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Abstract: Multi-drug resistance (MDR) is one of the most current and greatest threats to the global
health system nowadays. This situation is especially relevant in Intensive Care Units (ICUs), where
the critical health status of these patients makes them more vulnerable. Since MDR confirmation by
the microbiology laboratory usually takes 48 h, we propose several artificial intelligence approaches
to get insights of MDR risk factors during the first 48 h from the ICU admission. We considered
clinical and demographic features, mechanical ventilation and the antibiotics taken by the patients
during this time interval. Three feature selection strategies were applied to identify statistically
significant differences between MDR and non-MDR patient episodes, ending up in 24 selected
features. Among them, SAPS III and Apache II scores, the age and the department of origin were
identified. Considering these features, we analyzed the potential of machine learning methods for
predicting whether a patient will develop a MDR germ during the first 48 h from the ICU admission.
Though the results presented here are just a first incursion into this problem, artificial intelligence
approaches have a great impact in this scenario, especially when enriching the set of features from
the electronic health records.

Keywords: artificial intelligence; machine learning; feature selection; risk factors; multi-drug resis-
tance; Intensive Care Unit; antibiotics

1. Introduction

Antimicrobials were one of the most outstanding inventions in the health sector since
penicillin was discovered in 1928, aimed at controlling bacterial infections [1]. An antimi-
crobial can be defined as a substance that kills or inhibits the growth of microorganisms
(bacteria, fungi or parasites) [2]. Depending on the microorganism they attack, antimi-
crobials are classified as: antibiotics, antivirals, fungal and antiprotozoal agents [3]. They
constitute one of the most important tools both for prevention and treatment of infectious
diseases in humans and animals, and therefore are extremely important in conventional
medicine. Sometimes antimicrobials do not perform the desired action on the microor-
ganism. When a microorganism changes from being susceptible to an antimicrobial to
being unaffected by it, it is called antimicrobial resistance [4]. Antimicrobial resistance,
defined as the ability of bacteria to survive against chemical agents designed to kill them [5],
is not necessarily limited to a single family of antibiotics. In fact, multi-drug resistance
(MDR) occurs when a bacterium becomes resistant to many antibiotics [6]. The growing
problem of antimicrobial resistance poses a global threat in getting worse the effectiveness
of these drugs [7]. The cost associated with MDR is becoming alarming at present, making
it necessary to push actions to tackle this problem [8]. The antibiotic resistance is not a
major problem for bacteria with innate resistance. However, the induced or developed
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resistances may lead to complications in the treatment of infectious diseases which are
curable by antibiotic therapy.

There are scenarios in which the development of infections caused by antimicrobial
resistance is more likely to occur. Health centers stand out among these scenarios, due
to the continuous presence of germs and use of antibiotics. In addition, half of infections
arising in hospitals are originated in the Intensive Care Unit (ICU) [4,9], probably due to
the serious medical state of the patients in this unit. To determine whether the patient has
been infected by an MDR bacteria in the ICU, it is usual to consider the result of a culture
performed in a time interval of 48 h from the patient ICU admission, which corresponds
to the time required to get the result of the culture. If the result of this culture is positive,
it is conventionally considered that the antimicrobial resistance has not been acquired in
the ICU.

Machine learning (ML), which has been applied in several clinical scenarios [10,11]
by extracting knowledge from electronic health records (historical data), emerges in this
study as a computational tool to create models anticipating the result of the culture. ML
encompasses statistical and computational techniques to create models by learning the
underlying relationships among a set D of N samples (historical data) [12,13]. For the
learning task considered in this paper, each sample in D is composed of: input variables,
arranged in a vector of d features x; and the corresponding target output (class), denoted
by a one-dimensional variable y (encoded by ‘0’ to identify non-MDR episodes and ‘1’ for
MDR ones), i.e., D = {(x(n), y(n))}N

n=1. Since non-MDR episodes are usually more frequent
than MDR ones, which is good from a clinical viewpoint, it causes some difficulties for
training data-driven models with good generalization capabilities [14].

ML techniques have been used in different studies to determine whether a bacterium
will be resistant to different families of antimicrobials during the stay of the patients in
the ICU [15–19]. In this paper, we focus on getting insights about the risk factors and
prediction of MDR during the first 48 h from the ICU admission. Towards that end, we
follow the workflow depicted in Figure 1. Since the database for knowledge extraction is
composed by categorical features, a pre-processing stage is required for ML algorithms to
deal with these types of data. In this work, a One-Hot-Encoding strategy is carried out for
categorical features. Thus, a binary feature is created for each category, ending up with
95 features. The increase in the dimension of the feature space advocates the application of
Feature Selection (FS) strategies. Specifically, three FS approaches are considered to identify
an appropriate final subset of features (24 features). This subset is obtained as the union of
the features identified by each FS strategy. The selected features are considered to train
several models for MDR prediction. Two strategies for dealing with imbalanced classes
(undersampling and weighted cost) are evaluated. The results obtained in this work will
help clinicians to identify whether a patient will develop an MDR germ during the first 48
h from the ICU admission.

The rest of the paper is organized as follows: Sections 2 and 3 present the statistical
approaches used in the FS and learning process, respectively. The database is described in
Section 4, while the predictive results are shown in Section 5. Finally, main conclusions
and discussion are drawn in Section 6.
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Figure 1. Workflow diagram of the proposed methodology to get insights of multi-drug resistance (MDR) risk factors and to
predict whether a patient will develop an MDR germ during the first hours from the Intensive Care Unit (ICU) admission.

2. Feature Selection Using Bootstrap

In order to carry out an adequate data analysis, it is convenient to develop an FS
strategy to identify informative features in relation to the target output. An additional
advantage of FS is the potential reduction in the model complexity, making easier the
model interpretability too [20].

To get a statistical characterization of the goodness of the selected features, we have
considered the use of bootstrap. Bootstrap is a technique allowing us to obtain non-
parametric statistics on a population from multiple resamples [21–23]. This approach can
be used to estimate confidence intervals, to perform hypothesis tests or to evaluate the
performance of a specific ML scheme [24,25]. As it will be presented later, bootstrap will
be considered here both in the feature selection and in the learning process (see Figure 1
for details).

There are different FS approaches, categorized as filter, wrapper and embedded
methods [26]. On the one hand, filter methods select features without considering a
predictive model, i.e., do not consider any inductive algorithm. On the other hand, wrapper
and embedded approaches somehow take into account the model created by following a ML
strategy. In particular, the wrapper methods evaluate the use of different subsets of features
with a specific ML model, selecting the subset providing the best performance [27]. Finally,
the embedded methods closely nest the FS process and the model design. Thus, the subset
of features provided by the embedded methods are found while training the ML model [28].
In this paper, we focus on different filter approaches: (1) test of proportions [29] for binary
features and test of medians [30] for numerical features; (2) mutual information [31]; and
(3) a test based on confidence intervals [32]. As previously indicated, these FS techniques
have been used in combination with bootstrapping.

2.1. Test of Proportions

It aims to test the validity of a null hypothesis (H0) against an alternative one (H1)
using a set of N samples from a population with MDR and non-MDR episodes. For each
feature, p0 represents the proportion of non-MDR episodes with an active value (‘1’) in this
feature, whereas p1 corresponds to this proportion for MDR episodes. Thus, the hypothesis
test can be stated as:

H0 : p1 = p0 vs. H1 : p1 6= p0, (1)
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where the H1 hypothesis is accepted when proportions of active feature is statistically
different in both populations [29]. For this purpose, the test statistic (z) and the associated
p-value are calculated [33].

Since bootstrapping is used, the average of the p-values obtained in the resamples is
computed and compared with the significance level for rejecting H0 by taking into account
a level of significance α.

2.2. Test of Medians

For numerical features, the Mood’s median test [30] was considered to check whether
the medians of both populations (MDR and non-MDR episodes during the first 48 h in
ICU) are the same. According to the bootstrapping technique used, the median value
is calculated taking into account all values in the resample, regardless of the class they
belong to. Then, samples are divided into two groups, depending on the corresponding
value (for that feature) is above or below the median [34,35]. This allows us to obtain a
contingency table of frequencies, made up of four cells because it is also considered the
class each sample is associated to (MDR and non-MDR). Finally, the contingency table is
used to calculate the Pearson’s Chi-squared test statistic (χ2) for each resample [36]. The
mean of the χ2 values is compared with the significance level α to determine the validity of
the null hypothesis.

2.3. Mutual Information

The mutual information (MI) value [37,38], which is based on the Shannon en-
tropy [39], has also been obtained for FS purposes. The Shannon entropy H(.) of a discrete
random variable (r.v.) X taking values x ∈ X is defined as H(X)= − ∑x∈X p(x) log(p(x)),
where p(x) is Pr{X = x}, and corresponds to the probability of the r.v. X to have the
value x. For a continuous r.v. X, the definition of H(.) is similar, but p(x) corresponds now
to the density function of the r.v. and the summation symbol is replaced by the integral
one. The entropy H(X) measures the uncertainty of the r.v. X [31], and a high value
of H(X) is associated with a uniform distribution of X. The MI between two random
variables X and Y measures the shared information between them, and is computed as
MI(X, Y) = H(X)− H(X|Y) = H(Y)− H(Y|X) = MI(Y, X). In other words, MI is the
amount of information that the r.v. X has about the r.v. Y. In the context of FS, MI(X, Y)
allows to determine the degree of dependency (or the absence of dependency) between the
feature represented by the r.v. X and the target output represented by the r.v. Y [31]. Thus,
a value of zero for the MI indicates absence of dependency among both variables, while
higher values of MI are associated with greater dependence between them [37,38]. Since a
bootstrapping technique is considered, for each resample and feature, the MI is computed.
Then, the average of the MI values is used for feature selection.

2.4. Confidence Interval

In order to explore a different indicator about the relevance of each feature, we
compute the confidence interval (CI) of the difference between certain statistics when
resampling (with no repetition) episodes of both classes (MDR and non-MDR) [21,29]. In
particular, R resamplings of the original set D are considered, providing populations of the
two classes: Population A for MDR and Population B for non-MDR episodes. In the case of
each numerical feature xj and resample r, the medians mA,xj(r) and mB,xj(r) are computed
for each population. Then, the difference between both statistics ∆mAB,xj(r) = mA,xj(r)−
mB,xj(r) is calculated. When xj is a binary feature, the difference between the proportion of
samples with value ‘1’ in each population is computed as ∆pAB,xj(r) = pA,xj(r)− pB,xj(r),
with r = 1, . . . R. Whatever the feature xj, the R values of these differences are considered
to estimate the corresponding 95% confidence interval, i.e., CI∆sAB ,xj , where s denotes
the considered statistic for a particular feature xj. Then, a statistical hypothesis test is
performed to select those features such that CI∆sAB ,xj does not overlap the zero value.
Figure 2 illustrates three different scenarios for the CI of ∆sAB,xj . In both Scenario 1 and
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Scenario 3, since the CI does not overlap the zero value, the feature xj is selected. However,
in Scenario 2 the feature xj is not selected according to this criterion.

0
ΔsAB, xj

CIΔScenarioΔ1

CIΔScenarioΔ2

CIΔScenarioΔ3

Figure 2. Three possible scenarios for the confidence interval (CI) of ∆sAB,xj . The feature xj will be
selected in Scenarios 1 and 3.

3. Machine Learning Methods

The use of ML techniques allows us to tackle a classification task as the one addressed
in this work by creating a data-driven model. There have been proposed in the ML literature
many techniques to create these models [40], by optimizing a cost function L. This function
quantifies the “difference” between the target output and the output provided by the model.
We explore in this paper several techniques with different complexity, interpretability
and generalization ability: Logistic Regression, Decision Trees, XGBoost and Artificial
Neural Network.

3.1. Evaluation of the Generalization Capability

Data-driven models are evaluated considering samples not used during their de-
sign [22]. Thus, the set of N available samples in D is randomly partitioned in two inde-
pendent subsets: training and test subset. In this work, the usual 80/20% (training/test)
proportion has been applied. The training subset is used for designing the model, while
the generalization model capability (model performance) is estimated with the test subset.
Several figures of merit have been considered to evaluate the model performance: accuracy,
sensitivity, specificity and the area under the Receiver Operating Characteristic (ROC), also
named AUC-Score [41].

The learning process associated with each ML technique is controlled by different
hyperparameters. In this paper, hyperparameters have been tuned following a K-fold cross
validation (CV) strategy [42]. In K-fold CV, the training subset is randomly divided into K
folds or disjoints subsets, all of them of the same size (approximately). Then, each subset is
successively used to evaluate the model trained with the remaining (K− 1) subsets [40].
In this paper, the best hyperparameters configuration is selected as the one providing the
highest performance following a 5-fold CV approach. The AUC-Score has been the figure
of merit chosen for tuning the hyperparameters, since it provides a trade-off between
sensitivity and specificity.

To avoid the potential bias when considering just one random training/test subset, it
is convenient to repeat the partitioning several times, evaluating the performance of each
classifier with the corresponding test subset. In this work, 50 random partitions of the
training/test subset have been performed.

3.2. Learning with Imbalanced Classes

Since the number of non-MDR episodes in the first 48 h is much higher than the
number of MDR episodes in the same period, learning approaches can provide models
biased to get better performance for the majority class, therefore leading to a poor gener-
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alization. To overcome this difficulty in the learning process (class imbalance problem),
several strategies can be implemented.

Learning with imbalanced classes will be carried out both by undersampling the
majority class and by modifying the cost function to weight differently the misclassification
errors in training [14]. Undersampling is intended to reduce the number of training samples
of the majority class by randomly selecting a subset of samples, thus satisfying the objective
of class balancing [43]. With this approach, it is possible to discard samples which could
help to create a model with better generalization properties. Therefore, to avoid that the
model performance is biased by one particular partition, the undersampling process and
subsequent model construction are performed several times (50 in this paper).

Another approach to deal with imbalanced classes is to incorporate a priori informa-
tion in the cost function. The idea behind this approach is to use all the available samples,
but considering in the cost function a different weight β0 and β1 for the non-MDR and
MDR episodes, respectively. That is, misclassifications are not equally weighted in the cost
function L:

L = − 1
Nt

Nt

∑
i=1

(
β0y(i) log(ŷ(i)) + β1(1− y(i)) log(1− ŷ(i))

)
, (2)

where Nt is the number of training samples, with Nt = N0 + N1 and N0/N1 the number of
non-MDR/MDR episodes, β0 = Nt

2∗N0
and β1 = Nt

2∗N1
.

3.3. Logistic Regression

Logistic Regression (LR) is a parametric approach estimating the target value as
a linear combination of the input features [44,45]. Therefore, the separation between
classes corresponds to a hyperplane in d dimensions. To allow better generalization
capabilities, coefficients w = [w1, w2, w3, . . . , wd] and b (bias) of the linear model are found
by optimizing the following regularized cost function:

L =
1
2

wwT + C
Nt

∑
i=1

log
(

exp(−y(i)(x(i)wT + b)) + 1
)

, (3)

where the first term refers to the Ridge regularization. In this paper, the best value for the
hyperparameter C > 0 is found by 5-fold CV.

3.4. Decision Trees

Decision Trees (DT) are non-linear and non-parametric approaches constructed from
a set of conditions organized in a hierarchical structure according to an index related to
entropy (e.g., the Gini index) [46]. In this work we have considered the Classification and
Regression Trees (CART), widely used in the literature [47]. In CART, the feature providing
the highest Gini index [22] is chosen to obtain a new branch in the tree, and therefore,
new nodes.

When a new node is created, the associated region in the feature space is split in two
disjoint regions by a linear boundary. Each of the two new regions are associated with
the majority class among the training samples encompassed by that region. When new
branches and nodes are created, the tree depth increases. The final depth is determined by
the terminal nodes (those with no more splitting). Note that large trees with many terminal
nodes and very few samples per terminal node can lead to a limited generalization capa-
bility. The final tree structure depends on the following hyperparameters: the minimum
number of samples to split a node, the maximum number of samples for a terminal node
and the maximum depth. Values for these hyperparameters are chosen by 5-fold CV in
this work.
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3.5. XGBoost

XGBoost or XGB (from eXtreme Gradient Boosting) is a boosting algorithm, an ensem-
ble technique of sequential learning. Boosting-based techniques are sequential approaches
creating an ensemble of t sequential models { fk}t

k=1 (CART in this work) trained one
after another, to get a robust classifier [48,49]. Each time a new model is incorporated, it
is trained on the residuals provided by the previous model in the sequence. Thus, the
XGB prediction for the ith sample x(i) when incorporating the t-th model is obtained as
ŷ(i)t = ∑t

k=1 fk(x(i)) = ŷ(i)t−1 + ft(x(i)). In other words, each time a new tree is sequentially
incorporated, the XGB prediction is obtained by maintaining predictions provided by
previous models and adding the residual prediction provided by the new model (see [50]
for details).

When training XGB, the function to be optimized is a regularized function penalizing
complex models by taking into account the complexity Ω( fk) for each tree. It is given by:

L(φ) =
Nt

∑
i=1

l(ŷ(i)t , y(i)) +
t

∑
k=1

Ω( fk), (4)

where l is a derivable convex loss function (the binary cross entropy function in this work)
measuring the difference between the prediction ŷ(i)t provided after incorporating the t-th
tree and the target output y(i) for the ith sample.

3.6. Artificial Neural Networks

Artificial Neural Networks (ANNs) are conventional ML approaches which have
acquired great interest in recent years, mainly due to the computational advances and
the potential provided in many areas [51]. In the same way as biological neurons, the
ANNs have a hierarchical structure with interconnected artificial neurons, organized in
layers. When only one neuron is used, the architecture is named Single-Layer Perceptron
(SLP) [52]. The SLP allows us to address binary classification tasks when both classes
are linearly separable [53], computing the output as f (xwT + b), where f (.) is usually a
sigmoid function.

The SLP implements a simple linear classifier, i.e., just one neuron, with parameters b
and w to be learned. When the neurons are organized in layers and interconnected by a set
of weights, a new architecture called Multi-Layer Perceptron (MLP) is created. The MLP is
considered as a universal approximator [13] because it allows to model any relationship
between a set of input features and the output whenever the MLP architecture is complex
enough and the training set is adequate to determine the MLP parameters.

The MLP learning process is performed to find suitable values for the weights associ-
ated to each neuron. Training is conducted by optimizing a cost function by gradient-based
approaches [54]. In this paper, we also use the binary cross entropy cost function [55], as
in XGB.

4. Database Description

For this study, anonymized clinical data provided by the University Hospital of
Fuenlabrada (UHF) in Madrid, Spain, have been analyzed. More specifically, we consider
demographic and clinical information of 2600 patients admitted to the ICU during a 13-year
period, from 2004 to 2016 (both inclusive). Note that different clinical episodes may be
carried out for the same patient. In total, 3013 different clinical episodes are analyzed:
2743 corresponds to non-MDR episodes, and 270 to MDR episodes (positive cases).

A total of 12 input variables are used: demographic features (age and gender), clinical
features (department of origin, reason of admission, patient category, Apache II score, Charlson’s
comorbidity index, SAPS III score, group of diseases and illness), the antibiotics given to the
patient and the percentage of time the patient was assisted with mechanical ventilation during
his/her first 48 h in the ICU. See Figure 3 for details.
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Figure 3. Schematic dataset description.

Firstly, demographic features are described:

• Age: Numerical variable referred to the age of the patient at the time of the episode.
Figure 4a shows the histogram of age for patients with non-MDR episodes, whereas
Figure 4b is for patients with MDR episodes. The average age for patients with MDR
episodes is about 63 years, while for non-MDR ones is 60 years.

20 30 40 50 60 70 80 900
50

100
150
200
250
300

(a)

20 30 40 50 60 70 80 900
5

10
15
20
25
30
35

(b)

Figure 4. Histogram of age for: (a) non-MDR patients; and (b) MDR patients.

• Gender: Binary variable indicating whether the gender of the patient is female or male.
Among the 1159/1854 episodes associated with women/men, only about 9% of the
episodes associated to each gender correspond to MDR patients during the first 48 h
from ICU admission.

Secondly, we describe the clinical features considered in this work. Since most of
them are categorical, we transform them into binary features (categories) by One-Hot-
Encoding [56].

• Department of origin: Categorical feature indicating the service where the patient was
admitted before his/her admission to the ICU. This feature contains 27 categories
(see Figure 5a), being ‘general surgery’ and ‘emergency’ the most frequent ones. It is
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also remarkable that the department of origin with higher rate for MDR episodes is
‘general surgery’, while it is ‘emergency’ for non-MDR episodes.
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Figure 5. (a) Rate of episodes for each department of origin, normalized for non-MDR and MDR
patient episodes; (b) rate of episodes for each reason of admission, normalized for non-MDR and MDR
patient episodes.

• Reason of admission: Categorical feature indicating the main reason for the ICU admis-
sion. It contains 32 categories, shown in Figure 5b. The categories named ‘Serious
infection’ and ‘Acute respiratory failure’ are the most frequent reasons for ICU admis-
sion, both for MDR and non-MDR episodes.

• Patient Category: Binary feature with values associated with ‘Surgical’ and ‘Medical’,
identifying whether the patient was admitted or not in the ICU just after a surgery. In
our database, 40.14% of MDR episodes are ‘Surgical’, while this percentage is 44.81%
for non-MDR episodes.

• Apache II Score: Clinical score provided by a disease severity classification system
named Apache (Acute Physiology and Chronic Health Evaluation), used in the
ICU [57,58]. Higher scores of Apache II are associated with a higher risk of death. In
our database, the average ± standard deviation of Apache II Score for MDR patient
episodes is 19.17 ± 6.91, while it is 17.43 ± 7.66 for the non-MDR patient episodes.
This can be visually checked in Figure 6a, which shows the distribution of values per
each kind of episode.

• Charlson’s comorbidity index: Clinical score used to predict the ten-year mortality accord-
ing to the age and comorbidities of the patient. In our database, the Charlson’s average
and standard deviation is 1.44 ± 1.65 for MDR patient episodes, and 1.24 ± 1.52 for
the non-MDR patient episodes (see the values distribution in Figure 6b).

• SAPS III: A score used to estimate the probability of mortality risk based on data
registered during the first 24 h of the patient admission in the ICU [59]. Higher values
of SAPS III (Simplified Acute Physiology Score III) are associated with higher mortality
rates. Most values of SAPS III are between the scores 10 and 20 (51.6% of total MDR
patient episodes and 52.6% of total non-MDR patient episodes). It may be remarkable
that the percentage of MDR episodes is higher than that of non-MDR ones (35.0%
versus 25.7%) when the SAPS III score increases. For low SAPS III scores, ratios are
reversed: 0.1% for MDR versus 17.3% for non-MDR.
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(a) (b)

(c)

Figure 6. Rate of patient episodes for both MDR and non-MDR when three clinical scores are
considered: (a) Apache II, (b) Charlson and (c) SAPS III.

• Group of diseases: Categorical feature indicating the type of clinical comobordities a
patient can suffer from. In this work, seven groups related with different diseases
were considered: group A (related to cardiovascular events); group B (kidney failure,
arthritis); group C (respiratory problems); group D (pancreatitis, endocrine); group E
(epilepsy, dementia); group F (diabetes, arteriosclerosis); and group G (neoplasms).
Figure 7a shows the corresponding rate distribution for MDR and non-MDR patient
episodes.

• Illness: Binary feature indicating whether the patient presents at least one disease
according to the variable Group of diseases. We show in Figure 7b the distribution of
this variable for MDR and non-MDR patient episodes. Note that the illness rate is
higher for patients who will develop MDR.

A B C D E F G
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35 Non-MDR
MDR

(a)

No Illness Illness
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8 Non-MDR

MDR

(b)

Figure 7. Rate of MDR and non-MDR patient episodes associated with: (a) each group of diseases;
(b) illness presence.



Antibiotics 2021, 10, 239 11 of 20

Thirdly, antibiotics administered in the first 48 h from the ICU admission are consid-
ered. In this paper, antibiotics are grouped according to the family they belong to. In partic-
ular, 21 families can be distinguished: Aminoglycosides (AMG), Amphenicols (ANF), Anti-
fungals (ATF), Carbapenemes (CAR), Cephalosporins 1st generation (CF1), Cephalosporins
2nd generation (CF2), Cephalosporins 3rd generation (CF3), Cephalosporins 4th genera-
tion (CF4), Glycopeptides (GLI), Lincosamides (LIN), Macrolides (MAC), Monobactamas
(MON), Nitroimizadols (NTI), Oxazolidinones (OXA), Broad-spectrum penicillins (PAP),
Penicillins (PEN), Polymyxins (POL), Quinolones (QUI), Sulfamides (SUL), Tetracyclines
(TTC) and those not considered in any of the previous families (Others). Figure 8 shows
that the most common families in our database are PAP and CAR, with a higher rate among
MDR episodes. However, CF3, PEN and QUI present a higher rate for non-MDR episodes.
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Figure 8. Rate of MDR and non-MDR patient episodes per family of antibiotics administered during
the first 48 h.

The last variable considered in this work is the ratio among the interval of time the
patient has been with mechanical ventilation and the time interval the patient has been
in the ICU, with both intervals limited to the first 48 h in the ICU. Our analysis provides
that, on average, patients with MDR episodes were assisted with mechanical ventilation
during 44% of their ICU stay length (limited to the first 48 h). Patients with non-MDR
episodes were less assisted with mechanical ventilation, approximately during the 39% of
their length of stay (again, limited to the first 48 h).

5. Experiments and Results

We present first the risk factors identified according to the FS methods described in
Section 2. After that, we summarize and discuss the performance of several ML models
when considering the selected features.

5.1. Identification of Relevant Risk Factors
5.1.1. Based on Proportion and Median Tests

We start by presenting the risk factors obtained when considering bootstrap (R = 3000
resamples) for computing the average of the p-values when the proportions and median
tests are applied. We determine a significance level of α = 0.05. Figure 9 shows in green
(red) the average of the p-values for the selected (non-selected) features. Note that only 18
risk factors were selected as statistically significant, among them: SAPS III Score, the age
of the patient and the reason of admission referred to acute chronic respiratory failure. In other
words, 81% of the original risk factors were discarded following this procedure.
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Figure 9. Average of the p-values for the 95 initial features when considering bootstrap and the
proportion/median test for binary and numerical features, respectively, with a significance level of
α = 0.05.

5.1.2. Based on Mutual Information

We leverage the MI criterion to find risk factors for MDR patient episodes when
considering bootstrap. The averaged MI values are shown in Figure 10, representing
in green the 18 features with higher average values. In general, selected risk factors
are consistent with those obtained with the proportions/median test. There is only one
mismatch: the acute chronic respiratory failure feature, which was previously selected and it is
now replaced by MV/admission: First 48 h.
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Figure 10. Averaged mutual information (MI) values when bootstrapping the patient episodes for
each feature. Features with very low MI values are not shown here. In green, the 18 features with
higher MI values.

5.1.3. Based on Confidence Intervals

The last procedure considered in this work to identify risks factors is based on the
CI of the difference between the proportions/median of each feature for MDR and non-
MDR episodes (see Section 2.4). Figure 11 shows the 95% of the CI when bootstraping
the episodes associated with each feature. We represent in green the 23 features such that
the corresponding CI does not overlap the zero value. Though the results are consistent
with those obtained using both the p-value (proportions/median test) and the MI, certain
differences can be found. The feature Origin: gynecological, selected with the proportions
test and MI, is not selected when using the CI criterion, since it overlaps the zero value.
However, the variables MV/Admission: First 48 h, Origin: otorhinolaryngological, Origin:
internal medicine, GroupOfIllnessG, AntibioticFamiliy: PEN and AntibioticFamiliy: Others are
statistically significant using the CI criterion.
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According to the previous strategies, we identify the union of all the risk factors
identified by the proportions/median test, MI and CI as the final subset of selected features,
providing 24 features in total (see Figure 12 for details). Since the use of highly correlated
features can worsen the model performance [60], we compute the Pearson [61] and the
Spearman correlation coefficient [62] for numerical and binary features, respectively. In
absolute values, the highest correlation coefficients were 0.59 between the Apache II Score
and the SAPS III Score features, and 0.60 between Origin: general surgery and Patient Category.
According to these correlation values, we maintain the 24 previously selected features.

5.2. Artificial Intelligence Models to Predict MDR in the ICU

We consider five ML schemes, namely LR, DT, XGB, SLP and MLP. For each scheme,
two strategies to deal with imbalanced classes are explored: undersampling and weighted
cost (including a priori information in the cost function). These schemes are trained and
evaluated following the considerations described in Section 3.1. The hyperparameters
configuration has been selected as the one providing the highest performance in terms of
AUC-Score by following a 5-fold CV approach. Results in terms of accuracy, sensitivity,
specificity and AUC-Score are presented in Table 1.

Table 1. Mean ± standard deviation of the performance (accuracy, sensitivity, specificity, AUC) on
50 test sets when training different ML models using two class-balancing strategies. The highest
average performance for each figure of merit is in bold.

Model Class-Balancing
Strategy Accuracy Sensitivity Specificity AUC

LR Undersampling 0.618 ± 0.046 0.595 ± 0.077 0.646 ± 0.071 0.620 ± 0.047
Weighted cost 0.661 ± 0.015 0.614 ± 0.069 0.665 ± 0.019 0.640 ± 0.031

DT Undersampling 0.568 ± 0.049 0.559 ± 0.128 0.581 ± 0.134 0.570 ± 0.048
Weighted cost 0.558 ± 0.100 0.628 ± 0.132 0.551 ± 0.122 0.590 ± 0.027

XGB Undersampling 0.587 ± 0.047 0.574 ± 0.077 0.607 ± 0.077 0.590 ± 0.047
Weighted cost 0.575 ± 0.221 0.602 ± 0.204 0.572 ± 0.261 0.587 ± 0.048

SLP Undersampling 0.621 ± 0.045 0.599 ± 0.070 0.649 ± 0.069 0.624 ± 0.045
Weighted cost 0.660 ± 0.015 0.616 ± 0.067 0.664 ± 0.018 0.640 ± 0.031

MLP Undersampling 0.581 ± 0.050 0.575 ± 0.100 0.595 ± 0.099 0.585 ± 0.049
Weighted cost 0.639 ± 0.039 0.614 ± 0.086 0.642 ± 0.046 0.628 ± 0.036

In general terms, we can conclude that linear models (LR and SLP) provide the best
results for accuracy, specificity and AUC. Regarding sensitivity, DT achieve on average
better performance, though the standard deviation is higher than that of linear models.
As for the class-balancing strategy, a better performance is provided by models when
considering a higher number of training samples (no undersampling). This result stresses
the difficulty for creating models when learning from a limited number of samples in
relation to the number of features.

6. Discussion

There are several studies supporting that MDR continues growing worldwide [63,64].
It poses a major obstacle in the treatment of infectious diseases, considerably increasing the
length of the hospital stay, the mortality rate and the involved costs. Owing to the health
conditions of the ICU patients, the use of antibiotics is quite frequent and the duration
of the treatments is long [65]. It is therefore essential to anticipate the development of
MDR with the aim of isolating the ICU patient as soon as possible, thus avoiding crossed
transmission to other patients in the ICU.

Since it is still challenging to anticipate results provided by the microbiology labora-
tory during the first 48 h from the ICU admission, we propose in this paper a strategy based
on FS and ML techniques. Specifically, our goal is to identify risk factors and create a pre-
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Figure 11. CI for numerical features (CI∆m ) and for binary features (CI∆p) when bootstrapping MDR and non-MDR patient
episodes. The selected features are represented in green.

dictive data-driven model to get insights of MDR and to support clinical decision-making.
The early identification of patients with high risk to develop MDR may provide useful
knowledge for all stakeholders in the health care process. As an immediate advantage, it
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Figure 12. Description of the selected features with the three Feature Selection (FS) methods: Proportions and Median Test,
MI and CI. The final set of selected features is the union of the features identified with each FS strategy.

could help to determine the appropriate antimicrobial therapy, thus decreasing the death
rate, the workload and the number of infections in the ICU.

The risk factors identified in this paper with filter methods are in accordance with
the clinical knowledge. In particular, the SAPS III and Apache II scores, as well as the
patient age and the department of origin before ICU admission are helpful to discriminate
between MDR and non-MDR patient episodes. For future work, we propose to explore
the potential of wrapping and ensemble methods such as Recursive Feature Elimination
(RFE) or Least Absolute Shrinkage and Selection Operator (LASSO) [11,41]. The use of
these approaches, which combine the FS process with the learning procedure, may enhance
the model performance as well as the identification of relevant features. In this line, a
recent study [60] has proposed a statistical approach to provide a better characterization of
redundant features and to distinguish informative features from the noisy ones.

Furthermore, the performance obtained when applying ML models may be improved
by increasing the number of patients, their diversity and other features which may be
relevant for this setting. Among these features, the patient’s bed may be of interest because
MDR could be transmitted to the closest patients, or even variables at ICU level as the
total number of nurses working in the unit. Future work also concerns deeper analysis
of other artificial intelligence approaches such as Support Vector Machines (SVM) [41] or
Gaussian Processes [66]. ML could be useful to predict MDR both using different data
source individually (e.g., antibiotics or vital signs) or leveraging the potential of combining
them [10]. Further research in this line may be considered to evaluate the suitability of the
applied ML according to the nature of the features used for learning.
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