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Abstract: Type B dihydrofolate reductases (DfrB) are intrinsically highly resistant to the widely
used antibiotic trimethoprim, posing a threat to global public health. The ten known DfrB family
members have been strongly associated with genetic material related to the application of antibiotics.
Several dfrB genes were associated with multidrug resistance contexts and mobile genetic elements,
integrated both in chromosomes and plasmids. However, little is known regarding their presence
in other environments. Here, we investigated the presence of dfrB beyond the traditional areas of
enquiry by conducting metagenomic database searches from environmental settings where antibiotics
are not prevalent. Thirty putative DfrB homologues that share 62 to 95% identity with characterized
DfrB were identified. Expression of ten representative homologues verified trimethoprim resistance
in all and dihydrofolate reductase activity in most. Contrary to samples associated with the use
of antibiotics, the newly identified dfrB were rarely associated with mobile genetic elements or
antibiotic resistance genes. Instead, association with metabolic enzymes was observed, suggesting
an evolutionary advantage unrelated to antibiotic resistance. Our results are consistent with the
hypothesis that multiple dfrB exist in diverse environments from which dfrB were mobilized into the
clinically relevant resistome. Our observations reinforce the need to closely monitor their progression.

Keywords: antibiotic resistance; type B dihydrofolate reductase; metagenomic database search;
mobile genetic elements; multidrug resistance

1. Introduction

Trimethoprim (TMP) is a synthetic antibiotic that is intensively used worldwide as
a result of its low cost and high effectiveness as a broad-spectrum treatment of bacterial
infections [1]. TMP effectively inhibits bacterial dihydrofolate reductases (FolA) (e.g.,
Ki = 20 pM for Escherichia coli FolA), abrogating the metabolically essential reduction of
dihydrofolate (DHF) into tetrahydrofolate (THF) [2]. Shortly after the clinical introduction
of TMP in the late 1960′s, TMP-resistant dihydrofolate reductases were identified in clinical
samples [1,3]. In addition to TMP-resistant homologues of FolA (known as DfrA) [4],
the evolutionarily unrelated type B dihydrofolate reductase (DfrB) DfrB1 was identified.
Originally named R67 DHFR, DfrB1 circumvents the inhibition of FolA by TMP through
catalysis of the dihydrofolate reduction in the presence of the antibiotic [3,5].

At the outset of this work, there were ten known DfrB family members (DfrB1–11;
there is no DfrB8, [6–12]). All procure high TMP resistance in E. coli (MIC > 600 µg/mL;
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Ki ~0.38 to 1.3 mM), and most were originally identified in clinical samples [6–12]. The
turnover rates of DfrB enzymes for dihydrofolate reduction (kcat = 0.20–0.41 s−1) are at
least 100-fold lower than bacterial FolA (e.g., kcat = 230 s−1 for E. coli FolA); nonetheless, a
low level of DfrB expression suffices to confer TMP resistance [13,14].

The absence of structural homology or sequence similarity with the ubiquitous FolA
family of enzymes indicates that the DfrB family has a distinct evolutionary origin, where
the dihydrofolate reductase (Dfr) activity is a result of functional convergence [4,15]. DfrB
are homotetrameric enzymes constituted of four identical, 78-residue SH3-like protomers
(Figure 1) [16]. Their highly conserved SH3-like domain (Figure 1 and Figure S1) includes
the ‘VQIY’ (V66, Q67, I68 and Y69) catalytic tetrad that forms the single active-site cavity of
the homotetramer [17], W38 and W45 for assembly of the functional tetramer [18], and K32
to establish electrostatic interactions with the substrates [4]. Although structural evidence
has been obtained only for DfrB1 [16], conservation of all functionally and structurally
essential residues as well as their comparable Dfr activity are consistent with adoption of
the same functional tetrameric assembly in all DfrB family members [13].

Antibiotics 2022, 11, x FOR PEER REVIEW 2 of 13 
 

evolutionarily unrelated type B dihydrofolate reductase (DfrB) DfrB1 was identified. 
Originally named R67 DHFR, DfrB1 circumvents the inhibition of FolA by TMP through 
catalysis of the dihydrofolate reduction in the presence of the antibiotic [3,5]. 

At the outset of this work, there were ten known DfrB family members (DfrB1–11; 
there is no DfrB8, [6–12]). All procure high TMP resistance in E. coli (MIC > 600 µg/mL; Ki 
~0.38 to 1.3 mM), and most were originally identified in clinical samples [6–12]. The turn-
over rates of DfrB enzymes for dihydrofolate reduction (kcat = 0.20–0.41 s−1) are at least 100-
fold lower than bacterial FolA (e.g., kcat = 230 s−1 for E. coli FolA); nonetheless, a low level 
of DfrB expression suffices to confer TMP resistance [13,14]. 

The absence of structural homology or sequence similarity with the ubiquitous FolA 
family of enzymes indicates that the DfrB family has a distinct evolutionary origin, where 
the dihydrofolate reductase (Dfr) activity is a result of functional convergence [4,15]. DfrB 
are homotetrameric enzymes constituted of four identical, 78-residue SH3-like protomers 
(Figure 1) [16]. Their highly conserved SH3-like domain (Figures 1 and S1) includes the 
‘VQIY’ (V66, Q67, I68 and Y69) catalytic tetrad that forms the single active-site cavity of 
the homotetramer [17], W38 and W45 for assembly of the functional tetramer [18], and 
K32 to establish electrostatic interactions with the substrates [4]. Although structural evi-
dence has been obtained only for DfrB1 [16], conservation of all functionally and structur-
ally essential residues as well as their comparable Dfr activity are consistent with adoption 
of the same functional tetrameric assembly in all DfrB family members [13]. 

 
Figure 1. Structure of DfrB1 and sequence alignment of the known DfrB family members (75–95% 
sequence identity). (a) The functional, homotetrameric DfrB1 (PDB 1VIE) is constituted of four iden-
tical SH3-like protomers (one shown in green) that form the single, central active-site tunnel. The 
VQIY catalytic tetrad (V66, Q67, I68, and Y69; dark blue) and key residues K32 (red), W38 (magenta) 
and W45 (orange), are identified. (b) The DfrB1 protomer adopts an SH3-like fold. (c) Multiple se-
quence alignment of DfrB1–DfrB11 (there is no DfrB8) shows amino acid conservation, using stand-
ard annotation beneath the alignment. Conserved residues are highlighted in cyan. The poorly con-
served N-terminal domain and the highly conserved SH3-like domain are identified. Functionally 
and structurally important residues are framed in red.  

Figure 1. Structure of DfrB1 and sequence alignment of the known DfrB family members (75–95%
sequence identity). (a) The functional, homotetrameric DfrB1 (PDB 1VIE) is constituted of four
identical SH3-like protomers (one shown in green) that form the single, central active-site tunnel. The
VQIY catalytic tetrad (V66, Q67, I68, and Y69; dark blue) and key residues K32 (red), W38 (magenta)
and W45 (orange), are identified. (b) The DfrB1 protomer adopts an SH3-like fold. (c) Multiple
sequence alignment of DfrB1–DfrB11 (there is no DfrB8) shows amino acid conservation, using
standard annotation beneath the alignment. Conserved residues are highlighted in cyan. The poorly
conserved N-terminal domain and the highly conserved SH3-like domain are identified. Functionally
and structurally important residues are framed in red.

We recently uncovered the mobility of dfrB genes found in pathogenic bacteria isolated
from samples associated with human activity, such as clinical samples [11,12]. However, lit-
tle is known about the presence or mobility of dfrB genes in environmental settings [19,20].
The small size of dfrB genes (~237 bp) and their unusual codon usage has impeded their
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discovery when using prokaryotic gene recognition tools, such as Prodigal, which dis-
criminate against both these factors [12,21]. Recent bioinformatic developments facilitate
identification of putative DfrB sequences. However, databases such as NCBI tend to be
inherently biased towards clinical samples [22]. Metagenomic data can circumvent this
limitation, as samples are collected from diverse environmental settings.

Our objective was to determine whether dfrB are identified predominantly in mul-
tidrug resistance contexts from samples associated with the use of antibiotics or whether
they are also identified beyond those traditional areas of enquiry, without association to an-
tibiotic resistance genes. To do so, we identified ten DfrB family members (DfrB12–DfrB21)
from samples not associated with the use of antibiotics through a search of the JGI/IMG
(Joint Genome Institute / Integrated Microbial Genomes) metagenomic database [23].
DfrB12–DfrB21 share 63% to 92% protein sequence identity with known DfrB family mem-
bers (Figure S2). Expression in E. coli and characterization revealed that DfrB12–DfrB21
confer significant TMP resistance, and all but one display catalytic activities comparable
to the known DfrB. Using similar search criteria, we identified ten further putative dfrB
from the JGI/IMG database and ten more in NCBI to investigate their genomic context.
Contrary to dfrB from samples associated with human activity, bioinformatic analyses
revealed little association with mobility and multidrug resistance for environmental dfrB
from samples not associated with the use of antibiotics. Identification of new dfrB in a
variety of environments that are not directly associated with application of antibiotics
confirms their widespread presence and suggests that the dfrB observed in the modern
resistome may have originated from the mobilization of environmentally sourced dfrB.

2. Results and Discussion
2.1. Expansion of the DfrB Family

Following the recent identification and characterization of two new DfrB family mem-
bers (DfrB10 and DfrB11) [12], our objective was to investigate whether further new DfrB
homologues could be identified in environments that are less likely to be influenced by
human activity. To this end, we queried the JGI/IMG metagenomic database and identified
over 3000 dfrB gene homologues, from which ten sequences sharing 63 to 92% protein se-
quence identity were selected to be representative of sequence diversity (Figures S1 and S2).
They were defined as DfrB12–DfrB21. High sequence identity of their SH3-like domain
suggests that these DfrB12–DfrB21 should fold and tetramerize in a manner analogous to
known DfrB enzymes, thus conferring high TMP resistance as a result of their Dfr activity.
To investigate this, the minimal inhibitory concentration (MIC) of TMP for E. coli expressing
DfrB12–DfrB21 was characterized, followed by determination of Dfr activity in E. coli lysate.

Remarkably, all homologues except DfrB12 provided TMP resistance in E. coli com-
parable to that of DfrB1, up to the highest soluble concentration of TMP (600 µg/mL)
(Figure 2A). Furthermore, activity was clearly observed in clarified lysate of E. coli for all
DfrB homologues except DfrB12, which conferred resistance up to 150 µg/mL of TMP
(Figure 2B). This apparent discrepancy results from little Dfr activity being required to
sustain microbial proliferation, such that MIC assays are more sensitive than activity assays
in crude lysate [12].

The lower TMP resistance and Dfr activity of DfrB12 relative to all other DfrB fam-
ily members is most likely due to the Q67H substitution in the active-site VQIY tetrad
(Figure S1). The Q67H mutation has been previously investigated: the mutation improves
binding to both DHF and NADPH by 1–2 orders of magnitude compared to the native
enzyme [24]. This favors the formation of the nonproductive DHF·DHF substrate or
NADPH·NADPH cofactor complexes, resulting in an important decrease in activity. We
note that this lower activity is sufficient to confer some TMP resistance. On the contrary,
the 5- to 10-fold lower activity of DfrB14 and DfrB15 relative to DfrB1 is sufficient to confer
the highest level of TMP resistance that we can measure. This work having been performed
on crude lysate, we have not determined whether the reduced activity results from se-



Antibiotics 2022, 11, 1768 4 of 12

quence variation outside of the conserved VQIY active site or other factors, such as reduced
expression or stability.
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Figure 2. Newly identified DfrB homologues confer TMP resistance and possess Dfr activity.
(a) Minimal inhibitory concentrations were determined on solid media with [TMP] ranging be-
tween 0–600 µg/mL. The reported MIC was the lowest TMP concentration where no bacterial growth
was observed. The initial rates of reaction were calculated from panel B (n = 3, mean ± SD). The rate
of the most active variants is underestimated, since the initial rate was not captured. (b) Dfr activity
was determined in E. coli lysate, monitoring substrate consumption as a function of time (n = 3, mean
± SD). The negative control (Neg. Ctrl) is E. coli expressing the cTEM-19m β-lactamase instead of a
DfrB.

These results confirm that DfrB12–DfrB21 constitute new DfrB family members. This
demonstrates that identification of sequences sharing high sequence identity with dfrB1–
dfrB11, including functionally and structurally important residues, is sufficient to identify
new DfrB family members. This knowledge will facilitate robust identification of DfrB
homologues in the future.

2.2. Genomic Context Analysis of DfrB12–21

The DNA sequences containing the newly identified dfrB genes originated from sam-
ples isolated from diverse environments not directly associated with the use of antibiotics
(Table 1). Consistent with previous studies, dfrB genes were found in Proteobacteria [12].
As the identification of dfrB in diverse environments suggests their widespread presence,
we investigated the mobility of the dfrB12–dfrB21 genes by determining whether mobile
genetic elements (MGEs, e.g., plasmids, transposons, or integrons) were present in their
vicinity. Other antibiotic resistance genes (ARG) were also sought, because a major public
health concern is transmission of ARGs associated with MGEs in pathogenic bacteria [25].
To allow comparison to dfrB1–dfrB11, mostly isolated from samples associated with human
activity, we characterized the genomic context of dfrB1–dfrB11 according to the same criteria
(Figure S3).

First, sequences were classified as plasmidic or chromosomal using PlasForest and
PlasFlow (Table S1) [26,27]. The resulting predictions obtained were often contradictory,
such that it was difficult to conclude on their organization. The poor quality of predictions
was expected, since the majority of analyzed contigs in that dataset were too short (<1 kbp)
to allow for confident predictions [26].
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Table 1. Genomic context analysis of dfrB12–21.

Name and
Position a

Genomic
Context

Length (bp) b
Environment a Host Strain a Integron c Insertion

Sequences d

Antibiotic
Resistance

Genes e

dfrB12
(317..553) 743

Soil, Arlington
Agricultural

Research Station
E. coli CALIN

(2..676) None None

dfrB13 (10..246) 540
Soil, Arlington
Agricultural

Research Station
Proteobacteria None None None

dfrB14 (97..333) 450
Freshwater

sediment, Lake
Washington

E. coli None None None

dfrB15 (93..329) 562 Wastewater
effluent Proteobacteria None None None

dfrB16
(191..427) 596

Populus sp.
Microbial

communities,
riparian zone

E. hormaechei None None None

dfrB17
(1065..1301) 1715 Desert sand, soil

crust Proteobacteria None None None

dfrB18 (11..247) 359

Barbacenia macratha
root

associated
microbial

communities

E. hormaechei None None None

dfrB19
(702..938) 1077 Fen, Stordalen Mire E. hormaechei CALIN

(103..1001) None None

dfrB20
(9332..9568) 9717

Populus trichocarpa
microbial

communities,
riparian zone

Proteobacteria CALIN
(1..9097) None None

dfrB21
(288..524) 625

Uranium-
contaminated

sediment slurry
Proteobacteria None None None

a Determined from available information in the JGI/IMG metagenomic database. b Number of base pairs (bp) in
each contig containing a dfrB. c Complete and incomplete (CALIN) integrons were searched for with Integron
Finder. Where applicable, the type of MGE identified and its position in the contig are indicated. d Searched for
with ISFinder. e Searched for on the CARD database.

The association of dfrB genes with integrons and transposon insertion sequences
(IS) was investigated using IntegronFinder and ISFinder, respectively (Table 1) [28,29].
These tools rely on frequently updated databases as references and enable robust and
precise identification of MGEs [28,29]. No contig contained transposon IS, but incomplete
integrons (CALIN) were identified in the vicinity of dfrB12, dfrB19, and dfrB20 [30]. Both
dfrB12 and dfrB19 were integrated within a CALIN element, indicative of potential mobility
of those two genes. The dfrB20 gene was found outside of the CALIN identified in its
genomic context, the longest obtained (nearly 10 kbp). Analysis of its content using BLASTP
indicated 15 hypothetical or metabolism-associated proteins. Though not indicative of
mobility of that dfrB, it demonstrates that genetic mobility occurred in the vicinity of the
gene. Overall, this dataset contains evidence of genetic mobility in at most three among the
dfrB12–dfrB21 genes, in contrast with our earlier findings based on samples closely linked
to human activity [12].

The Resistance Gene Identifier (RGI) tool from the Comprehensive Antibiotic Resis-
tance Database (CARD) was used to assess the association of dfrB12–dfrB21 with multidrug
resistance (MDR, Table 1) [31]. In contrast to dfrB1–dfrB11, mostly identified in environ-
ments associated with the use of antibiotics and generally associated with MGE in a variety
of MDR contexts (Table S3) [12], no ARGs were identified in this dfrB12–dfrB21 dataset.
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A clear limitation of the current dataset is the short length of the contigs (Table 1). Most
genetic contexts were of insufficient length to allow identification of additional genetic
features with confidence, indicating that analyses on longer contexts should be conducted.

2.3. The Broader DfrB Sequence Space Includes DfrB of Concern

To gain further information on the genetic context of the dfrB gene family, we identified
ten further putative dfrB from a BLASTP search conducted in NCBI (referred to as putative
dfrB B1–B10) and ten more from the above-described metagenomic JGI/IMG database
search (referred to as putative dfrB C1–C10). We selected sequences with analyzable
genomic context (>1 kbp) identified from environments that are not directly associated
with the use of antibiotics (e.g., river sediments, soil), although some may be associated
with human activity (e.g., polluted river sediment, wastewater). One sequence from a
clinical sample (B5) was included as a basis for comparison. Although these new putative
DfrB homologues were not functionally characterized, high sequence identity with dfrB1–
dfrB21 (63–92%) and conservation of all structurally and functionally important residues
are consistent with their being functional DfrB homologues (Figure S3).

All sequences were predicted as chromosomal by PlasForest (Table 2), consistent with
recent findings [12]. Complete integrons containing a dfrB gene (putative dfrB B1, B2, B5)
and proximal transposases (putative dfrB B1, B5) were found only in contigs from samples
collected in environments associated with human activity (Table 2). Strikingly, putative
dfrB B1, B2, and B5 were also all associated with MDR (Table 2). Notably, previously known
dfrB from clinical samples (dfrB1–5, 9–10; Table S3) are all associated with clinical integrons
and are in MDR contexts [12]. This is consistent with human-associated settings procuring
higher TMP selective pressure, thus inducing mobilization of dfrB and acting as reservoirs
for ARGs [32–34]. Our findings suggest that these MGEs have contributed to propagating
dfrB from diverse sources into clinically relevant settings.

Additionally, putative dfrB B3 and B6 from water samples are from environments
linked to human activity; they were found in MDR contexts but were not associated with
MGEs (Table 2). This suggests vertical transmission or loss of mobility after acquisition
of ARGs [35]. This was also the case for putative dfrB C3, which was isolated from soil
in the Loxahatchee National Wildlife Refuge. The refuge accommodates a wide variety
of recreational activities, although it is in a remote location; the relation of the sample to
human activity is plausible but is not clear. Most ARGs found in the vicinity of putative dfrB
B1–B3, B5-B6, and C3 are related to aminoglycoside resistance (aadA16, AAC(6′)-IIa, ParS,
aadA, baeS), consistent with previous findings for dfrB of clinical origin [12]. Association
with resistance to rifampin (arr2), chloramphenicol (catB3, cmlA6), beta-lactam (OXA-21),
fosfomycin (fosX), polycationic antibiotics (parS), and macrolides (mtrA) was also noted.
This demonstrates association of putative dfrB with MDR in environments linked to human
activity beyond clinical contexts.

Conversely, indications of genetic mobility were found in the genomic context of
putative dfrB B4 and B10 isolated from soil and putative dfrB C1 isolated from freshwater
sediment, without association with MDR (Table 2). Strikingly, whereas analyses using
CARD reveal no ARGs associated with those putative dfrB, BLASTP analyses of the integron
content in the vicinity of putative dfrB C1 indicate the presence of ten proteins associated
with metabolism and detoxification. This suggests the coevolution of putative dfrB C1 with
metabolism- and defense-associated genes, rather than with antibiotic resistance genes. The
remaining putative dfrB isolated from soil (C5, C6, C8–C10) and from water samples (B7,
B8, C2, and C7) were not associated with MGEs or MDR (Table 2). These findings suggest
that DfrB may confer an evolutionary advantage in environmental contexts that are not
directly associated with the use of antibiotics.

All putative dfrB genes were isolated from Proteobacteria as for all known dfrB,
most of which have been reported in clinical settings, often linked to ARGs and mo-
bility (Table S3) [12]. Our findings highlight a new pattern: with few exceptions, the 12
putative dfrB genes identified in settings that are not associated with human activity were
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not associated with ARGs or mobility. Exceptions include the putative dfrB C4 linked with
β-lactam resistance (OmpA) and an incomplete transposase (Table 2) and observation of
dfrB7 in a clinical integron (Table S3), despite both having been isolated from environmental
sources. These examples could be the result of environmental contamination with clinically
relevant pathogens [36]. Inversely, putative dfrB B9 was found in a wastewater sample but
is not associated with MDR nor MGEs.

As the isolation sources and genomic contexts of these putative dfrB are heterogeneous,
more information is needed to conclude on the influence of environment on mobility and
prevalence of dfrB. Nonetheless, the association of dfrB from environmental sources with
MGEs and/or ARGs demonstrates that the broader DfrB sequence space includes DfrB of
concern and justifies the need to closely monitor them.

Table 2. Genomic context analyses of putative dfrB from BLASTP and JGI/IMG searches.

Name and
Position a

Genomic Context
Length (bp) b Environment c Integron d Insertion

Sequences e Organization f Antibiotic
Resistance Genes g

B1
(1..251) 1890 Polluted river

sediment
Complete (3 . . .

1890)
Tn3 transposase

(1051...1890) Chromosomal arr2

B2
(2467710..2467946) 4,664,715 Wastewater Complete

(2462823...2469276) None Chromosomal
aadA16, catB3,

OXA-21,
AAC(6′)-IIa

B3 (270150..270386) 341,798

Groundwater (48 m
deep), Hainich
Critical Zone
Exploratory

None None Chromosomal FosX, ParS, mtrA

B4
(1436..1672) 3039 Soil, Usan-dong

village CALIN (1...2856) None Chromosomal None

B5
(1695128..1695367) 4,457,823 Clinical, human

sample
Complete

(1692032...1696644)
TnAs3 transposase
(1679393...1683642) Chromosomal aadA, cmlA6

B6
(2901..3137) 14,187

Activated sludge,
wastewater treatment

plant
None None Chromosomal baeS

B7 (175053..175289) 844,006 Groundwater (<100 m
deep) None None Chromosomal None

B8
(802..1038) 4,496,947 River, hydroelectric dam None None Chromosomal None

B9
(1026..1262) 41,160

Activated sludge,
wastewater treatment

plant
None None Chromosomal None

B10
(19507..19743) 82,085 Forest acidic soil None ISNCY transposase

(13699...15117) Chromosomal None

C1
(3299..3535) 23,478 Freshwater, Lake

Lanier
Complete

(868...7457) None Chromosomal None

C2
(498..734) 5709

Freshwater, selected
watersheds (little to no

prior
anthropogenic

activities)

None None Chromosomal None

C3
(3371..3607) 4299 Soil, wildlife refuge None None Chromosomal AAC(6′)-Iak

C4
(3287..3523) 3806

Soil, Bohemian Forest
Mountain range

(1170–1200 m
altitude)

None
ISCARN35
transposase
(3725...3806)

Chromosomal OmpA

C5
(1221..1457) 2462 Soil, coastal

freshwater wetland None None Chromosomal None

C6
(1262..1498) 2430 Soil, coastal reserve None None Chromosomal None

C7
(1466..1702) 2288 Biofilm, wastewater

treatment plant None None Chromosomal None

C8
(1246..1482) 2134 Miscanthus sp.

rhizosphere None None Chromosomal None

C9
(511..747) 2075 Populus trichocarpa

ectomycorrhiza None None Chromosomal None

C10
(694..930) 1938 Sugarcane root None None Chromosomal None

a Sequences B1–B10 were retrieved from NCBI and C1–C10 from JGI/IMG. b Number of base pairs (bp) in
genomic context. c Environmental source was determined using the available information on the NCBI or
IMG/JGI database. d Complete and incomplete (CALIN) integrons within 5 kbp of a dfrB were searched for
with IntegronFinder. Where applicable, the type of MGE identified and its position in the contig are indicated.
e Searched for with ISFinder, within 5 kbp of a dfrB. f Organization as chromosomal or plasmidic was predicted
with PlasForest using DNA contig sequences. g Searched for on the CARD database within 5 kbp of a dfrB.
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2.4. DfrB Genes with Similar Level of Mobility Share Closer Evolutionary Relationships

The identification of dfrB genes in various settings led us to investigate whether closer
phylogenetic relationships exist between dfrB isolated from similar environments because
of a higher likelihood of horizontal gene transfer [37]. To this end, the phylogeny of dfrB1–
dfrB21 and the 20 putative dfrB (B1–B10, C1–C10) was reconstructed using IQ-Tree [38].

These results highlight evolutionary proximity between sequences that have similar
levels of mobility (Figure 3). For instance, most dfrB contained in integrons and associated
with MDR (dfrB1–dfrB5, dfrB9, dfrB10, putative dfrB B1, dfrB B2, dfrB B5) share their closest
ancestor with another integron-associated sequence.
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Figure 3. Phylogenetic tree of dfrB1–dfrB21 and associated putative dfrB genes. Sequences are
classified according to their source environment, predicted mobility, and taxonomy. Sequences were
aligned using MAFFT; the tree was obtained using IQ-tree and visualized with iTOL. Bootstrap
confidence levels are indicated by the size of the circle before each node. Information pertaining to
source environment, taxonomy, and predicted mobility is reported in Tables 2 and S3. The newly
identified dfrB12–dfrB21 are in bold. Sequences associated with MDR are marked with an asterisk (*).
Taxonomy: “β” for β-Proteobacteria, “γ” for γ-Proteobacteria, “PB” for Proteobacteria; “?” indicates
undetermined, as taxonomic information was not available in some cases.

These results also indicate evolutionary proximity between sequences from similar
environments in the absence of indicators of mobility. For instance, pairs of dfrB from
terrestrial samples (dfrB16 and dfrB19; dfrB12 and dfrB17; putative dfrB C8 and B10) share
their most proximal common ancestor, although none hold clear markers of genetic mobility
(Figure 3). This could suggest high conservation of the dfrB sequence owing to similar
selection pressures from a similar environment and/or loss of mobility of an ancestral dfrB.
In contrast, dfrB from samples isolated in aquatic or wastewater that are not associated with
mobility are evenly distributed throughout the tree, suggesting that various evolutionary
paths define their relationships.

Because all dfrB analyzed were found in Proteobacteria (Tables S2 and S3), it is difficult
to distinguish events that are due to taxonomy from those due to horizontal gene transfer
in our reconstructed phylogeny. Interestingly, dfrB from the same genus (e.g., Rhodoferax sp.,
putative dfrB B3 and B9) are not associated with mobility and do not share a close common
ancestor. This could reflect different evolutionary pressures from different environments,
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as putative dfrB B3 was isolated from groundwater, whereas putative dfrB B9 was isolated
from activated sludge. This also indicates that dfrB genes can exist in bacterial strains that
are not typically associated with clinical settings [39], suggesting that DfrB enzymes could
confer an evolutionary advantage in environmental contexts.

3. Conclusions

The results reported here demonstrate, for the first time, the widespread presence
of dfrB in a diversity of environments. Most dfrB genes from samples not related to the
use of antibiotics were not associated with markers of mobility nor of antibiotic resistance.
Their association with metabolically relevant proteins and diverse evolutionary paths
suggests that dfrB confer an evolutionary advantage unrelated to antibiotic resistance. Our
results are consistent with the hypothesis that such environmentally sourced dfrB have been
mobilized into the clinically relevant resistome, where they are associated with markers of
mobility and antibiotic resistance. This work highlights the need to closely investigate and
monitor their dissemination within the framework of developing therapeutic interventions
to counter TMP resistance.

4. Materials and Methods
4.1. Identification of Putative dfrB Genes

Metagenomes deposited in the JGI/IMG database (https://img.jgi.doe.gov/) were
queried using a Pfam search for “DHFR_2” on 8 May 2020. This returned a list of
2702 metagenomes, which were filtered for the Pfam keyword “pfam06442” [40]. This
resulted in 3116 putative dfrB genes. Non-redundant sequences shorter than 100 amino
acids approximating a full-length DfrB (78 amino acids) and starting with a methionine
were filtered with CD-HIT [41]. Ten representative sequences sharing at most 95% protein
sequence identity with any of the dfrB1–dfrB11 genes were codon-optimized for E. coli and
synthesized by Twist Bioscience (South San Francisco, CA, USA). These sequences had been
subcloned into expression vector pET29 under control of the IPTG-inducible lac promoter.

Additional putative dfrB genes were identified by filtering the JGI/IMG metagenomic
search results based on their nucleotide identity with dfrb1–dfrB21 genes (<95%) and
the length of their genomic context (>1 kbp). Complete coding sequences (234 nt = 78
amino acids) were prioritized. To identify further putative dfrB genes, the dfrB1 sequence
(Uniprot ID P00383) was used as a query for a BLASTP analysis using default parameters
(10 January 2022). Results were filtered with CD-HIT to retain only sequences starting
with a methionine and containing 78 amino acids while sharing 60–95% protein sequence
identity with dfrB1–dfrB21.

4.2. Minimal Inhibitory Concentration (MIC)

MICs were determined in triplicates using the agar microdilution method. This was
done as previously reported [12], with the following modifications. E. coli BL21(DE3)
harboring one of the dfrB12–dfrB21 genes, dfrB1 (positive control), and TEM-1 β-lactamase
variant cTEM-19m [42] (negative control) were propagated in 1 mL Luria-Bertani (LB) broth
for 16–18 h at 37 ◦C with agitation at 230 rpm. LB–agar plates were prepared containing
0.25 mM IPTG (ThermoFisher). Plates were inoculated with 104 colony-forming units per
mL (CFU/mL) and incubated for 16–18 h at 37 ◦C. The lowest TMP concentration inhibiting
visible bacterial growth was considered the MIC.

4.3. Dihydrofolate Reductase Activity Assays in E. coli Lysate

DfrB12–DfrB21, DfrB1 (positive control), and cTEM-19m (negative control) were
overexpressed in E. coli BL21(DE3). An overnight (16–18 h) culture in LB (50 µg/mL
kanamycin) was used to inoculate 1 mL ZYP-5052 autoinduction media [43] (for 1 L of
media: 928 mL of ZY (1% tryptone, 0.5% yeast extract), 50 mL 20 × P (50 mM Na2HPO4,
50 mM KH2PO4, 25 mM (NH4)2SO4), 20 mL 50 × 5052 (0.5% glycerol, 0.05% glucose, 0.2%
a-lactose), 2 mL MgSO4 (2 mM), and 0.2 mL 1000 × trace elements (50 mM FeCl3, 20 mM

https://img.jgi.doe.gov/
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CaCl2, 10 mM MnCl2, 10 mM ZnSO4, 2 mM CoCl2, 2 mM CuCl2, 2 mM NiCl2, 2 mM
Na2MoO4, 2 mM Na2SeO3, and 2 mM H3BO3) with 50 µg/mL kanamycin to obtain an
initial OD600nm of 0.1. The cultures were incubated at 37 ◦C, 230 rpm until the OD600nm
reached 0.7–1. Incubation was continued at 22 ◦C, 230 rpm for 16–18 h to allow protein
expression. Cells were pelleted at 20,800× g for 30 min at 21 ◦C, and the pellets were stored
at –72 ◦C until use. The pellets were thawed at room temperature and resuspended in
400 µL of lysis buffer (0.1 M KH2PO4-K2HPO4 (pH 8), 10 mM MgSO4 (Anachemia), 1 mM
dithiothreitol (Fisher), 0.5 mg/mL lysozyme (MP Biomedicals), 0.4 U DNAse (Thermo),
1.5 mM benzamidine (Fisher), and 0.25 mM phenylmethylsulfonyl fluoride (Bioshop)) and
kept for 2 h at RT with vigorous shaking. The lysates were centrifuged at 20,800× g for
30 min at 21 ◦C. The clarified lysates were used in subsequent assays.

DHF and NADPH in 50 mM KH2PO4-K2HPO4 (pH 7) were quantified by spec-
trophotometry (Cary 100 Bio UV-Visible, Agilent) using eDHF

282nm 28 400 M−1·cm−1 and
eNADPH

340nm 6200 M−1·cm−1. In 96-well UV-transparent plates (Corning), 10 µL of clarified
lysate was added to 100 µM NADPH and 100 µM DHF in 50 mM KH2PO4-K2HPO4 (pH 7)
for a final volume of 100 µL. Enzyme activity was determined by monitoring the depletion
of DHF/NADPH at 340 nm with a plate reader (Beckman Coulter DTX880) over 5 min.
The initial rate of the reaction was determined by linear regression of the initial rate (first
20% of substrate consumption or the first minute) of depletion of both substrates (∆e340nm
12 300 M−1·cm−1). Assays were carried out in triplicate.

4.4. Genomic Context Analysis

The contigs were classified as plasmidic or chromosomal using PlasForest [26] with
the latest release of the NCBI database. Integrons were identified in contigs using Integron-
Finder [28]. To perform this search, the local detection (–local-max) and search for promoter
and attI sites (–promoter-attI) options were used. Transposon insertion sequences (IS) were
identified in contigs using ISFinder BLASTN [29]. Antibiotic resistance genes were iden-
tified in contigs using the Resistance Gene Identifier (RGI) tool from the Comprehensive
Antibiotic Resistance Database (CARD) [44].

4.5. Phylogenetic Tree

Amino acid sequences were aligned using MAFFT [45] with the default options. A
phylogenetic tree was constructed using IQ-Tree [38] with the Ultrafast bootstrap analysis
(1000 alignments, 1000 iterations, 0.99 minimum correlation coefficient). Branch support
was determined using the SH-aLRT branch test (1000 replicates) and the Approximate Bayes
test. The JTT+G4 substitution model was selected using the automatic model selection
option. The resulting consensus tree was visualized using iTOL and rooted using the
Midpoint root function [46].
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//www.mdpi.com/article/10.3390/antibiotics11121768/s1, Figure S1: Multiple sequence alignment
of the newly identified dfrB12–dfrB21; Figure S2: Similarity and identity shared between dfrB1–dfrB21;
Figure S3: Multiple sequence alignment of 20 newly identified dfrB homologues; Table S1: Prediction
of chromosomal or plasmidic location; Table S2: Additional characteristics of the putative dfrB genes;
Table S3: Genomic context analyses of dfrB6, dfrB7, dfrB9 and dfrB11 genes.
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