fluorescens (P. fluorescens)

Tetracycline (tet-like), erythromycin (erm-like) and streptomycin (aac)
resistance genes
Detection of integrase, recombinase, and resolvase
High MICs for TE, STS, and E B

[127]

Treated wastewater/Puck Bay, Poland P. protegens (P. protegens) Resistance to TIM, CAZ, FEP, and ATM (1) F [128]

Small colony variant isolated from biofilm cultures
of rhizosphere colonizing P. chlororaphis strain 30-84 P. chlororaphis strain 30-84 Resistance to K and PIP (one small colony variant) A [129]

Danube River water/Multinational P. fluorescens (P. fluorescens)

All eight isolates tested were resistant to CAZ, six to MEM, four to CIP, three to
IPM, two to TZP and/or FEP, and one to GM or LVX (eight) C

Modified Hodge test was positive for carbapenemase presence in isolates
resistant to MEM and IPM

[60]

Halimione portulacoides tissue samples from a
metal-contaminated estuary/Ria de Aveiro,
northwest coast of Portugal

P. koreensis (P. koreensis); P. simiae (P. fluorescens); P. migulae (P.
mandelii), and P. fragi (P. fragi)

The most common resistance phenotypes included AM, AMX, AMC, and CTX.
P. koreensis (10), P. simiae (5), P. migulae (1), and P. fragi (1) C [26]

Treated wastewater/Germany P. fluorescens (P. fluorescens)

Resistance to β-lactams (P, O CLO, CF, CZ, AMX, CRO, and CB);
aminoglycosides (K, NEO, CAP, AN, GM, SIS, NB, and SPT); E, RIF, LIN,
VAN, C, BLE, varied sulfonamides and tetracyclines; NA, OFL, LOM, and
PB (1) D

[130]

Peaty soil from biological pesticide sewage
treatment plant/Jaworzno City, Silesia district,
Southwestern Poland

Description of P. silesiensis strain A3T (P. mandelii) Resistance to ATM, RIF, VAN G

Resistance to AM B [131]

Water from Del Rey Lagoon (DRL). Lower Ballona
Creek watershed/Los Angeles County,
California, USA

P. fluorescens and P. rhodesiae (P. fluorescens) Resistance phenotypes included AM, CTX, TE, E, S, STS, NA, and CIP for P.
fluorescens (4) and CTX, E, TE, S, STS, NA, and CIP for P. rhodesiae (1) C [132]

Leaves of the Ni hyperaccumulator Alyssum
serpyllifolium (subsp. malacitanum) grown in
serpentine soils (high concentrations of heavy
metals)/Bragança, Portugal

Drought-resistant P. azotoformans strain ASS1 (P. fluorescens) Resistance to P, AM, C, and STS (1) C [65]

Red fox (Vulpes vulpes) feces/Northern Portugal P. fluorescens (P. fluorescens)

Resistance to AMX, AMC, CF, FOX, CTX, TIC, TIM, IPM, ATM, E, TE, C, SUT,
and FOS C

Resistance to IPM and CIP on biofilm removal.
Detection of blaOXA-aer (1)

[92]
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Table 2. Cont.

Isolation Site Isolates Identified and Characterized as Belonging to the
Pseudomonas fluorescens Complex (Group) Phenotype/Genotype (Number of Isolates) Ref.

Fruits and leaves of sick Citrus sinensis cv. ‘Valencia
Late’ and Citrus limon cv. ‘Eureka’/Tunisia

P. kairouanensis strains KC12T, KC17, KC20, KC22, KC24A, KC25,
and KC26;
P. nabeulensis strains E10BT, E10AB, E10CB1, and Iy3BA (P.
fluorescens)

All strains displayed resistance to OX, CF, CZ, CXM, AMX, and TM C

MDR phenotype among the strains
[133]

Stream waters and effluents from urban wastewater
treatment plants/Central Italy P. koreensis (P. koreensis)

Resistance to AM and CTX B

High MIC values for AMP, CZ, and ETP A

Resistance to CL (5) A

Detection of blaAmpC in two (of five) isolates

[29]

Roots of Odontarrhena obovata on copper-influenced
soil/Chelyabinsk region, Russia Copper tolerant P. lurida strain EOO26 (P. fluorescens) Resistance to AM, TE, C and P C [84]

Wastewater/Kwara, Nigeria P. fluorescens (P. fluorescens)
Resistance to CAZ, CXM, CFM, OFL, CIP, FM C

The same isolate, when plasmid-cured, was not resistant to CFM, OFL, CIP, and
FM

[134]

River, stream, lake, and sewage water samples/São
Paulo state and Brasília, Brazil Heavy-metal resistant P. saponiphila (P. chlororaphis)

Resistance to TZP, CRO, CTX, CAZ, IPM, MEM, FEP, ATM (10, 11, 11, 8, 2, 2, 5
and 7 of 13, respectively). Resistance to TE (11); C (10); CIP (2); LVX (4) and
NOR (5); GM (1) and TM (1). A

First report of blaGES, qnrS, aac(3′)-IIa, and tetB in P. saponiphila.

[73]

Marine polypropylene/Øygarden, Norway Draft genome sequence of P. protegens 11HC2

Resistance to CTX, AM, C and TMP E

The strain carries a class C β-lactamase, type-B chloramphenicol
O-acetyltransferase (catB), three distinct copies of dihydrofolate reductase, and
a bifunctional aminoglycoside phosphotransferase

[135]

Antimicrobial agents to which P. aeruginosa is considered intrinsically resistant are indicated in bold. Antimicrobials in both bold type and underlined are generally recognized as
ineffective against non-fermentative gram-negative bacteria. T: Type strain; A: minimum inhibitory concentration (MIC) by broth microdilution; B: MIC by agar dilution; C: disc-diffusion
method; D: phenotype microarray; E: MIC by Etest; F: Phoenix Automated Microbiology System (BD Diagnostic Systems, USA); G: Biolog GENIII Microplates. AM: ampicillin;
AMC: amoxicillin–clavulanic acid; AMX: amoxicillin; AN: amikacin; ATM: aztreonam; BAC: bacitracin; BLE: bleomycin; C: chloramphenicol; CAP: capreomycin; CB: carbenicillin;
CAZ: ceftazidime; CF: cephalothin; CFS: cefsulodin; CIP: ciprofloxacin; CL: colistin; CLO: cloxacillin; CM: clindamycin; CRO: ceftriaxone; CTX: cefotaxime; CXM: cefuroxime; CFM:
cefixime; CZ: cefazolin; E: erythromycin; EN: enrofloxacin; ETP: ertapenem; FEP: cefepime; FM: nitrofurantoin; FOS: fosfomycin; FOX: cefoxitin; GM: gentamicin; IPM: imipenem; K:
kanamycin; LIN: lincomycin; LOM: lomefloxacin; LVX: levofloxacin; MEM: meropenem; NA: nalidixic acid; NB: novobiocin; NEO: neomycin; OFL: ofloxacin; OX: oxacillin; P: penicillin;
PB: polymyxin B; PIP: piperacillin; RIF: rifampicin; S: sulfamethoxazole; SAM: ampicillin–sulbactam; SIS: sisomycin; SPIR: spiramycin; SPT: spectinomycin; STS: streptomycin; SUT:
sulfamethoxazole–trimethoprim (or cotrimoxazole); TE: tetracycline; OT: oxytetracycline; TIC: ticarcillin; TIM: ticarcilli–clavulanic acid; TM: tobramycin; TMP: trimethoprim; TZP:
piperacillin–tazobactam; VA: vancomycin;. MDR: multidrug resistant.
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Table 3. P. fluorescens genomes harboring transferable antimicrobial resistance determinants.

Antimicrobial Resistance Genes

Accession Number Taxon ID Isolation Source Isolation Country Aminoglycosides β-Lactams Phenicol Fosfomycin Sulfamethoxazole Tetracycline Other

GCA_000801855.1 P. fluorescens sputum of an individual
with cystic fibrosis USA tet(G)

GCA_001021695.1 P. fluorescens sputum of an individual
with cystic fibrosis USA aac(3)-IIIb tet(B)

GCA_001542715.1 P. fluorescens mozzarella cheese Italy aph(3”)-Ib;
aph(6)-Id

GCA_004614275.1 P. fluorescens root Poland tet(A)

GCA_900636635.1 P. fluorescens respiratory tract - aph(3′)-Iib blaOXA-50; blaPAO catB7 fosA crpP

GCA_004102685.1 P. azotoformans chickpea rhizosphere
grown in saline soil India ant(3”)-Ia sul1 qacE

GCA_003851525.1 P. synxantha wheat rhizosphere USA tet(A)

GCA_003852025.1 P. synxantha wheat rhizosphere USA tet(A)

GCA_008632315.1 P. veronii soil Svalbard aph(3”)-Ib;
aph(6)-Id

GCA_014076455.1 P. migulae biofilm reactor China aadA15; aph(3”)-Ib;
aph(6)-Id cmlA1; floR sul1 tet(G) qacE

GCA_002177125.1 P. koreensis lake soil India ant(3”)-Ia sul1 qacE

GCA_003666515.1 P. protegens soil Netherlands aph(3′)-Ia catA1

GCA_004212425.1 P. moorei activated sludge Poland tet(A)

GCA_000282975.1 P. psychrophila activated sludge sample China

ant(2”)-Ia;
aph(3”)-Ib;
aph(3′)-XV;

aph(6)-Id

catB3; floR tet(G) qacE

GCA_001043065.1 P. helleri raw milk Germany aph(3”)-Ib;
aph(6)-Id tet(A)

GCA_001050345.1 P. fildesensis Antarctic soil Antarctica aph(3′)-Ia tet(C)

GCA_001594225.2 P. glycinae cotton field USA aph(3′)-Ia

Among 619 genomes of isolates belonging to the P. fluorescens complex available on the NCBI Public Database in November 2021 with source metadata,17 carried acquired
resistance mechanisms.
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4. Final Considerations

The trends recognized in this review support the idea that antimicrobial resistance is a
natural phenomenon. Nevertheless, human-impacted sites allow environmental isolates
to acquire clinically relevant ARGs. Despite differences in the number of samples and the
antimicrobial agents analyzed, the data in Tables 1 and 2 suggest that MDR phenotypes are
abundant in both natural and human-impacted environments. In general, few studies have
reported genotype data. However, this situation will likely be improved in the following
years as sequencing and whole-genome approaches become more widespread. The charac-
terization of antimicrobial susceptibility phenotypes alongside modern molecular biology
techniques will provide key insights into the resistance profiles of P. fluorescens.

This review sought to compile the scattered literature on the many different but
closely related species of the P. fluorescens complex. The data summarized herein contribute
to recognizing resistance profiles that are probably associated with intrinsic properties,
indicating the features that might be predicted as new or acquired. Considering the
“one health” perspective on antimicrobial resistance, the information summarized in this
review enables the characterization of the roles of different Pseudomonas species as actors
in the environmental chain of transfer and maintenance of resistance determinants. Our
analysis of the assembled literature also highlighted the importance of developing efficient
sewage and wastewater management approaches, as well as the bioremediation of human-
impacted sites, as necessary strategies to delay the evolution of antimicrobial resistance in
environmental bacteria.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/antibiotics11080985/s1, Figure S1: Phylogenomic tree of the
98 species belonging to the P. fluorescens complex and heatmap representing the digital DDH estima-
tion (dDDH) between genomes. Black squares delimit the species belonging to the same group. The
groups already described in the literature are indicated next to the heatmap; Table S1: Digital DDH
estimation (dDDH) values between bacterial species belonging to Pseudomonas fluorescens complex.
These dDDH values were used to plot the heatmap used on Supplementary Figure S1.
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