biosensors @\py

Article

Enhanced Biosensor Platforms for Detecting the
Atherosclerotic Biomarker VCAM1 Based on
Bioconjugation with Uniformly Oriented
VCAMI1-Targeting Nanobodies

Duy Tien Ta 12, Wanda Guedens !, Tom Vranken 1, Katrijn Vanschoenbeek 3,
Erik Steen Redeker %, Luc Michiels 3 and Peter Adriaensens 1-5*

1 Biomolecule Design Group, Institute for Materials Research (IMO), Hasselt University,

Diepenbeek BE-3590, Belgium; duytien.ta@uhasselt.be or tdtien@ctuet.edu.vn (D.T.T.);
wanda.guedens@uhasselt.be (W.G.); tom.vranken@uhasselt.be (T.V.)

Faculty of Food Technology and Biotechnology, Can Tho University of Technology, Can Tho 900000, Vietnam
Immunology and Biochemistry, Biomedical Research Institute (Biomed) and School of Life Sciences,
Transnationale Universiteit Limburg, Hasselt University, Diepenbeek BE-3590, Belgium;
katrijn.vanschoenbeek@ubhasselt.be (K.V.); luc.michiels@uhasselt.be (L.M.)

4 Maastricht Science Programme, Maastricht University, Maastricht 6200 MD, The Netherlands;
erik.steenredeker@maastrichtuniversity.nl

Applied and Analytical Chemistry, Institute for Materials Research (IMO), Hasselt University,
Diepenbeek BE-3590, Belgium

*  Correspondence: peter.adriaensens@uhasselt.be; Tel.: +32-11-268-396

Academic Editor: Jeff D. Newman
Received: 31 May 2016; Accepted: 29 June 2016; Published: 5 July 2016

Abstract: Surface bioconjugation of biomolecules has gained enormous attention for developing
advanced biomaterials including biosensors. While conventional immobilization (by physisorption
or covalent couplings using the functional groups of the endogenous amino acids) usually results
in surfaces with low activity, reproducibility and reusability, the application of methods that
allow for a covalent and uniformly oriented coupling can circumvent these limitations. In this
study, the nanobody targeting Vascular Cell Adhesion Molecule-1 (NbVCAM1), an atherosclerotic
biomarker, is engineered with a C-terminal alkyne function via Expressed Protein Ligation (EPL).
Conjugation of this nanobody to azidified silicon wafers and Biacore™ C1 sensor chips is achieved via
Copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) “click” chemistry to detect VCAM1 binding
via ellipsometry and surface plasmon resonance (SPR), respectively. The resulting surfaces, covered
with uniformly oriented nanobodies, clearly show an increased antigen binding affinity, sensitivity,
detection limit, quantitation limit and reusability as compared to surfaces prepared by random
conjugation. These findings demonstrate the added value of a combined EPL and CuAAC approach
as it results in strong control over the surface orientation of the nanobodies and an improved detecting
power of their targets—a must for the development of advanced miniaturized, multi-biomarker
biosensor platforms.

Keywords: uniformly oriented bioconjugation; biosensor; CuAAC; expressed protein ligation;
VCAM]1-targeting nanobody

1. Introduction

In the recent years, innovative biosensor developments have made several applications with rapid
detection and high accuracy possible for real-time environmental monitoring, disease diagnostics and
therapy [1-7]. During the last decade, protein-based—or more particularly antibody-based—biosensors
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are considered as the most commonly developed platforms [8,9]. Regarding the implementation of
antibody candidates in biosensor design, the variable domain of the heavy chain of the single-domain
antibody (VHH)—or nanobody—found in camelidae has dedicated a great potential due to numerous
advantages over the conventional antibodies [10]: small nanometer size, ease of genetic manipulation
and expression in Escherichia coli, high stability and antigen-binding capacity as compared to full-length
antibodies [11].

Many of the available surface bioconjugation methods rely on physico-chemical adsorption of
the detecting proteins (also called ligands) onto the surface of the particular solid support [12-15] due
to its simplicity and low cost. However, this approach most frequently results in a weak interaction
and non-uniformly oriented (random) deposition of the proteins on the surface [16-19], leading to
rather poor sensitivity, specificity and reproducibility of the application [15,17,20]. The main problems
can be found in the limited number of available binding sites due to the heterogeneous orientation
of the proteins on the surface, in addition to the leaching out/washing away during the binding and
detection phases. Approaches to create more stable protein-conjugated surfaces frequently make use
of strong and covalent couplings between functional groups of the endogenous amino acids, e.g., the
thiol group of cysteine or the amine group of lysine, and reactive groups on the surface [13,17,19,21,22].
Although being covalently and so stably coupled, the orientation of proteins immobilized in such
a way is still heterogeneous since, in most cases, multiple copies of these endogenous functional
groups appear in a protein [17,20]. Alternatively, linkages between the protein and the surface can
be established in a more controllable way by fusing the protein of interest with an affinity tag, e.g., a
polyhistidine by which an interaction with Ni?*, Cu®* or Co?* cations can be established [18]. A number
of studies have reported the use of Cu(ll)-complexing layers deposited on gold electrodes to obtain
a uniformly oriented conjugation of His¢-tagged proteins, e.g., a dipyrromethene-Cu(Il) layer and
Receptor domains for advanced glycation end products (RAGE) [23,24], a dipyrromethene-Cu(Il) layer
and antibodies against HSN1 influenza virus [25], a pentetic acid-Cu(II) layer and JAK?2 kinase [26], an
iminodiacetic acid-like-Cu(II) layer and RIO1 kinase [27]. The thiol derivatives of these complexing
reagents are firstly linked to the gold surfaces to form the layers, followed by Cu(II) complexation and
Hisg-tagged protein immobilization. Since the detecting method relies on changes in electrochemical
properties of the Cu(Il) redox centers upon binding of the analytes to the Hisg-tagged proteins, the
copper-complexing layers play the role of both an immobilizing mediator and a signal transducer,
which is a big advantage in biosensor design. These studies reported a rather generic method for
fabrication of electrochemical biosensors. However, the linkage between the Hisg-tag and the transition
metal cations can still be disturbed by pH change or competitive presence of imidazole, thus probably
resulting in a loss of activity and reproducibility in such cases. Therefore, to combine the best of both
worlds, the investigation of a stable uniformly oriented and covalent immobilization strategy is of
utmost importance [10].

An alternative promising approach for controlled immobilization can be found in the site-specific
introduction of a bio-orthogonal functional group in the protein. By this, a stable covalent and
homogenously oriented linkage can be established between the protein and a complementary
functionalized substrate surface. Such highly selective couplings can be achieved by means of
“click” chemistry reactions like the copper(I)-catalyzed Huisgen 1,3-dipolar azide-alkyne cycloaddition
(CuAACQC) [28-30]. This reaction specifically occurs between an azide and an alkyne moiety to
form a stable 5-membered 1,2,3-triazole ring under Cu(l) catalysis and mild reaction conditions.
Following such strategies, a protein can be coupled not only stably but also with a uniform
orientation to a solid substrate, resulting in highly functional and homogeneously covered surfaces.
To site-specifically introduce a bio-orthogonal group such as alkyne or azide in a protein, the Expressed
Protein Ligation (EPL) technique—first described by Muir et al. [31]—has recently (re)gained significant
interest as a promising strategy [19,32-36]. Whereas EPL on the one hand has been employed for the
site-specific alkynation of nanobodies and “click” chemistry and on the other hand for the selective
coupling of proteins to micelles and polymersomes [37—-42], studies on using the combined EPL and
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“click” chemistry approach to create nanobody-based biosensor platforms for detecting atherosclerosis
have not been reported.

Recently, we developed an efficient protocol to functionalize nanobodies targeting the Vascular
Cell Adhesion Molecule-1 (abbreviated as NbVCAM1) at the C-terminus with an alkyne function
in order to be coupled to azide-functionalized supports with a uniform orientation via CuAAC
chemistry [43]. VCAML1 is one of the inducible adhesion molecules that play a role in mediating
the recruitment and attachment of leukocytes to the vascular endothelium [44] as well as further
migration into the subendothelial spaces [45]. These are the major processes in the development
of atherosclerotic plaques [46]. The protein is also unraveled to be associated with other diseases
including rheumatoid arthritis [47], inflammatory bowel disease [48], multiple sclerosis [49], renal
cell carcinoma [50], renal tumors [51] and colorectal cancer [52,53]. Therefore, VCAMI1 might
be considered as a pre-diagnostic marker and promising drug target for cardiovascular diseases
and cancer diagnosis/therapy follow-up [54]. This explains the selection of the NbVCAMI1 to
demonstrate the proof of principle of the proposed conjugation strategy for the development of
improved label-free optical biosensors. In particular, the C-terminally alkynated nanobodies are
conjugated by CuAAC “click” chemistry to diverse azide-functionalized solid surfaces, including
silicon wafers and gold-coated Biacore™ sensor chips, for VCAM1 antigen binding detection via
ellipsometry or SPR, respectively. The resulting nanobody-conjugated surfaces display significant
improvements in antigen binding capacity/affinity, sensitivity, detection limit, quantitation limit and
reusability as compared to those produced via random coupling methods. Furthermore, the approach
is generic and can be easily translated to other proteins.

2. Materials and Methods

All chemicals and reagents were purchased from Sigma unless stated otherwise. The PCR reagents,
restriction enzymes and B-PER reagent were obtained from Thermo Scientific. The cysteine-alkyne
bifunctional linker (Figure S1A, Supplementary Materials) was purchased from Eurogentec, the
azido-propylamine linker from Jena bioscience (Figure S1B, Supplementary Materials) and the
N-hydroxysuccinimide (NHS) derived ester linker 2,5-dioxopyrrolidin-1-ylhex-5-ynoate (Figure S1C,
Supplementary Materials) was self-synthesized according to Jagadish et al. [55]. The pMXB10 vector,
E. coli SHuffle® T7 competent cells and chitin resin were purchased from New England Biolabs.
The two recombinant human VCAM]1 antigens (hVCAM1) were bought from R & D Systems (MW
of 270 kDa) and Peprotech (MW of 180 kDa) while the recombinant mouse VCAM1 (mVCAM1)
antigen was purchased from Bioconnect (Huissen, The Netherlands, MW of 95 kDa). The ellipsometer
and silicon wafers were bought from Synapse B.V. (Maastricht, The Netherlands) and the Biacore™
(Diegem, Belgium) C1 sensor chips from GEHealthcare. The SPR experiments were performed with a
Biacore™ T200 model (GE Healthcare).

2.1. Preparation of the Nanobody Variants

The NbVCAMI-LEY nanobody was expressed as a chimeric protein (fusion with an intein
and a chitin binding domain) in the E. coli SHuffle® T7 strain and was subjected to EPL-mediated
cleavage with DTT (to produce NbVCAM1-LEY) or with the cysteine-alkyne linker to produce the
C-terminally alkynated NbVCAMI-LEY, i.e., NbVCAM1-LEY-alkyne, as previously described [13].
The non-VCAMI-targeting NbBclI-10-LEY-alkyne (an anti-bacterial 3-lactamase nanobody) was
produced using the same protocol and used as a non-binding reference (negative control) in ELISA
and SPR experiments. Details of expression and purification of these nanobodies are provided in the
Supplementary Materials. The NbVCAM1-Hiss was produced as described by Saerens et al. [56] and
used as an antigen-binding reference (a positive control in ELISA and a randomly conjugated reference
via EDC/NHS chemistry in SPR). Random alkynation of the NbVCAMI1-Hisg was performed for 3 h
in 100 pL PBS buffer (137 mM NacCl, 2.7 mM KCl, 10 mM Na,HPO,4 and 2 mM KH,PO, at pH 7.4)
containing 20 M nanobody and a 10-fold molar excess of the N-hydroxysuccinimide (NHS) derived
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ester linker 2,5-dioxopyrrolidin-1-ylhex-5-ynoate. This linker carries a terminal alkyne function and its
coupling to the nanobody can be accomplished via the reaction between the free and accessible amino
groups of the protein (N-terminal NH; and lysine e-NH;) and the linker’s carbonyl carbon, resulting
in a stable amide bond. The resulting protein isomer mixture (designated as INbVCAM1-Hisg-alkyne
with “r” denoting “randomly”) was then immediately filtered through a Zeba™ Spin Desalting
Column, 7K MWCO (Thermo Scientific, Aalst, Belgium) and used as a reference for random coupling
in the ellipsometry and SPR experiments. Protein concentrations were determined with the BCA
Protein Assay kit (Thermo Scientific).

2.2. Characterization of the NbVCAMI1-LEY-alkyne by Mass Spectrometry, Western Blotting and ELISA

To test the: (i) purity; (ii) level of C-terminal alkynation; and (iii) “clickability” of the
NbVCAM1-LEY-alkyne before use in subsequent coupling experiments, the NbVCAMI1-LEY-alkyne
was subjected to ElectroSpray Ionization-Fourier Transform Mass Spectrometry (ESI-FTMS),
CuAAC-mediated biotinylation and ELISA, as described in the Supplementary Materials.

2.3. Azidification of the Support Surfaces for Ellipsometry and SPR

For ellipsometry, finely cut silicon wafers (0.3 x 3.2 cm) were first cleaned in a 3:1 mixture
(v/v) of HySO4:H,O, for 5 min, followed by treatment with 6% (v/v) HF for a few seconds to
create a hydrophobic surface. The slides were then oxidized with chromic acid (8% potassium
dichromate (w/v) in 25% HySOy4 (v/v)) at 80 °C for 1 h to make them hydrophilic. The oxidized
slides were washed with MilliQ water and ethanol before silanization with a solution of 15%
N-(trimethoxysilylpropyl)ethylenediamine-triacetic acid-trisodium salt in 0.2 M acetate buffer
for 1 h at 100 °C. In this way, the slides were carboxylated and after washing with MilliQ
water and ethanol, the slides were azidified by submerging in a functionalization solution for
3 h at room temperature in the dark. The functionalization solution is composed of 0.4 M
N-(3-dimethylaminopropyl)-N’-ethylcarbodiimide hydrochloride (EDC), 0.3 M N-hydroxysuccinimide
(NHS) and 1 mM azido-propylamine in 220 mM HEPES buffer pH 6.8. The slides were then blocked in
1 M aminoethoxyethanol pH 7.8 for 45 min before washing with MilliQ) and ethanol. The functionalized
slides were N,-dried and kept in the dark at room temperature if not used immediately.

For SPR, the commercial Biacore™ Series S carboxymethylated C1 chips were washed five times
with PBS running buffer (10 uL/min) before azidification. All stock solutions were prepared in Biacore
compatible plastic vials according to the manufacturer instructions (e.g., 75 mg/mL EDC, 11.5 mg/mL
NHS and 15 mM azido-propylamine). The functionalization process was performed automatically
according the preset EDC/NHS coupling protocol of the T200 Biacore™ Control software. The first
three flow cells (Fc) of the chip were functionalized with the azido-propylamine linker (for coupling
to alkynated nanobodies later via CuAAC chemistry), whereas Fc4 was directly conjugated with
NbVCAMI1-Hisg (10 uM) via a peptide bond between the COOH groups of the chip and an NH; group
of the nanobody. The chips were than washed 5 times with PBS and blocked by flushing with 1 M
aminoethoxyethanol pH 7.8 at a flow-rate of 10 uL/min for 10 min. The azidified chips (except for Fc4)
were then washed 5 times with PBS and stored in PBS at 4 °C if not used immediately.

2.4. Ellipsometry

pH optimization for CuAAC-mediated conjugation. Ellipsometry was performed in null-mode [57]
on a semi-automatic ellipsometer with a built-in control software and the following settings: filter 16;
offset 0; gain 1; polarizer sweep angle 140° and analyzer sweep angle 175°. The functionalized silicon
slides were assembled in a sample holder with eight positions and an area of approximately 0.09 cm?
(0.3 x 0.3 cm) was dipped in 400 puL PBS in quartz cuvettes, followed by a baseline stabilization during
5 min. An external incubator is used for subsequent washing steps. Coupling with different nanobody
variants was performed by either physisorption or CuAAC “click” chemistry. The CuAAC-mediated
coupling was first carried out on azidified surfaces in different buffers (PBS and 10 mM sodium
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acetate at pH 4.0, 5.0 or 6.0) in order to select the most efficient pH. Hereto, the coupling cocktail
was prepared in a quartz cuvette containing 400 uL mixture of 1 pM nanobody (NbVCAMI-LEY,
NbVACM1-LEY-alkyne, INbVCAMI1-Hisg-alkyne or NbVCAMI1-Hisg), 2.5 mM sodium L-ascorbate,
1 mM THPTA (Tris(3-hydroxypropyltriazolylmethyl)amine) and 0.5 mM CuSOy4. To prove the
selectivity of the “click” reaction, two types of silicon substrates, i.e., carboxylated and azidified slides,
were evaluated in acetate buffer pH 4.0. The Cu(ll) salt is reduced to the Cu(I) catalyst by sodium
ascorbate as a reducing reagent. Due to its high instability, Cu(I) is stabilized by THPTA complexing
ligand [25]. The CuAAC coupling reaction was performed for 30 min at room temperature followed
by consecutive washing steps with washing buffer (WB) (200 mM dihydrogen sodium phosphate,
200 mM sodium chloride, 150 mM ethylenediaminetetraacetic acid, and 50 mM ethanolamine at pH
7.5); 0.5% (w/v) SDS; PBS; 0.7 M f3-mercaptoethanol (BME); and PBS (5 min for each washing step).
For all nanobody conjugation experiments, the amount of surface coverage was quantified during
the first PBS washing step on the basis of the sweep angle shift of the polarizer AP to maintain the
nullified status of the reflected light on the silicon surfaces. This angle shift is proportional to the
difference in surface mass density before conjugation (baseline) and during the first PBS washing.
The surface mass density (I', ng protein/cm?) can be calculated using the simplified Lorentz-Lorenz
relation I' = 85 x AP [58,59]. The reported results represent the average of four measurements.

Nanobody conjugation and antigen binding. The NbVCAM1-LEY-alkyne and rNbVCAM1-Hisg-alkyne
were conjugated to the azidified slides by CuAAC as described above. A random physisorption
reference was performed with non-alkynated NbVCAM1-LEY on a carboxylated slide. For this,
the slide was incubated for 30 min with 1 uM nanobody in 400 pL TBS buffer pH 7.5 (50 mM Tris
and 0.1 M Na(l), followed by washing with PBS to remove only the unbound proteins but not
the adsorbed nanobodies. The recombinant hVCAMI antigen (R & D Systems) was prepared in
PBS at a stock concentration of 100 pg/mL (0.37 uM). In order to compare the maximal antigen
binding capacity of the nanobody conjugated silicon wafers, the stock solution was only diluted
to a final concentration of 5 pg/mL in 400 pL PBS and added to the cuvettes containing the slides
conjugated with NboVCAM1-LEY-alkyne or INbVCAMI1-Hisg-alkyne (via CuAAC), or NbVCAM1-LEY
(by physisorption). The antigen-nanobody association was performed for 30-50 min under stirring
until saturation was reached. The slides were then consecutively washed with WB, glycine-HCl
buffer (0.1 M glycine-HCl and 0.2 M NaCl at pH 2.5), SDS and PBS. The AP and I' values were
determined by averaging the data points measured during the washing with WB. To test the reusability
of the nanobody-conjugated surfaces, the slides were subjected to a second antigen binding following
the same binding protocol as described above. All antigen binding measurements were performed
in duplicate.

Determination of the dissociation constant (Kp) of the antigen binding. The hVCAMI1 binding to
surfaces conjugated with NbVCAMI1-LEY-alkyne or INbVCAM1-Hisg-alkyne was evaluated for
increasing initial antigen concentrations (0, 1.25, 2.5, 3.75 and 5 pg/mL in PBS) until saturation
was achieved. The surfaces were then washed with WB and PBS. The affinity constant is determined
using the Scatchard equation:

M =nxCx L — [h"WCAM1,44nd]

1
— 1
[hVCAleree] Kp - Kp @

in which [nWWCAM1y,44n4] is the concentration (nM) of bound hVCAM]1 at equilibrium as determined
during the PBS washing, n is the number of binding sites per molecule (assumed to be 1 if monovalent),
and C is the total amount of binding sites available. The [n'WCAM1},,,n4] is proportional to the increase
of the surface mass density increase (T') at equilibrium and the contact surface area (0.09 cm?), and
inversely proportional to the reaction volume (V, 400 pL or 4 x 10~* L), and the MW (270,000 Da) of
the hVCAM1 (R & D Systems), and can be calculated as:

I' x 0.09

[h'VCAM1y,ound] = 270,000 x 4 x 4—4 ¥
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For each initial antigen concentration [WWCAM1y], the free hVCAMI concentration can be
determined according to:

[hVCAMIfree] = [AVCAM1g] — [hWCAMIpound] ®)

The Scatchard plots were made using the data obtained from Equations (1)-(3) and a linear
regression of the [WWCAM1y,,unq]/[WVCAM1ee] ratio as a function of the [WWCAM1yngq] was
performed in order to derive the Kp (nM).

Determination of antigen binding sensitivity. For increasing [nVCAM1y], the equilibrium amount of
hVCAM]1 bound to the surface conjugated with NbVCAMI1-LEY-alkyne or INbVCAMI1-Hisg-alkyne
was used to construct the dose-response curves. Hereto, the surface mass densities were plotted
against the corresponding antigen concentrations and a linear least squares fit (95% confidence level)
was carried out using GraphPad Prism 5.0 software. The slopes of the curves were also used as a
criterion to compare the antigen detection sensitivity according to Thevenot et al. [60].

Determination of detection limit (DL) and quantitation limit (QL). DL is defined as the lowest
concentration of an analyte in a sample that can be detected. It can be determined as DL =3.3 x ¢/S
where S and o are the slope and the standard deviation of the intercept, both of which are obtained
from the dose-response curve. QL is defined as the lowest concentration of an analyte in a sample that
can be quantitated and can be determined as QL =10 x o/S [61].

2.5. Surface Plasmon Resonance

Nanobody conjugation. The azidified C1 chip (described before) was first washed five times with
PBS to obtain a stable baseline. The first three flow cells were then conjugated via CuAAC with 10 pM
of NbBclII-10-LEY-alkyne (Fc1), NbVCAM1-LEY-alkyne (Fc2), and INbVCAM1-Hisg-alkyne (Fc3) using
the “click” cocktail in acetate buffer pH 4.0 as described for ellipsometry earlier (the Fc4 was already
conjugated with 10 uM NbVCAM1-Hisg via EDC/NHS coupling). The “click” cocktail was injected
at a flow-rate of 10 pL/min for 30 min. After that, the chip was washed five times and stored in PBS
at 4 °C if not used immediately. The immobilization levels, expressed in Response Units (RU), were
determined 10 s before the end of the PBS washing step (Figure 52, Supplementary Materials).

Analysis of the binding kinetics. Three antigens were employed in this study: two hVCAM1 antigens
(270 kDa and 180 kDa from R & D Systems and Peprotech, respectively), and mVCAM1 (95 kDa
from Bioconnect). The antigens were injected using a default single-cycle kinetics protocol [62], i.e.,
a series of initial PBS injections without antigen, followed by a continuous injection of antigen at
increasing concentration between 0-1000 ng/mL in PBS. For each concentration, the association and
dissociation steps were carried out during respectively 10 min (30 pL/min) and 2 min (30 pL/min),
after which a final dissociation step of 10 min (30 pL/min) was accomplished. The sensorgrams of
Fc2, 3 and 4 were double referenced. This includes subtraction of blanks (PBS only) in addition to
the contributions of the reference Fcl (i.e., [FcX — Fcllantigen — [FeX — Fellpps where Xis 2, 3, 4).
The binding kinetic parameters (k, and kg) and the dissociation constant (Kp) were determined from
fits using the 1:1 binding model implemented in the T200 BIAevaluation software. Regeneration of the
chip was performed by injecting 10 mM NaOH (Table S4, Supplementary Materials) at a flow-rate of
100 uL/min for 1 min before starting the next kinetic binding run.

Determination of antigen binding sensitivity, detection limit and quantitation limit. The dose-response
curves for hVCAM]1 binding to the conjugated nanobodies on Fc2, 3 and 4 for different hVCAM1
concentrations were constructed by the BIAevaluation software. The sensitivity of antigen detection
was calculated based on the slopes of the linear curves. The DL and QL are determined as described
for ellipsometry.
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3. Results and Discussions

3.1. Expression and EPL-Mediated Alkynation of N0VCAMI1-LEY

In this study, non-alkynated nanobodies (NbVCAMI-LEY) and C-terminally alkynated
nanobodies (NbVCAMI1-LEY-alkyne) were produced, purified and desalted according to a
previously optimized EPL-assisted protocol [38] (see Supplementary Materials for more details).
The NbVCAM1-LEY-alkyne was obtained in good yield (~20 mg per liter of culture) and high purity
(Figure 1A). Characterization of these nanobodies was performed with ESI-FTMS. The non-alkynated
protein fraction (resulting from the intein cleavage with dithiothreitol (DTT)-containing buffer
during EPL process) shows two masses: one of NbVCAMI1-LEY-DTT and one of the hydrolyzed
NbVCAMI-LEY (Figure 1B). This fraction was referred to as “NbVCAMI-LEY” in further
experiments. The mass spectrum of the NbVCAMI1-LEY-alkyne is shown in Figure 1C and the
presence of an alkyne “click” function was confirmed by a successful coupling to an azido-biotin
derivative (Figure S1D, Supplementary Materials) followed by Western blotting (Figure 1D).
The C-terminally alkynated nanobody retained a similar binding capacity towards the hVCAMI1
antigen as the reference non-alkynated NbVCAM1-Hisg in an ELISA test (Figure 1E). This procedure
allows a generic preparation of C-terminally alkynated nanobodies as starting materials for
CuAAC-mediated bioconjugation.
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Figure 1. (A) SDS-PAGE of cytoplasmic expression and purification steps of NoVCAM1-LEY-alkyne during
the EPL process. From left to right: non-induced and Isopropyl 3-D-1-thiogalactopyranoside—induced
total cell proteins, the cell debris and lysate, the proteins not bounded to the chitin column (FT: flow
through), the eluted fraction (alkynated NbVCAMI-LEY) (arrow) and the extract of the beads
after EPL; (B,C) Mass spectra of the purified NbVCAMI1-LEY and NbVCAM1-LEY-alkyne fractions,
respectively, with their structures; (D) CuAAC-mediated biotinylation of NbVCAM1-LEY-alkyne and
analysis by SDS-PAGE (top) and Western blot (bottom), demonstrating the presence of the alkyne
“click” function; (E) Sandwich ELISA to show the hVCAM1 antigen binding capacity of different
nanobody variants. The experiment was performed in triplicate and the data are plotted on a log-log
scale. The non-alkynated, fully active NbVCAM1-Hisg and the NbBclII-10-LEY-alkyne (will not bind
VCAMI1—see Supplementary Materials for more details about the production of these nanobodies) are
used as positive and negative controls, respectively.
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3.2. Buffer Selection for Optimal CuAAC-Mediated Surface Conjugation

The efficiency of the CuAAC-mediated coupling of monoalkynated NbVCAMI-LEY to azidified
silicon wafers was evaluated for different buffers. As monitored by ellipsometry, the highest amount
of nanobody conjugation was found for acetate buffer pH 4.0 (Table S1, Supplementary Materials).
Therefore, this buffer was selected for all further CuA AC-mediated couplings of alkynated nanobodies
to the silicon surfaces and the Biacore™ C1 sensor chips.

Figure 2A,B present ellipsometric data that clearly demonstrate the covalent clicking of the
alkynated nanobodies to the azidified silicon slides but not to the carboxylated slides for which all
nanobodies were removed by washing with washing buffer (WB) and SDS solution. Coupling of
rNbVCAM1-Hisg-alkyne (also known as randomly alkynated nanobody variant, see experimental
section for synthesis details) and NbVCAM1-LEY-alkyne to azidified slides on the other hand results in
an increase of the average surface mass density by respectively 267 and 291 ng protein/cm? (Figure 2B).
This is in contrast to non-alkynated nanobodies (NbVCAM1-Hiss and NbVCAM1-LEY), which were
washed away by the WB and SDS solution (Figure 2B).
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Figure 2. Ellipsometric results for the CuAAC-mediated coupling of different NbVCAMI1 variants in
acetate buffer pH 4.0 to: (A) carboxylated; and (B) azidified silicon wafers. The coupling process (CP)
was followed by consecutive washing steps with washing buffer (WB), SDS, phosphate buffer saline
(PBS), BME and PBS. Data were recorded in real-time and in quadruplicate and one representative
curve is presented; (C) A one-cycle human VCAMI antigen (R & D Systems) binding (A,B) on
different nanobody-conjugated silicon surfaces. The nanobodies were immobilized using either
CuAAC (for the INbVCAMI-Hisg-alkyne and NbVCAM1-LEY-alkyne) or physisorption (for the
NbVCAMI-LEY). Binding was followed by consecutive washing steps with WB, Glycine-HCl, SDS
and PBS; (D) A two-cycle AB binding process on similar slides. Measurements were carried out in
duplicate and one representative curve is shown.

3.3. Study of the Antigen Binding by Ellipsometry

The antigen binding capacity of various nanobody-conjugated silicon wafers was examined by
adding an excess of hVCAM]1 antigen (5 ng/mL) in order to allow a maximum, saturating antigen
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binding (Figure 2C). Since the NbVCAMI1-Hisg contains five amine groups (4 lysine e-NH; and
1 -NH)y) that can react with the NHS-alkyne linker (see Experimental Section and Supplementary
Materials for more details), the resulting rINbVCAM1-Hisg-alkyne can theoretically be coupled to the
azidified surface in five different orientations. Likewise, the physically adsorbed NbVCAMI1-LEY
is also coupled to the surface with random orientations. In contrast, the NbVCAMI1-LEY-alkyne is
covalently coupled with a unique orientation to the azidified surface and shows a larger surface
density increase as compared to the others. This demonstrates that more binding sites are available
for the target if the surface is conjugated with uniformly oriented nanobodies. Moreover, because the
N-terminus of the nanobody is importantly involved in antigen recognition [63—66], coupling via the
N-terminal amine function will for sure be harmful for the activity. If the nanobodies are covalently
coupled via the alkynated C-terminus on the other hand, all will have their active sites available for
the antigen binding.

In order to explore the repeatability of the antigen binding for recycling the biosensing platforms,
the antigen-loaded surfaces were washed thoroughly (successively with WB, Glycine-HCI, SDS, and
PBS) to remove all bound antigen, after which the slides were subjected to a second cycle of antigen
binding (Figure 2D). For the CuAAC conjugated surfaces, there was no significant difference in surface
mass density after these washing steps as compared to the situation before the first antigen binding
cycle, indicating that the covalent linkage between the alkynated nanobodies and the azidified surfaces
is stable and can resist the regeneration process. In case of physically adsorbed nanobodies on the other
hand, both the antigens and the nanobodies were washed away during the SDS washing. This nicely
demonstrates the improvement in stability of the NbVCAM1-LEY-alkyne conjugated via CuAAC
as compared to physisorption. It is remarked that the antigen binding capacity was slightly lower
in the second binding cycle, probably due to partial nanobody denaturation by the SDS washing
step at the end of the first cycle (Table S2, Supplementary Materials). In spite of this, the second
binding cycle confirms the improved antigen binding capacity of the site-specifically conjugated
NbVCAMI-LEY-alkyne.

The dissociation constant of the antigen binding can be determined from the ellipsometric binding
curves (Figure 3A,B). There was a faster hVCAM1 binding of the conjugated NbVCAMI1-LEY-alkyne,
representing a larger association constant (k,), as compared to the conjugated INbVCAMI1-Hisg-alkyne,
i.e., 25 vs. 50 min, respectively (after baseline stabilization) to reach saturation. Based on the surface
mass density at equilibrium, the Scatchard plots (Figure 3C,D) were constructed from which a Kp value
of 7.7 nM was determined for the NbVCAM1-LEY-alkyne-conjugated surface. The antigen binding
at low concentration of the INbVCAM1-Hisg-alkyne-conjugated surface is so poor that a very large
but unreliable Kp is resulted from the Scatchard plot. However, it confirms the increase in binding
affinity of the site-specifically alkynated nanobody after surface conjugation. These results indicate
that there are not only more binding sites available on the surfaces conjugated with the oriented
NbVCAM1-LEY-alkyne, but also that these sites have an equal binding affinity towards the hVCAM1
antigen. In contrast, a INbVCAMI1-Hisg-alkyne-conjugated surface has less binding sites and some of
them bind the antigen with less affinity due to a conformational change resulting from conjugating via
an alkyne which is localized within or close to the binding pocket.

Additionally, the dose-response curves, representing a linear correlation between the surface mass
density and the antigen concentration (Figure 4), can be used for comparing antigen binding sensitivity.
The slopes of the curves indicate that the sensitivity could be increased 1.82 times (38.39 vs. 21.04)
by using the C-terminally alkynated nanobody as compared to the randomly alkynated nanobody.
It is noticed that the hVCAMI1 binding of the surface conjugated with the NbVCAMI1-LEY-alkyne
reaches saturation at 3.75 pg/mL antigen. Therefore, the dose-response curve was fitted with only the
data points in the linear range. The LD and LQ of the NbVCAM1-LEY-alkyne conjugated surfaces
are, respectively, 0.51 and 1.54 ug/mL, and so slightly lower than the values of 0.62 and 1.88 pug/mL
found for the INbVCAM1-Hisg-alkyne conjugated surfaces. It further is experimentally observed that
hVCAM1 concentrations below 1.25 pg/mL indeed become difficult to quantify with ellipsometry.
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In an attempt to achieve a higher sensitivity (i.e., a lower detection limit) for biosensing applications,
surface plasmon resonance (SPR) was employed using a Biacore™ T200 workstation.
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Figure 3. Antigen binding curves of azidified silicon wafers conjugated by CuAAC with: NbVCAM1-
LEY-alkyne (A); and rNbVCAM1-Hisg-alkyne (B) for different hVCAM1 antigen concentrations as
detected by ellipsometry. The association process was followed by washing with washing buffer and

PBS, after which the surface mass density was determined. (C,D) The corresponding Scatchard

plots. The dissociation constants Kp were derived from the inverse of the slopes of the linear

regression equations.
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Figure 4. Dose-response curves for the hVCAMI (R & D Systems) binding to NbVCAM1-LEY-alkyne
(@) and rNbVCAM1-Hisg-alkyne (A) conjugated silicon slides obtained by ellipsometry. The data
were analyzed by means of a linear least squares fitting (95% confidence level; note that

only the non-saturating antigen concentrations (0-3.75 pg/mL) were taken into account for
NbVCAMI1-LEY-alkyne conjugated surfaces).
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3.4. Study of the Antigen Binding by Surface Plasmon Resonance

Compared to ellipsometry, SPR is a more advanced label-free technique to study biomolecular
interactions due to its higher degree of automation and sensitivity in addition to limited sample
preparation. In a previous study on hVCAM]1 antigen binding using SPR, Broisat et al. [63] reported
a dissociation constant in the nanomolar range for NbVCAM1-Hiss. However, these authors
immobilized the antigen as the “ligand” and used the nanobody as the “analyte”, a set-up not aimed
for bio-sensing applications. In this study, we construct Biacore™ C1 chip surfaces conjugated with
nanobodies that are not only bound covalently but also with a uniformly orientation, and therefore
exhibit an improved binding sensitivity as compared to randomly bound nanobodies.

The improvement in binding sensitivity of conjugated NbVCAM1-LEY-alkyne (as compared
to INbVCAM1-Hisg-alkyne conjugated via CuAAC and NbVCAM1-Hisg coupled via EDC/NHS
chemistry) can be observed for two different hWVCAM1 antigens by comparing the slopes of the
dose-response curves (Figure 5A,B and Table 1). For the hVCAMI of R & D Systems, the sensitivity
was increased 6.7 times and 53.9 times, respectively. For the hVCAM1 from Peprotech, the sensitivity
was increased 1.6 times and 4.1 times, respectively. Improvements in detection and quantitation limit
were also observed for the binding of both hVCAM1 antigens to NbVCAM1-LEY-alkyne as compared
to the other nanobody variants (Table 1). In addition, and this for ellipsometry as well as for SPR, the
antigen binding experiments were performed on three independent surfaces (three replicates) and
the resulting measurements show small relative standard deviations and high correlation coefficients
(Figure 5), indicative for a good reproducibility.
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Figure 5. Dose-response curves for the binding of hVCAMI1 from: R & D Systems (A); and Peprotech
(B) to VCAMI-targeting nanobodies that are conjugated to different flow cells of the C1 chips via
different chemistries.
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Table 1. The sensitivity (S), detection limit (DL) and quantitation limit (QL), all displayed in pg/mL,
for the binding of recombinant human VCAMI1 antigens to the nanobody-conjugated flow cells
prepared by the different coupling methods.

hVCAM1 hVCAM1
(R & D System) (Peprotech)

S DL QL S DL OL

NbVCAMI1-LEY-alkyne (CuAAC chemistry) 6893 0.17 051 17.03 0.16 0.50
rNbVCAMI1-Hisg-alkyne (CuAAC chemistry) 1031 023 0.69 10.76 028 0.86
NbVCAMI1-Hisg (EDC/NHS chemistry) 128 031 094 411 023 071

As shown in Table 2, the binding kinetics and affinity of VCAM1 for the nanobody-conjugated
surfaces was further evaluated on the basis of the Kp constants. The association constant (k,)
and dissociation constant (kgq) are shown in Table S3 (Supplementary Materials). It is firstly
noticed that the NbVCAM1I-LEY-alkyne conjugated flow cell (Fc) is able to bind both human and
mouse VCAMI1 antigens with nanomolar affinities, which is in accordance with the findings of
Broisat et al. [63]. Moreover, the site-specifically conjugated NbVCAM1-LEY-alkyne shows a significant
increase in binding affinity for the two hVCAMI1 antigens, i.e., with a factor of 6-14 as compared
to INbVCAMI1-Hisg-alkyne and even a factor of 138 as compared to NbVCAM1-Hisg coupled via
EDC/NHS chemistry (Table 2). These data are in accordance with the ellipsometry results, supporting
the hypothesis that random conjugation via the lysines (or alkynated lysines) disturbs the conformation
of the nanobody’s binding domains if the anchoring amine is directly involved in the antigen binding
or is changing the spatial structure of the binding pocket. These results also show that SPR is more
sensitive to detect the differences in binding affinity as compared to ellipsometry, mainly due to the
lower detection limit (subnanomolar concentrations of antigen) and higher level of automation (limited
sample preparation and handling) of the Biacore™ system.

Table 2. The dissociation constant (Kp in nM = standard error) for the binding of the human and
mouse recombinant VCAMI antigens to the nanobody-conjugated flow cells prepared by the different
coupling methods.

hVCAM1 hVCAM1 mVCAM1
(R & D System) (Peprotech) (Bioconnect)
NbVCAMI1-LEY-alkyne (CuAAC chemistry) 0.15 £ 0.01 1.61 + 0.14 1.45 + 0.55
rNbVCAMI1-Hisg-alkyne (CuAAC chemistry) 2.10 +£0.71 8.67 + 0.27 N/D
NbVCAM1-Hisg (EDC/NHS chemistry) 20.70 * 49.30 * N/D

N/D: not determined, *: insufficient data to calculate the standard error.

In addition, the difference in Kp for the binding of the different antigens to conjugated
NbVCAMI1-LEY-alkyne (Table 2) can be explained by the structural differences between these antigens.
The single domain hVCAMI1 (from Peprotech) and mVCAM1 (from Bioconnect) bind with similar
affinity constants, whereas the heterodimeric hVCAM1 (from R & D Systems) exhibits a smaller
Kp, i.e., a higher affinity. Since this antigen contains a VCAMI1 and a partial IgG1 domain, both of
which belong to the immunoglobulin superclass, they might share some structural similarities which
probably enables occasional binding to the nanobody with the IgG1 domain (although with much less
affinity as compared to the VCAM1 domain). It therefore has to be noted that the results calculated for
the binding of the chimeric hVCAM]1 antigen by means of the monovalent binding model have to be
considered as useful approximations.

After regeneration of the nanobody-conjugated sensor chips, it was shown that 70% of the binding
activity was retained for the NbVCAMI1-LEY-alkyne based sensor (Table S4, Supplementary Materials),
whereas more than 50% was lost for the INbVCAM1-Hisg-alkyne and the NbVCAMI1-Hisg based
reference sensors (data not shown). It again indicates that nanobodies that are conjugated via the
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C-terminally alkyne to the azidified surfaces resist the regeneration conditions better, and are thus
more stable, than the nanobodies on the reference sensors. It should be noted that the reusability of all
above platforms might be improved upon applying different regeneration protocols.

All the results presented above show that: (i) the EPL technique is an efficient tool to
site-specifically append a bio-orthogonal functional group to a nanobody for (ii) site-specific
coupling to surfaces for advanced biosensing. As reported before, our adapted EPL protocol
allows a one-step synthesis and purification of C-terminally alkynated nanobodies in high yield
for subsequent CuAAC-mediated coupling [43]. This is highly advantageous as compared to the
two-step procedure (purification of NbVCAM1-Hisg and its random alkynation separately) used to
prepare the randomly alkynated nanobodies. However, more importantly, our findings additionally
demonstrate that the combined use of EPL and CuAAC chemistry allows to uniformly conjugate
solid supports with nanobodies, resulting in higher binding affinities and sensitivities as well as
improved detection limit, quantitation limit and repeatability as compared to non-oriented (random)
approaches. More specifically for the NbVCAM1-LEY-alkyne nanobody, a SPR-based VCAM1
biosensor would allow to detect human and mouse VCAMI1 antigens at (sub)nanomolar concentrations
in atherosclerotic serum.

4. Conclusions

The combined use of EPL and highly selective CuAAC “click” chemistry is reported in this study
in order to develop biosensor platforms for VCAM1 binding detection with significantly improved
performances. The proof of principle of the approach, being generic in nature, is demonstrated
in this study for a specific NbVCAMI-LEY-alkyne nanobody and SPR-based read-out platform.
More specifically, the EPL principle is applied to engineer the nanobody NbVCAMI1-LEY with a
site-specific, i.e., C-terminal, alkynated linker molecule while maintaining full antigen binding capacity.
The alkyne function of this linker allows conjugating the resulting NoVCAM1-LEY-alkyne nanobodies
covalently and with a uniform orientation to azidified solid supports via a stable triazole linkage
resulting from the CuAAC “click” reaction. This paper also demonstrates the potential, feasibility
and benefits of this innovative strategy for biosensor development and can pave the way to further
device miniaturization needed for the development of sensors for detecting multiple antigens in a
single assay.

Supplementary Materials: Supporting information associated to this research (expression, purification and
characterization of nanobodies, regeneration of nanobody-conjugated surfaces, as well as SPR kinetics data) are
available online at www.mdpi.com/2079-6374/6/3/34/s1.
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