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Abstract: Actinomycetes, most notably the genus Streptomyces, have great importance due to their role
in the discovery of new natural products, especially for finding antimicrobial secondary metabolites
that are useful in the medicinal science and biotechnology industries. In the current study, a genome-
based evaluation of Streptomyces sp. isolate BR123 was analyzed to determine its biosynthetic
potential, based on its in vitro antimicrobial activity against a broad range of microbial pathogens,
including gram-positive and gram-negative bacteria and fungi. A draft genome sequence of 8.15 Mb
of Streptomyces sp. isolate BR123 was attained, containing a GC content of 72.63% and 8103 protein
coding genes. Many antimicrobial, antiparasitic, and anticancerous compounds were detected by
the presence of multiple biosynthetic gene clusters, which was predicted by in silico analysis. A
novel metabolite with a molecular mass of 1271.7773 in positive ion mode was detected through
a high-performance liquid chromatography linked with mass spectrometry (HPLC-MS) analysis.
In addition, another compound, meridamycin, was also identified through a HPLC-MS analysis.
The current study reveals the biosynthetic potential of Streptomyces sp. isolate BR123, with respect
to the synthesis of bioactive secondary metabolites through genomic and spectrometric analysis.
Moreover, the comparative genome study compared the isolate BR123 with other Streptomyces strains,
which may expand the knowledge concerning the mechanism involved in novel antimicrobial
metabolite synthesis.

Keywords: Streptomyces; secondary metabolites; genome; biosynthetic gene clusters; high-performance
liquid chromatography (HPLC); mass spectrometry

1. Introduction

The growing resistance of pathogenic microorganisms to antimicrobial agents has
become a global problem [1]. There is a dire need to discover newer antibiotics and
techniques that can overcome this problem [2,3]. In the development of new therapeutical
agents, natural products play a vital role. More than 2200 biologically active compounds
have been isolated from naturally abundant microorganisms [4,5]. Many novel antibiotics
were discovered from soil bacteria as well as from marine habitats.

Actinomycetes are a group of aerobic, gram-positive, sporulating, and filamentous
bacteria that have aerial and substrate mycelium, with the ability to produce many bioac-
tive secondary metabolites [6]. Among the class Actinobacteria, the genus Streptomyces,
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primarily found in the soil and aquatic habitats, has gained much attention because of
its role in the production of novel antimicrobial metabolites. More than 7630 bioactive
compounds have been reported to be only produced by this genus [7]. These bioactive
compounds are the result of an unprecedented genetic potential through biosynthetic gene
clusters (BGCs), which are harbored in their genomes and contain genes arranged in close
vicinity. The BGCs are under the control of a sophisticated regulatory network and the
laboratory conditions used [8]. Hence, the same species isolated from different habitats
can have different sets of biosynthetic gene clusters, which may be lost or gained when a
particular strain is transferred to a new environment [9]. Biosynthetic gene clusters (BGCs)
have been classified into two main pathways based on their products, i.e., nonribosomal
peptide synthetases (NRPSs) and polyketide synthases (PKSs), for the biosynthesis of
potent secondary metabolites. Polyketide synthases (PKSs) are further divided into PKS-I
and PKS-II gene clusters, where the diversity evolution of PKSs can be achieved by using
fragments of genes PKS-I ketosynthase and PKS-II KSα domains. Conversely, NRPSs are
produced by nonribosomal peptide synthase (NRPS) gene clusters and to achieve their
diversity evolution, their adenylation (AD) domains are used. Both the NRPS and PKS
products are comprised of remarkably long genes (>5 kb) that encode multi-modular en-
zymes with repetitive domain structures. In addition, other well-known classes of BGCs
are terpenoids, saccharides and lanthipeptides [10,11].

The conventional approach to discovering antibiotics from Streptomyces is through
the bioactivity-based identification of a compound, using mass spectrometry and nuclear
magnetic resonance (NMR) analyses [12]. However, the genome-based approaches have
divulged that most of the BGCs are not expressed under certain laboratory conditions,
proposing that the capability of Streptomyces to produce secondary compounds has been
underestimated [13,14]. On average, each Streptomyces has the potential to produce more
than 30 secondary metabolites, meaning that they are a valuable source of natural product
discovery [15]. The genomic data of over 1141 strains of Streptomyces are deposited and
available in the GenBank database. In this study, we conducted a detailed analysis of
Streptomyces sp. BR123, which was isolated from the rhizosphere of a sunflower plant.
The analysis was based on its in vitro antimicrobial activities in relation to the whole
genome sequencing data and a general comparison with other reported strains of the
genus Streptomyces.

2. Materials and Methods
2.1. Isolation and Cultivation Conditions of Streptomyces sp. BR123

Soil samples were collected from the rhizosphere of sunflower plants located in various
agricultural fields of Faisalabad, Pakistan for the purpose of isolating Streptomyces colonies.
From each sample, 1 g of dried soil was added into 9 mL of double distilled autoclaved
water and mixed well. The diluted aliquots (0.1 mL), 10−1, 10−2, 10−3, 10−4, and 10−5

were spread into petri plates containing a starch casein agar (SCA) medium, composed of:
soluble starch 10.0 g, KNO3 2.0 g, casein 0.3 g, K2HPO4 2.0 g, NaCl 2.0 g, MgSO4·7H2O
0.05 g, FeSO4·7H2O 0.01 g, CaCO3 0.02, agar 20 g, and distilled water 1 L [16]. The pH of
the medium was adjusted to be 7.0–7.2. The medium was supplemented with an antifungal
solution of cycloheximide (100 µg/mL) to inhibit fungus growth, and plates were incubated
at 30 ◦C for 5–7 days. Colonies that showed hard texture and filamentous mycelium when
observed under a phase contrast microscope were picked and purified by using an agar
streak method [17]. The purified stock cultures were preserved in glycerol (40% v/v) at
−80 ◦C. Moreover, Streptomyces sp. BR123 was cultivated in a starch casein broth at 30 ◦C,
rotated at 180 rpm for 7 days for later analysis.

2.2. Sequencing and Assembly of the Genome

To perform the genome-based comparative analysis, the biosynthetic potential of
Streptomyces isolate BR123 was investigated at the level of draft genome sequence. The
biomass of the isolate BR123 was separated from the liquid culture and grown for 72 h
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at 30 ◦C in casein-starch-peptone-yeast extract-malt extract (CSPY-ME) broth with the
composition (in g/L): K2HPO4 0.5, starch 10, casein 3, yeast extract 1, malt extract 10, and
peptone 1. The broth’s final pH was 7.2. Genomic DNA of high quality was obtained
through the bead method and quantification was performed by a high-sensitivity (HS)
assay of Quant-iT double-stranded DNA (dsDNA) (ThermoFisher Scientific, Waltham, MA,
USA). The genomic DNA was sequenced at MicrobesNG using the Nextera XT Library
Preparation Kit (Illumina, San Diego, CA, USA). For the generation and quantification
of the Illumina library, the KAPA Biosystems Library Quantification Kit was used. The
genomic data were deposited at the National Centre for Biotechnology Information (NCBI)
under the accession number PRJNA643667. Trimmomatic 0.30 was used to compile raw
reads, with a quality cutoff of Q15 [18].

2.3. Annotation of Genome and Bioinformatics Analysis

For the annotation of the genome, Rapid Annotation using Subsystem Technology
(RAST) version 2.0 was used [19]. For the assembly of matrices, PGAP (Prokaryotic
Genome Annotation Pipeline) v4.2 from the NCBI was used. The predictions of gene
clusters with the potential to produce secondary metabolites were analyzed by using the
online antiSMASH (antibiotics & Secondary Metabolite Analysis Shell) bacterial version,
accessed on 22 April 2022.

2.4. Amplification of NRPS and PKS Genes by PCR

The PKS-I, PKS-II, and NRPS genes were amplified using the following primer sets,
K1F (5′-TSAAGTCSAACATCCGBCA-3′)/M6R (5′-CGCAGGTTSCSGTACCAG TA-3′) [20],
KSα (5′-TSGCSTGCTTGGAYGCSATC-3′)/KSβ (5′-TGGAANCCGCCGAABCCGCT-3′),
and A3F (5′-GCSTACSYSATSTACACSTCSGG-3′)/A7R (5′-SASGTCVCCSGTSGCGTA S-
3′). The reaction for NRPS and PKS genes was made with the final volume of 50 µL
containing 1.5 µL of extracted genomic DNA, 1 µL of each primer (10 pmol), 21.5 µL of
nuclease-free water, and 25 µL of dream taq (PCR master mix). The amplification process
was performed in Analytik Jena Flex Thermal cycler block assembly 96 G, according to
the following specified conditions for each primer: 5 minutes at 95 ◦C for denaturation
and 35 cycles of 30 seconds at 95 ◦C; 2 minutes at 57 ◦C, 63 ◦C, and 59.7 ◦C for K1F/M6R,
KSα/KSβ, and A3F/A7R, respectively; 4 minutes at 72 ◦C; and 10 minutes at 72 ◦C. Gel
electrophoresis was used to analyze the PCR products using 1% agarose gel final stained
with ethidium bromide and the end product was purified with the help of GeneJET PCR
Purification Kit K0721 (Thermo scientific/Vilnius, Lithuania).

2.5. Assessment of Antimicrobial Potential

The isolate BR123 was checked for antimicrobial potential through the agar-well
diffusion method [21] against 2 gram-positive bacteria (Staphylococcus aureus and Bacillus
subitilis), 4 gram-negative bacteria (Salmonella typhi, Xanthomonas oryzae, Escherichia coli and
Pseudomonas aeruginosa), and 4 fungi (Aspergillus flavus, Aspergillus niger, Fusarium solani
and Fusarium oxysporum) by using 7 different media (Supplementary Table S1). Plates were
overlaid with the test culture and wells were filled with the supernatant of BR123. These
plates were incubated for 24 h at 30 ◦C in case of bacteria and for 5–7 days in the case of
fungal for the examination of clear zones formation.

2.6. Analysis of Metabolites through HPLC-MS from Streptomyces sp. BR123
2.6.1. Sample Preparation

Streptomyces sp. BR123 was pre-cultivated in a starch casein (SC) broth (pH 7.2). After
cultivating for 4 days in a rotary shaker at 180 rpm and 28 ◦C, 5 mL of the culture was used
to inoculate 1 L of casein-starch-peptone-yeast extract-malt extract (CSPY-ME) broth in a
2.8 L flask [17]. Twice extraction of the entire culture was performed with an equal volume
of ethyl acetate (EtOAc) by adjusting the pH of the broth to 3.5. To obtain solid material,
the ethyl acetate extract was concentrated in a rotary evaporator.
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2.6.2. Analysis of Metabolites

Low resolution electrospray ionization source mass spectra were recorded using a
UHPLC focused Thermo Scientific Dionex UltiMate 3000 auto-sampler (Dionex, Thermo
Fisher Scientific, Freiburg, Germany), coupled with a TSQ Quantum Access MAX diode
array detector (DAD, Thermo Fisher Scientific, Germany). The diode array detector allows
for the relative qualification of non-volatile components. Using a mobile phase of water
(A) and acetonitrile (B) both containing 0.5% acetic acid, the separation of compounds was
performed on a C18 HPLC column (Waters, 3.5 m, 4.6 100 mm). The gradient started by
washing for the following durations and concentrations: 0.5 min in 95% A; 19.5 min in 5%
A; 23.5 min in 5% A; 24 min in 95% A; 27 min in 95% A; followed by a final washing in
95% A and 5% B solution for 5 min. The column was re-equilibrated. The method lasted a
total of 27 min. The flow rate was 0.5 mL/min, column temperature was 30 ± 10 ◦C, and
pressure was adjusted from 5 × 102 to 4 × 104 kPa. Further analysis of the compounds
was determined using high resolution Bruker MaXis II Q-TOF (Bruker, Warwick, UK) mass
spectrometer coupled with a Dionex 3000RS UHPLC (Bruker, Warwick, UK). The analysis
was performed by keeping a mass range of 50–3000 m/z and using a mobile phase of water
(A) and acetonitrile (B), both containing 0.1% formic acid. Separation was again performed
by C18 HPLC column. The gradient for the high resolution started from 5% to 100% in
25 min, keeping a flow rate of 0.2 mL/min. The column was washed and re-equilibrated.
Mass spectra were recorded in both negative and positive modes and Xcalibur version 4.3
was used for the data analysis.

2.7. Comparative Genome Analysis

The complete 16S rRNA sequence data from the genome of all strains were retrieved
from TrueBacTMIDBeta [19]. Alignment of the extracted 16S rRNA sequences was achieved
through the ClustalW tool available in MEGA Software version 7 [22] and the phylogenetic
tree was constructed using the neighbor-joining method with a bootstrap value of 1000.
Additionally, the whole genome phylogeny was determined by using the online available
version of KBase software. The average nucleotide identity scores were calculated using
the FastANI algorithm [23].

2.8. Accession Number of Genome Sequence

The genome sequence of Streptomyces sp. BR123 has been submitted to GenBank under
the bio project number PRJNA643667, genome sequencing project number JACBGN000000000,
and SRA number SRR12527047. Moreover, the 16S rRNA gene sequence has been submitted
to GenBank under the accession number MT799988.

3. Results and Discussion
3.1. General Genomic Characteristics and Phylogenetic Analysis of Streptomyces sp. BR123

A genomic sequence with a total stretch of 8,158,025 bp was obtained, and the length
of the shortest contig at value N50 was observed to be 22,797 (Figure 1).

An average GC content of 72.63% was observed in the isolate BR123, which is close
to that of previously reported Streptomyces strains [24–26]. A total of 8103 protein coding
sequences (CDS), 281 pseudo genes, 8 rRNA genes, and 68 tRNA genes were predicted
through Rapid Annotation using Subsystem Technology (RAST) [27,28]. Table 1 provides
the genomic characteristics of Streptomyces sp. BR123 in comparison to certain other
available genomes of Streptomyces strains.
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Table 1. General genomic features of Streptomyces sp. isolate BR123 and other species used
in this study.

Strain Bio-Project
Accession Size (Mbps) No. of Contigs % G + C CDS tRNA rRNA

Streptomyces sp.
isolate BR123 PRJNA643667 8.16 723 72.63 8103 68 8

Streptomyces globosus
LZH-48 PRJNA428275 7.54 - 73.62 6524 71 3

Streptomyces katrae
NRRL ISP-5550 PRJNA238534 8.05 1874 72.69 7305 56 2

Streptomyces virginiae
NRRL ISP-5094 PRJNA238534 8.32 133 72.4 7245 74 13

Streptomyces clavuligerus
F1D7 PRJNA679926 7.59 - 72.5 6122 65 18

Streptomyces diastaticus
NBRC 15402 PRJDB6184 7.85 32 72.7 - 75 8

Streptomyces bacillaris
ATCC 15855 PRJNA471017 7.89 - 72.0 6746 65 18

Streptomyces cyaneofuscatus
SID 10855 PRJNA603111 7.88 52 71.6 6755 66 12

Streptomyces griseus
NBRC 13350 PRJDA20085 8.55 - 72.2 7087 67 18

Streptomyces lavendulae
YAKB-15 PRJNA526603 7.77 100 72.2 7009 70 21

The taxonomic position of the Streptomyces sp. BR123 was determined within the genus
Streptomyces (Supplementary Figure S2). Additional confirmation of this was performed
by a genome-based phylogenetic analysis of the isolate BR123 in comparison with other
Streptomyces strains [29,30]. Streptomyces sp. BR123 was closely branched with three other
Streptomyces species and most closely branched with Streptomyces globosus (Figure 2).
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The relationship with other species was verified by average nucleotide identity (ANI)
scores, based on a previously used strategy [31,32]. The ANI value between Streptomyces sp.
BR123 and Streptomyces globosus was found to be the maximum (87.3066) compared to the
other Streptomyces species (Table 2) and the alignment between the two strains was strong
(Figure 3).
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Table 2. Average nucleotide identity (ANI) between all Streptomyces species used in this study.

Query Reference ANI Estimate Matches Total

Streptomyces lavendulae subsp. lavendulae Streptomyces sp. isolate BR123 81.6134 1070 2300
Streptomyces sp. isolate BR123 Streptomyces lavendulae subsp. lavendulae 81.673 1050 2391
Streptomyces sp. isolate BR123 Streptomyces virginiae 86.0723 1576 2391

Streptomyces virginiae Streptomyces sp. isolate BR123 86.0802 1554 2721
Streptomyces globosus Streptomyces sp. isolate BR123 87.1686 1630 2510

Streptomyces sp. isolate BR123 Streptomyces globosus 87.3066 1626 2391
Streptomyces sp. isolate BR123 Streptomyces katrae 87.1854 1671 2391

Streptomyces katrae Streptomyces sp. isolate BR123 87.2335 1635 2813

3.2. Annotation and Assembly of Genome Sequence

Automatic annotation performed by using the RAST server yielded 8038 features
related to the protein coding genes. A total of 333 subsystems were identified using RAST
genome analysis, which represented: the amino acid and derivative metabolism (448 ORFs);
cofactors, vitamins, prosthetic groups, pigments (194 ORFs); and protein metabolism
(236 ORFs). Ninety four open reading frames (ORFs) were involved in DNA metabolism,
whereas 15 ORFs were found to code for secondary metabolites (Figure 4).
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3.3. Biosynthetic Secondary Metabolite Gene Clusters of Streptomyces sp. BR123

About 70–80% of the total bioactive metabolites discovered so far relate to the genus
Streptomyces [33]. Consequently, similar types of antimicrobial metabolites were found to
be produced by Streptomyces strains, isolated from different environments [34]. Due to this
de-duplication, rare actinobacteria have been targeted for the search of novel antimicrobial
compounds [35]. The exploration of a genome-based biosynthetic potential of new isolates
may be useful for finding novel compounds. In this study, a total of 44 clusters were identi-
fied in this strain, responsible for the production of secondary metabolites. This included
4 types of NRPS (nonribosomal peptide synthetase), 9 types of PKS (polyketide synthase),
and 7 types of hybrid biosynthetic gene clusters. The hybrids featured melanin-terpene,
lanthipeptide-3-NRPS, NRPS-transAT-PKS, T1 PKS-NRPS-like, T3 PKS-guanidinotides-
RiPP-like, T1 PKS-NAPAA, and RRE-containing-thiopeptide. Most of the gene clusters
detected in the isolate BR123 were related to polyketide biosynthesis. Out of the 44 biosyn-
thetic gene clusters, 33 clusters represented differing percentages of resemblance with
known BGCs, whereas 11 exhibited no similarity with known homologous gene clusters.
The latter clusters were considered as orphan biosynthetic gene clusters [36] (Table 3).
Particularly, the NRPS, NRPS-like, hybrid gene clusters, and majority of the peptide buty-
rolactone shared resemblance with antibacterial compounds, while most polyketides and
other gene clusters shared similarity with anticancer and pigmented compounds. However,
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low degree of similarity was observed in most cases, suggesting the occurrence of possibly
novel biosynthetic gene clusters [37,38].

Table 3. List of putative secondary metabolites producing biosynthetic gene clusters as predicted
by antiSMASH.

Cluster Size
(bp)

Most Similar Known
Biosynthetic Gene Cluster MIBG BGC-ID

Siderophores:
3 11,590 - -

56 6349 - -
226 8264 Desferrioxamin B (100%) BGC0000941
261 8036 Ficellomycin (7%) BGC0001593
279 6963 Ficellomycin (7%) BGC0001593

Terpenes:
9 16,885 - -

11 21,676 Hopene (61%) BGC0000663
16 21,086 - -
19 13,165 - -
24 25,408 Isorenieratene (63%) BGC0001227
69 13,506 Ebelactone (5%) BGC0001580

PKS:
2 (Type I) 103,249 Concanamycin A (21%) BGC0000040
4 (Type I) 46,281 Clifednamide A (30%) BGC0001553

94 (Type I) 23,404 Tetrocarcin A (8%) BGC0000162
129 (Type I) 19,401 - -
320(Type I) 7593 - -
350(Type I) 6899 - -
58 (Type II) 34,290 Granaticin (16%) BGC0000227
89 (Type III) 24,296 Alkylresorcinol (100%) BGC0000282
338 (Type III) 7187 Flaviolin (75%) BGC0000902

NRPS:
104 23,007 Lactonamycin (5%) BGC0000238
271 9618 Griseoviridin/Fijimycin A (8%) BGC0000459
239 11,133 - -
401 5437 Virginiamycin S1 (11%) BGC0001116

Peptides:
59 (Lanthipeptide class II) 13,149 - -

76 (Lanthipeptide class I) 23,247 Chejuenolide A/Chejuenolide
B (7%) BGC0001543

Butyrolactones:
100 6302 Griseoviridin/Fijimycin A (8%) BGC0000459

NRPS/PKS-like:
221 (NRPS-like) 12,004 Lipstatin (14%) BGC0000382
429 (NRPS-like) 4493 Glycinocin A (4%) BGC0000379
243 (PKS-like) 10,893 Virginiamycin S1 (33%) BGC0001116

Hybrids:
3 (Melanin, terpene) 33,435 Melanin (40%) BGC0000909

29 (Lanthipeptide-3, NRPS) 43,146 Azicemicin (8%) BGC0000202
46 (NRPS, transAT-PKS) 36,866 Virgimiamycin S1 (55%) BGC0001116

62 (Type I PKS, NRPS-like) 29,119 Monensin (26%) BGC0000100
98 (Type III PKS,

guanidinotides, RiPP-like) 23,202 Pheganomycin (52%) BGC0001148

149 (Type I PKS, NAPAA)
433 (RRE-containing,

thiopeptide) 17,747 Mediomycin A (34%) BGC0001661

4312 Lactazol (33%) BGC0000606

The core structure of 15 clusters was predicted, which include 4 NRPS, 1 NRPS-
like, 5 type I PKS, 1 PKS-like and 4 hybrid gene clusters. Moreover, a putative class II
of lanthipeptide with a core peptide was also predicted (Supplementary File S1). Out
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of these clusters, 1 NRPS, 2 type-1 PKS, and the lanthipeptides were the orphan BGCs
in Streptomyces sp. BR123 predicted by antiSMASH. The class II lanthipeptides are pro-
duced by the lanthionine synthase C (LanC) family protein that is present in cluster 59.
Moreover, in the LanC enzyme of lanthipeptide class II, di-dehydroalanine (Dha) and
di-dehydrobutyrine (Dhb) were well conserved.

Besides the core biosynthetic genes in Streptomyces isolate BR123, there were 10 clusters
(clusters 9, 19, 24, 29, 40, 62, 89, 149, 183, 221) with transcription regulation and 8 clusters
(clusters 11, 53, 76, 98, 157, 239, 279, 338) with transport genes, and there 7 clusters observed
(clusters 3, 4, 16, 46, 59, 100, 104) with both transcription regulation and transport genes.

3.4. Detection of NRPS and PKS Genes in Streptomyces sp. BR123

The amplification and detection of NRPS and PKS genes via PCR further confirmed
their presence in this Streptomyces strain (Supplementary Figure S3). Streptomyces sp.
BR123 was also found to be active against a broad range of pathogenic microorganisms,
including gram-positive and gram-negative bacteria and fungi. However, the activity
was based on the media supplements used, and the maximum activity observed in the
enrichment medium CSPY-ME resulted in the formation of the largest zone of inhibitions
against some of the fungal and all of the tested bacterial strains. The maximum inhibitory
effect was observed against Bacillus subtilis, showing a zone of inhibition with a diameter
of 24.1 ± 0.12, followed by E. coli (23.5 ± 0.10) and Aspergillus niger (20.2 ± 0.08). No
significant activities were observed in the ISP1 and ISP4 media (Supplementary Table S1),
and the zone of inhibition in the ISP3 medium was only observed in Aspergillus niger
(13.4 ± 0.05). Such a variation in activity could be due to different growth proportion in
a minimal medium. Inhibition causes a greater effect in a minimal medium compared to
a complex medium, where the medium’s ingredients may compensate for the inhibitory
effect of the product formation [39].

3.5. Production of Secondary Metabolites by Streptomyces sp. BR123

The production of various metabolites were verified through HPLC-MS [40–42]. A
compound detected in the UV spectrum, with absorption maxima at 219 nm, 288 nm, and
369 nm, and a mass spectrum at positive ion mode with m/z ratio of 822.22 was identified
as meridamycin, with a molecular mass of 821.5 (Figure 5).
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Meridamycin is a macrocyclic polyketide which possesses non-immunosuppressive,
neuroprotective activity by acting on dopaminergic receptors and has been found to be
suitable for the treatment of neurological diseases [43]. A small number of studies have
reported the production of this compound from the genus Streptomyces during the last few
years [43,44], and evidence on the presence of the biosynthetic pathway of this compound
in Streptomyces sp. DSM 4137 has been published [44]. Moreover, various therapeutically
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important metabolites analogous to meridamycin have also been previously identified [45].
Another compound with absorbance maxima at 221 nm, 333 nm, and 351 nm and a
molecular mass of 1271 at positive ion mode (Figure 6) was also observed. Upon library
screening, it was observed to not correspond with any known compound, thus further
characterization is required. The compound analysis of Streptomyces sp. BR123 indicated
the potential of this strain as a candidate for the production of novel secondary metabolites.
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4. Conclusions

Due to the development of multi-drug resistance (MDR) by emerging pathogens
against the available antibiotics, there is a dire need to find new sources of antibiotics.
The genus Streptomyces has massively contributed to the field of medicine through the
synthesis of antibacterial, antifungal, antiparasitic, and anticancerous compounds. In the
current study, we explored an indigenously isolated potent bioactive Streptomyces strain,
and added another draft genome sequence to the rising number of Streptomyces sequences
in the repository. Moreover, a few already known compounds in addition to some new
and uncharacterized compounds were also detected using the HPLC-MS technique. This
genome insight study of Streptomyces sp. BR123 and the information about the biosynthetic
clusters of some uncharacterized natural compounds may prove to be a valuable addition
to prior knowledge, assisting in the search for novel compounds as well as providing the
much-needed structural diversity required for a new generation of antibiotics designed for
pathogens with MDR.
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sequences; Figure S3: PCR-based identification of NRPS and PKS genes in isolate BR123. (a) NRPS
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structures; Table S1: Antimicrobial activity of Streptomyces strain BR123 in different growth media.
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