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Abstract: This manuscript reports the application of sensors for water use efficiency with a focus
on the application of an in vivo OECT biosensor. In two distinct experimental trials, the in vivo
sensor bioristor was applied in yellow kiwi plants to monitor, in real-time and continuously, the
changes in the composition and concentration of the plant sap in an open field during plant growth
and development. The bioristor response and physiological data, together with other fruit sensor
monitoring data, were acquired and combined in both trials, giving a complete picture of the
biosphere conditions. A high correlation was observed between the bioristor index (∆Igs), the canopy
cover expressed as the fraction of intercepted PAR (fi_PAR), and the soil water content (SWC). In
addition, the bioristor was confirmed to be a good proxy for the occurrence of drought in kiwi plants;
in fact, a period of drought stress was identified within the month of July. A novelty of the bioristor
measurements was their ability to detect in advance the occurrence of defoliation, thereby reducing
yield and quality losses. A plant-based irrigation protocol can be achieved and tailored based on real
plant needs, increasing water use sustainability and preserving high-quality standards.

Keywords: plant monitoring; bioristor; OECT sensor; kiwifruit; water; precision irrigation; physiological
responses

1. Introduction

Rising temperatures and the frequency of extreme weather events pose limits to agri-
culture production and severely impact food security. The reduced land availability and the
recurrent drought events during the growing season hamper the quantity and quality of crop
yields [1]. Due to the increased need for food security for an increasing world population [2],
novel solutions in agriculture are needed to improve resource use efficiency and the resilience
of crop systems to climate change as well as to optimize farm management and practices.
In this scenario, the integration of advanced technologies based on novel sensors coupled
with the Internet of Things (IoT) approach have the potential to positively impact agricultural
production, minimize economic losses [3,4], and improve sustainability.

Among horticulture crops, kiwifruit is grown in most temperate climates with ad-
equate summer heat, representing an important market share [5]. Kiwifruit production
in Italy is particularly important, being responsible for around 70% of the entire north-
ern hemisphere production [6,7]. Italy is the second-largest kiwifruit producer in the
world, with 562,188 metric tons cultivated annually (https://www.atlasbig.com/en-gb/
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countries-by-kiwi-production, accessed on 1 March 2024). A large percentage of its ex-
ports go to other European countries, including Germany, Spain, France, and Poland
(https://www.atlasbig.com/en-gb/countries-by-kiwi-production, accessed on 1 March
2024). As with many fruit species, in kiwifruit, the plant water balance is a key factor that
determines fruit growth and development, in particular, the balance between xylem and
phloem inflows and/or water losses due to transpiration and xylem backflow [8]. In fact,
Actinidia species originated in Southeast China under conditions of high precipitation and
relative humidity [9]. Under these constraints, most of these species evolved large leaves
(i.e., wide transpiring surface) and large and sparse xylem vessels, allowing a very high
vine/stem hydraulic conductivity [10].

When the water requirement of leaves is sufficiently large to decrease the stem water
potential to values lower than those of the fruit, some species like apple [11], kiwifruit [12],
and grapevine [13] are subject to water loss due to xylem backflow. This phenomenon
occurs mainly during the mid part of the season, when the xylem is still functional but
is subsequently reduced, reaching zero close to harvest due to a loss in xylem function-
ality [14]. In kiwifruit, changes in the timing of irrigation can quickly affect the vine
water relations, leaf gas exchange, and fruit vascular flow, finally impacting yield and
production [15]. In this scenario, the development of smart plant monitoring solutions
that are capable of detecting xylem flow and functionality can concretely improve resource
use efficiency and can contribute to the development of novel decision support systems
(DSS) [16] to fine tune irrigation practices.

Until now, remote sensing (satellite, airborne, or UAV platforms) and proximal sensing
(multispectral or hyperspectral imaging, LiDAR, thermal imaging, or electromagnetic
radiation) have been the most common used techniques concerning the acquisition of
information about plant growth and health status [17,18]. However, being close to the plant
but not directly embedded in it, both approaches give partial although reliable information
on plant growth and development.

Recently, bioelectronic technologies offer new possibilities for real-time monitoring
and dynamic modulation of plant physiology by translating complex biological inputs to
electronic readout signals, while bioelectronic actuators can modulate biological networks
via electronic addressing [19,20]. Portable plant items have started to emerge as epidermal
sensors attached to the leaf or stem [21,22] and as more invasive devices implanted directly
into the stem [20].

In 2017, a novel in vivo biosensor named bioristor was proposed [23]. Bioristor is an
organic electrochemical transistor (OECT)-based biosensor that was originally applied to
plants. The transistor is composed of a channel and a gate made of textile threads and
functionalized with PEDOT/PSS [23]. The channel current can be modulated by the gate
voltage that, when applied, pushes the positive ions of the electrolyte solution into the
channel, changing its conductivity.

The relative variation in the channel current represents the sensor response (R), which
is proportional to the concentration of ions dissolved in the plant sap [23]. Bioristor
successfully monitored the changes occurring throughout the entire plant growth period,
showing a high durability and accurate measurements both in vitro and in vivo [24,25].
It also demonstrated the ability to detect changes in the plant physiology mechanisms
and the occurrence of water stress [25,26]. During a water deficit, a severe change in
plant physiological mechanisms occurs, leading to response mechanisms such as reduced
transpiration, stomatal closure, reduced photosynthesis, accumulation of ABA, and ion
compartmentalization [26,27]. In a controlled environment, the in vivo monitoring by
bioristor enabled the early detection of water stress [26]. By monitoring the changes
occurring in ion concentrations in the plant sap flowing in the transpiration stream, bioristor
was also successfully used for monitoring environmental changes such as VPD and relative
humidity. In the field, bioristor was applied to monitor tomato crops throughout the entire
production season, leading to the hypothesis that its adoption as a tool to guide irrigation
could have led to 36% water savings [28]. Moreover, a high correlation between the bioristor

https://www.atlasbig.com/en-gb/countries-by-kiwi-production
https://www.atlasbig.com/en-gb/countries-by-kiwi-production
https://www.atlasbig.com/en-gb/countries-by-kiwi-production
https://www.atlasbig.com/en-gb/countries-by-kiwi-production


Biosensors 2024, 14, 226 3 of 16

R index and common vegetative indices used in field monitoring was observed, as well
as a significant correlation with the crop stress water index [25]. Based on these results,
bioristor was proposed as a tool for field phenotyping [25], coupled with a model based on
artificial intelligence (AI) to forecast water stress in tomatoes [29]. Overall, bioristor proved
to be able to monitor the functional physiology of apples, grapes, and kiwis [30].

Bioristor can concretely improve precision agriculture methods by being directly
inserted in the plant, giving real time and continuous data on ion movement and compart-
mentalization and indirectly reporting on the plant water status continuously throughout
the entire plant growth cycle. Based on these experiences, here, we assess the use of
bioristor on gold kiwifruit to continuously monitor the plants during their growth and
development under conventional irrigation management. This study is based on two
years of monitoring in an open field within the framework of two research projects, POS-
ITIVE and E-crops, both of which are focused on precision agriculture and encompass a
range of environmental conditions (https://www.e-crops.it/, accessed on 1 March 2024,
http://www.progettopositive.it/, accessed on 1 March 2024). The use of bioristor was
originally combined with a physiological analysis and proximal soil sensors to analyze the
water use efficiency. The novelty of this study resides in the assessment of the capability
of bioristor to monitor the entire plant production cycle, identifying periods of drought
stress and identifying novel correlations with other physiological indices. Moreover, the
performance of the bioristor sensor in the presence of defoliation is assessed.

2. Materials and Methods
2.1. Plants and Irrigation

A multi-site and multi-year approach was used to monitor kiwifruits using bioristor.

2.1.1. First Year (2019)

The first trial was performed in Cesena (FC, Italy, coordinates 44.134225, 12.190178)
within the framework of the POSITIVE project during the 2019 season. Two irrigation
conditions were adopted, and sixteen bioristor were installed in two rows for each irrigation
condition. Two sensors for each plant were installed on two two-years-old branches in
different orientations by drilling a 0.75 cm hole using a microdrill. The installation took
place during the fruit enlargement phase.

Drip irrigation was utilized, and two irrigation conditions were defined: (i) farm
irrigation (FI), corresponding to 100% water input and to the standard farm practice and
(ii) modified irrigation (MI), corresponding to 120% water input (+20% with respect to the
standard farm irrigation) using a microjet drip wing.

2.1.2. Second Year (2022)

The second experiment was conducted in 2022 in Southern Italy in Scanzano Jonico
(MT, Italy, coordinates 40.337592, 16.720213) within the framework of the E-CROPs project.
Three experimental plots (A, B, and C) were selected in a commercial orchard, and a
bioristor sensor was mounted on one-years-old branches by drilling a 0.75 cm hole using a
microdrill in two plots (B, C).

A total of 4 sensors were installed in each plot on a total of 3 plants and connected to a
control unit as previously described in Vurro et al., 2023 [30]. The sensors were powered by
a 20 W solar panel and connected to two 12 V batteries to preserve autonomy.

Irrigation was performed following the current scheduling (timing, volume) planned
by the farmer to monitor the occurrence of possible water excesses and/or deficits during
the growing season. A double irrigation system was set, integrating in-row localized drip
lines (2.3 L/h) with a microjet sprinkler irrigation system (35 L/h) that was used alterna-
tively by the farmer according to the specific weather conditions and water requirements.

https://www.e-crops.it/
http://www.progettopositive.it/
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2.2. OECT Sensor Device: Bioristor Preparation and Insertion in Trees

The bioristor sensors was fabricated, installed, and operated following previously
reported methods [23,25,29].

The OECT channel was inserted into the plant stem using an 0.8 mm drill and con-
nected at both ends to a metal wire to form the source and the drain electrodes. Silver paste
was used to secure the connections. The gate electrode, prepared using the same protocol,
completed the design of the sensor device (Figure 1).
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Figure 1. Bioristor system and implementation in kiwifruit. (A) Scheme of the bioristor sensor
implemented in a kiwi plant, (B) Flowchart of the bioristor sensor monitoring in kiwifruit.

The bioristor signals were amplified using custom read-out electronics and connected
to an IoT control unit based on the Arduino DUE system powered by a 12 V 12 Ah lead
battery charged by a photovoltaic panel. The sampling rate was fixed at 1 Hz, and each
control unit was able to read up to four sensors. The control unit was equipped with a
12-bit ADC (5 V full scale), the maximum current full scale was 7 mA, and the current
resolution was about 1.5 µA.

A micro-weather unit was also incorporated into the control unit (DHT11 module,
Seed Technology Inc., Shenzhen, China) to monitor the air temperature (◦C) and relative
humidity (RH).

A micro-SD memory card was used to collect the data in situ, and the data were also
transferred to the cloud via a 4G connection. This allowed for the maximization of the
signal-to-noise ratio using customized electronic circuits to amplify the bioristor signals, as
well as for the local analysis of the raw data.

A constant voltage (Vds = −0.1 V) across the transistor channel, along with a positive
voltage at the gate (Vgs = 0.5 V), was applied to operate the bioristor sensor. The transistor
current (Ids) and gate current (Igs) were monitored continuously throughout the entire
duration of the experiments.
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2.3. Measuring the Electric Activity of the Plants Using OECT

The operating principle of an OECT is thoroughly described in references [25]. The
common nutrients absorbed through roots and circulating in the plant sap (NaCl, KCl,
MgCl2, ZnCl, and other salts) dissociate as cations (M+) and anions (A−). In the OECT
device, the channel is the active part, and it is made of PEDOT/PSS. Upon the application of
a positive voltage at the gate, cations are forced towards the transistor channel, de-doping
the PEDOT/PSS polymer. De-doping results in the removal of the charge carriers from the
conducting polymer. The smaller number of holes available for conduction in the channel
is a consequence of the incorporation of cations in the PEDOT:PSS. Cations entering into
the PEDOT/PSS cause a reduction in the oxidized PEDOT+ and induce a decrease in the
conductivity upon reduction to PEDOT. This de-doping process causes a reduction in the
current from the drain to the source (Ids). The Ids current is proportional to the cation
concentration in the fluid.

The entire process is reversible. A voltage (Vds = −0.1 V) was applied across the source
and drain terminals of the channel, resulting in a continuous flow of current. In addition,
a positive voltage was applied to the gate (Vgs = 0.5 V) for 15 min, causing a decrease in
the conductivity of the channel due to the migration of cations from the electrolyte into
the channel. When the gate voltage is switched off again for 15 min, the cations tend to
return to solution through diffusion—this is the de-doping phase [31]. Vgs varies over time,
following a typical 50% duty cycle square wave and periodically oscillating between 0 and
0.5 V with a frequency of two oscillations per hour.

In this configuration, the gate and the drain are the cathodes, and the source is the
anode. Thus, positive charges move from the gate to the source and within the channel
from the drain to the source.

The sensor response (R) is calculated as follows:

R =
|Ids − Ids0|

Ids0

which is proportional to the positively charged ion concentration.
Ids0 represents the current flowing across the channel when Vgs = 0.
At the same time, ∆Igs that is the gate-source current variation, was also recorded in

these trials as follows:
∆Igs = Igs − Igs0

which represents an overall estimation of the sap conductance.
Igs0 represents the current flowing across the channel when Vgs = 0.
∆Igs was found to be a key parameter in establishing the device saturation, i.e., the

device wet fraction was correlated with the transpiration flux [28]. In some sense, while
R is correlated with the sap ion concentration, ∆Igs is related to the amount of sap that is
wetting the device, reflecting the amount of sap that is circulating in the plant.

2.4. Physiological Measurements

Several measurements of key physiological traits were performed in both years and
locations according to the instrument availability of the projects’ partners (Figure 2).

In 2019, physiological midday measurements were carried out within five monitoring
periods of the fruit growing season between May and September: around 3, 8, 11, 15, and
20 weeks after full bloom (WAFB). The measurements consisted of plant water relations:
stem water potential (ΨSt), leaf water potential (ΨL), and fruit water potential (ΨF); and
plant gas exchanges: leaf photosynthesis (An), stomatal conductance (gs), and transpiration.

A Scholander pressure chamber (Soilmoisture Equipment Corp., Santa Barbara, CA,
USA) was used to monitor the plants’ water status: ΨSt was taken after isolating a leaf that
was distant from the fruit and close to the trunk in ad hoc envelopes (aluminum foil on the
outside and black on the inside) following the procedure described in reference [32]; ΨL
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was estimated from well-illuminated leaves that were distant from fruit; and ΨF was taken
from representative fruits that were not fully exposed to light.
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A Li-COR 6400 (Li-COR 6400, LI-COR Inc., Lincoln, NE, USA) was used to estimate
leaf gas exchange, including the stomatal conductance (gs), Leaf photosynthesis (An) and
transpiration were measured using a fluorimeter chamber that allowed for the measurement
of the actual radiation reaching the orchard at the time of measurement.

In 2022, the complete set of agrometeorological variables (solar radiation, temperature,
relative humidity, wind speed, rainfall) were measured along the cropping season, using
the MeteoSenseTM Weather Station (Netsens, Ltd.). The data were integrated using the
BluleafTM DSS Software Platform (Bari, Italy) [33] to compute the components of the crop
water balance according to the international standards established in the FAO Irrigation and
Drainage Papers and more specifically the reference and crop evapotranspiration (ETo and
ETc, mm, respectively) and vapor pressure deficit (VPD, kPa) (Supplementary Figure S3).
Moreover, the soil water status was monitored continuously in the three experimental plots
(A, B, and C) using the following proximal sensors: (i) TerraSenseTM FDR soil moisture
sensors (Netsens, Ltd., Calenzano, Firenze, Italy), measuring the dielectric constant and
estimating the volumetric soil water content (SWC, % v/v); (ii) Watermark tensiometers,
measuring the soil water potential (ΨS, in the range of 0–200 cbars); (iii) ECSenseTM Sensors
(Netsens, Ltd., Calenzano, Firenze, Italy), measuring the bulk electrical conductivity (ECb,
dS/m). The soil sensors were positioned in the root zone at two depths, 0.25 and 0.50 m
below the soil surface.

Additionally, a set of physiological parameters were evaluated in the experimental
plots at 8, 10, 13, and 16 WAFB, with measurements taken around midday. First, the
photosynthetic active radiation (PAR) was measured above and below the crop canopy on
a regular grid of points designed on-row and between rows using a Quantum Light Meter
(Spectrum Technologies Inc., Bridgend, UK). Then, the fraction of intercepted PAR (fi_PAR)
was computed as the relative ratio between these measurements.

The canopy temperature (CT, ◦C) was measured using a thermal infrared camera
(FLIR TG-165X model) on both fully illuminated and shaded leaves. The measurements of
CT were used to assess the following plant water stress indicators: (i) canopy temperature
depression (CTD, ◦C), computed as the difference between air temperature (Ta, ◦C) and
CT; (ii) crop water stress index (CWSI), following the original methodology proposed by
Idso et al., 1982 [34] and setting the upper and lower baseline thresholds for kiwifruit
according to an internal calibration performed during the E-CROPs project activities (data
not shown). Finally, the ΨSt and ΨL values were measured using a Scholander pressure
chamber following the same procedure previously described for the 2019 trial.

3. Results
3.1. Trial of 2019

The first yellow kiwi plant continuous monitoring was performed in Cesena for
4 months (Figure 3). The analysis of the bioristor sensor response (R) highlights a pro-
gressive R drop corresponding to a strong water deprivation, notwithstanding the high
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irrigation volumes provided. During the first month, no difference in the irrigation volume
was observed, and the sensor response overlapped in values and slopes between the two
water regimes for the entire initial period (5 June–6 July, in Figure 3).
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After 6 July, the irrigation was differentiated, leading to a change in the R index trend
that was consistent between the two irrigation regimes.

Between 26 June and 30 June, a strong reduction in the sensor response was observed
(Figures 3 and 4), corresponding to a strong defoliation recorded in the same period.
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A progressive drop in the sensor response was observed for both water regimes during
fruit ripening, although it was more marked in the MI water regime. A similar behavior of
the sensor response was previously observed in tomato plants during fruit maturation [28].
At a physiological level, an overall decrease in key mechanisms was observed in June,
particularly for the stomatal conductance and transpiration of the plants in both water
regimes (Figure 5B,C). From the end of July, a progressive increase in stomatal conductance
and photosynthesis were observed, reaching higher values in MI (Figure 5).
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Figure 5. Plot of gas exchange traits and bioristor sensor responses acquired during the experiments
of 2019. (A) Photosynthesis, (B) stomatal conductance, (C) transpiration, (D) sensor response. FI:
farm irrigation, MI: modified irrigation.

At the end of August, the maximum values of stomatal conductance were observed for
FI, while photosynthesis remained stable in both water regimes. At the end of September, a
decrease in the transpiration and steady values of photosynthesis and stomatal conductance
were recorded.

A correlation analysis revealed a negative correlation of the sensor response observed
at 12:00 a.m. with stomatal conductance (r = −0.69) and with transpiration (r = −0.57),
contrary to what was observed in tomatoes, where a positive correlation between the
conductance and sensor response was found (Figure 6, [26]).
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3.2. Trial of 2022

To assess the efficacy of the bioristor sensors in kiwi plant monitoring, an additional
trial was performed in Scanzano Jonico within the framework of the E-CROPs project. The
plots of both R and ∆Igs (Figure 7) showed a progressive, rapid, and strong drop of the
signal during the initial phase of monitoring (April) that was related to the increase in crop
evapotranspiration (Figure 8C) together with a substantial lack of rainfall and irrigation
events (Figure 8A). In the first days of May, a partial recovery of the signal and several
peaks were observed in relation to some rainfall events or irrigation, and similar peaks
were also recorded later in June, July, and August.
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Figure 7. Plot of the bioristor indices. (A) Sensor response, R, (B) Gate-source current variation, ∆Igs

in time.

The irrigation season started at the end of May, with a constant daily water supply (of
about 7.6 mm) from June to the middle of July that appeared to be sufficient to keep the R
signal relatively stable while the ∆Igs continued to decrease. After the middle of June, the
daily irrigation supply was reduced to 5 mm, and this resulted in a corresponding decrease
in both signals, reaching their minimum in the first week of August (Figure 8A).

The time range between mid-May to September showed a similar trend in R and the
soil sensors’ recorded humidity (Figures 8B and 9A) until the first days of July, where the
sensor response showed a strong decrease (Figure 8B,C). This indicated a redistribution of
the ion content in the plant sap, reflecting the occurrence of stress conditions in the plant.

In relation to the data recorded by the soil sensors (Figure 9), the trends in the SWC
and ΨS values were relatively stable from May to the middle of June. Then, a constant
decrease in the SWC and a steady increase in ΨS were observed, with critical values
reached from the end of July to the middle of August and a corresponding rapid and strong
decrease in the R slope of both plots. Finally, a recovery pick of R signals was observed in
both plots in correspondence with some rainy events occurring in the middle of August
(10–14 August) and beginning of September (Figure 8A). Overall, a good agreement was
also observed between the ECb measurements and the R signals, likely related to the
corresponding variations in the concentration of ions in both soil and plants associated
with the fluctuations in the soil water content (Figures 7A,B and 9C).
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crop evapotranspiration.

In relation to the physiological measurements taken at 8, 10, 13, and 16 WAFB
(Figure 10), increases across all the indicators of plant water stress were observed from the
first to the second ten days of July, in agreement with the decrease in irrigation supply and
soil water availability as well as the steady decrease in both bioristor indices (R and ∆Igs,
Figure 7A,B).

More specifically, the CTD and CWSI indicators of full-lighted leaves and the ΨSt
values reached some critical threshold values that were recorded up to the end of August,
as also supported by the R and ∆Igs signal, suggesting the potential status of water stress of
the plants due to an insufficient or inefficient irrigation water supply. At the same time, for
the other indicators (CTD and CWSI of shaded leaves, together with ΨL), a partial recovery
of the water stress was observed at the end of August, likely related to more favorable
conditions in terms of soil water content and atmospheric water demand (ETo and VPD)
recorded in the last part of the season.
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Figure 9. Plots of soil water content traits. (A) Volumetric soil water content (SWC, % v/v), (B) soil
water potential (ΨS, cbar), and (C) electrical conductivity, ECb. Blue lines indicate parcel B, and grey
lines indicate parcel C. Data represent the average of the two depths of measurements for each parcel.

The correlation matrix supported the draw hypothesis, showing a high correlation
between ∆Igs, fi_PAR, and SWC, while R showed a good correlation with SWC, although
this was not significant (Figure 11). CWSI in kiwifruit does not show a significant correlation
with R as previously observed in tomatoes [25].
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Figure 10. Plots of physiological traits recorded. (A) Canopy temperature depression, CTD, full-
lighted leaves; (B) canopy temperature depression, CTD, shaded leaves; (C) crop water stress index,
full lighted; (D) crop water stress index, shaded leaves; (E) stem water potential, ΨSt; (F) leaf water
potential, ΨL. Data represent the average of the tested plots, standard deviation is shown (n = 3).
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Figure 11. Correlation plot of all bioristor and physiological variables measured during the Scanzano
Ionico trial on the days of 6 July, 20 July, 9 August, and 31 August. R, sensor response; ∆Igs gate-source
current variation; ΨL, leaf water potential; ΨSt, steam water potential; fi_PAR, fraction of intercepted
PAR; CTDfll, canopy temperature depression (full light leaves); CTDsl, canopy temperature depression
(shaded leaves); SWC, soil water content; Ψs, soil water potential; ECb, soil bulk electrical conductivity,
CWSIsl, crop water stress index (shaded leaves); CWSIfll, crop water stress index (full light leaves).
* p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001.
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4. Discussion

In this study, two field trials are reported, exploiting bioristor deployment on yellow
kiwifruits to perform functional phenotyping with a focus on water use and drought
detection assessment given the high sensitivity of kiwifruit to water stress due to its low
stomatal regulation. Bioristor sensors were used to detect periods of water stress in both
seasons, with the final aim to drive optimized and sustainable irrigation, mitigate water
stress, and increase intrinsic water use efficiency based on the early detection of stress
conditions and the consequent definition of appropriate threshold values.

The strength of bioristor is its ability to monitor the plant ions dynamic through the
entire plant life cycle in vivo, in real-time, and continuously. We showed that the bioristor
sensors enabled the detection of defoliation. This is supported by the analysis of the daily
sensor response that was continuously reduced in intensity in both FI and MI (Figure 4) as
a result of the reduced volume of the xylem sap [35] triggered by defoliation, together with
a strong reduction in the whole-plant photosynthesis (Figure 5).

Defoliation can severely affect kiwi plants’ yields and health. These factors depend on
(a) the intensity of defoliation; (b) type of tissue removed, and whether it is meristematic;
(c) physiologic age; (d) frequency of defoliation, whether in discrete well-spaced events or
continuous removal; (e) timing of defoliation; and (f) whether stresses or competition have
occurred before, during, or after the defoliation [36]. Nevertheless, the higher percentage of
defoliation observed in 2019 and the higher fruit damage due to sunburn in deficit-irrigated
vines may indicate that the levels of water stress reached in this study were too severe for
the kiwifruit.

In previous studies, we have identified a strong link between the movements of water
and ions in plant vessels and the bioristor index R [26]. Crop plants move water through
the soil–plant–atmosphere continuum through the plant vascular system and lose it as
latent heat through transpiration. Thus, the accuracy of in vivo monitoring of the ion
movements in the transpiration stream is crucial to predict the use of water in these limiting
environments.

In the kiwifruit, a strong anticorrelation between R and stomatal conductance was
observed due to the stomata response to leaf water potential, which is one of the central
elements of a plant’s drought response strategy [37–39]. This result differs from what was
observed in tomato plants, where stomatal conductance and the R value were found to be
positively correlated [26].

A strength of the bioristor measurements is the acquisition in real time of the sap
ion concentration and its relationship with physiological acquired data, thus enabling
the observation and prediction of water stress in cultivated plants. This observation is
consistent with the findings of Vurro et al., 2023 [25], where R showed a specific and high
correlation with the water-related indices (RWC, CWSI) that specifically traced the effects
of drought stress.

A direct, real-time, and in vivo detection of the plant water status is highly significant
for plant monitoring. In fact, it is well documented that many stomatal conductance-based
models are biased because they overpredict stomatal conductance during conditions of low
soil water potential, high VPD, and high leaf area [37]. The physiological data acquired in
2019 are in accordance with previously reported data that highlight that water potential
(ΨSt) is strongly related to water stress [40,41] and decreases according to the level and
duration of the drought treatment with corresponding decreases in soil humidity and a
consequent increase in the temperature of the canopy [42].

Among the phenotypic traits, measuring the canopy temperature enables the detection
of the water state of the plant and the balance between radical water absorption and
transpiration [43,44]. Also, in this case, ∆Igs is strongly negatively correlated with the
canopy cover, expressed as fi_PAR and the soil water content (SWC) (Figure 10). The R
value showed a moderate association with transpiration (r = −0.57), and a progressive
drop in the sensor response (R) was observed in 2019 in both water regimes during fruit
veraison. This was more marked in the MI (120%) water regime, in accordance with
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reference [45], which showed a strong reduction in the transpiration and xylem flux, and
with reference [28], which showed a drop in the sensor response. In particular, after
flowering, 90% of the water circulating in the xylem is lost due to transpiration due to the
strong aptitude to lose water as a consequence of the numerous vital trichomes [45].

The combined analysis of the physiological stress indicators as CTD and CWSI of fully
lit leaves, ΨSt, together with R and ∆Igs, indicated some critical threshold values that were
recorded up to the end of August. This suggests a possibly critical water status due to
insufficient or inefficient irrigation water supply [46]. However, in contrast with previously
reported data on bioristor, no significant correlation was found between CWSI and R. This
is likely due to the irrigation condition applied [28]. In tomatoes, a contrasting irrigation
was applied between plots (100%, 80%, 40%), while in the Scanzano Jonico trial, a single
irrigation condition was applied.

The most commonly used index in guiding irrigation, SWC, showed a stable trend
during fruit ripening, while the bioristor showed a progressive decrease in the sensor
response, indicating the occurrence of a stress that could not be detected based on the SWC
alone (Figure 7A, B). This finding is supported by previous work, reporting that limited
SWC at the bud burst to flowering stage restricted vegetative growth [47], inhibiting
the expansion and division of pulp cells under low SWC conditions at the fruit growth
stage [48–50].

Thanks to the deployment of bioristor sensors, in kiwifruit, the continuous monitoring
of plant development and the early detection of the onset of drought stress becomes feasible
by tracking the sensor response R. Moreover, the observed strong correlation between SWC
and ∆Igs allows farmers to adjust the soil’s hydration status, addressing the needs of an
optimized soil moisture level and supporting the importance of in vivo plant monitoring
in fine tuning the irrigation recipe in kiwifruit (Figure 12).
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