
Citation: Wu, J.; Liu, J. Review of the

Capacity to Accurately Detect the

Temperature of Human Skin Tissue

Using the Microwave Radiation

Method. Biosensors 2024, 14, 221.

https://doi.org/10.3390/

bios14050221

Received: 1 April 2024

Revised: 24 April 2024

Accepted: 26 April 2024

Published: 28 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

biosensors

Review

Review of the Capacity to Accurately Detect the Temperature of
Human Skin Tissue Using the Microwave Radiation Method
Jingtao Wu 1 and Jie Liu 2,*

1 School of Information Science and Engineering, Southeast University, Nanjing 210096, China;
jt_wu@seu.edu.cn

2 The Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China
* Correspondence: liujie217@bjut.edu.cn; Tel.: +86-158-0137-8572

Abstract: Microwave radiometry (MWR) is instrumental in detecting thermal variations in skin tissue
before anatomical changes occur, proving particularly beneficial in the early diagnosis of cancer and
inflammation. This study concisely traces the evolution of microwave radiometers within the medical
sector. By analyzing a plethora of pertinent studies and contrasting their strengths, weaknesses, and
performance metrics, this research identifies the primary factors limiting temperature measurement
accuracy. The review establishes the critical technologies necessary to overcome these limitations,
examines the current state and prospective advancements of each technology, and proposes com-
prehensive implementation strategies. The discussion elucidates that the precise measurement of
human surface and subcutaneous tissue temperatures using an MWR system is a complex challenge,
necessitating an integration of antenna directionality for temperature measurement, radiometer error
correction, hardware configuration, and the calibration and precision of a multilayer tissue forward
and inversion method. This study delves into the pivotal technologies for non-invasive human tissue
temperature monitoring in the microwave frequency range, offering an effective approach for the
precise assessment of human epidermal and subcutaneous temperatures, and develops a non-contact
microwave protocol for gauging subcutaneous tissue temperature distribution. It is anticipated that
mass-produced measurement systems will deliver substantial economic and societal benefits.

Keywords: microwave radiometry; early diagnosis; precise measurement; non-contact; subcutaneous
tissue temperature

1. Introduction

According to recent statistics from the World Health Organization, as of 2022, approxi-
mately 18.1 million individuals were diagnosed with skin cancer annually [1]. The early
detection of skin lesions is crucial for effective treatment and improving patient outcomes,
as highlighted by pertinent research. Pathological alterations in skin tissue can be classified
into epidermal, dermal, and subcutaneous lesions, depending on their depth [2]. Current
conventional diagnostic methods for skin lesions include X-ray photography, CT scans,
MRI scans, and ultrasonic imaging, each with distinct advantages and limitations. How-
ever, due to the large size and cost of the equipment, the detrimental effects of ionizing
radiation, and their limited efficacy in early-stage detection, these techniques are not ideal
for widespread early diagnosis. Microwave radiation diagnostic technology emerges as a
promising alternative to overcome these issues.

The microwave radiation technique utilizes the fact that all physical objects with
temperatures above absolute zero (−273 ◦C) emit electromagnetic waves, termed radiant
heat, in accordance with Planck’s law [3]. This emission results from the random movement
of charged particles (electrons, ions, etc.) within the object. The electromagnetic waves
emitted by the human body’s internal tissues fall within the decimeter and centimeter bands.
Microwave radiometry operates by measuring the body’s inherent thermal radiation energy
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to gauge the internal temperature of tissues. This non-invasive, harmless approach allows
for the monitoring of biological tissue’s thermal activity, facilitating early disease detection
as thermodynamic variations precede structural changes in tissues. Importantly, microwave
radiometry provides a more detailed analysis of skin temperature compared to infrared
thermography, revealing temperature field distribution up to several centimeters deep.

Due to the presence of specific antigens and heightened sensitivity in cancerous cells,
viruses and carcinogenic agents can enhance blood circulation, resulting in increased water
content within cancerous tissues. Consequently, in the microwave frequency range, the di-
electric constant (ε) and electrical conductivity of cancerous tissues exceed those of normal
tissues, leading to higher emissivity in cancerous cells. Moreover, cancerous tissues can
induce circulatory blockages or infections, which generate heat, raising the local tissue tem-
perature by approximately 1 ◦C above normal levels [4]. Initially, microwave radiometers
were used to identify the approximate locations of tumors through a comparative method.
The radiometer captures microwave thermal radiation signals from the cancerous tissue
and their symmetrical normal counterparts. The variance in output voltage is utilized to
ascertain the existence and approximate location of the cancerous tissue.

A pathological region of skin tissue displays distinct attributes compared to adjacent
healthy tissue, including increased temperature, higher water content, and greater dielectric
constant and conductivity. These characteristics enhance its sensitivity to microwave radia-
tion, enabling the detection of subtle temperature variations within the affected area [5].
The traditional single-band multi-angle approach for temperature inversion is restricted
to measuring the temperature of a specific tissue layer, assuming known temperatures
for other layers, which produces a single real temperature parameter. To remove such
limitations, it is imperative to explore a nonlinear joint inversion mechanism utilizing the
multi-band method under near-field scattering, aiming to accurately determine temper-
ature changes or distributions at various depths within skin tissues. The core principle
is that microwave signals across different frequency bands can capture and externalize
temperature data from skin tissues at varying depths. Determining the temperature influ-
ence of each skin layer involves analyzing the interaction between near-field scattering
and system unit variance. By integrating this analysis, the actual temperature values for
each layer within the detection area are derived. Given that the temperature of human skin
tissue correlates directly with its microcirculation, this relationship can assist physicians in
diagnosing skin lesions by examining temperature distributions, comparing them with an
existing database, and thus enabling timely intervention and treatment.

In recent years, microwave radiometry has been employed for medical diagnostics
in a range of diseases including breast cancer [6], stroke [7], carotid artery atherosclero-
sis [8,9], activity of brown adipose tissue [10], rheumatoid arthritis [11], joint inflamma-
tion [12,13], synovitis [14], varicose veins [15], vesicoureteral reflux [16], urogenital system
disorders [17], back pain [18], and diabetic foot [19]. The utility of this method in preclinical
research has also been demonstrated in mice [20].

This study presents a systematic examination of multi-band closed-loop forward and
inversion modeling for the precise detection of skin tissue temperature. It undertakes ex-
tensive theoretical analyses of the critical technologies involved. The research encompasses
three primary areas. First, it focuses on enhancing the power transmission efficiency and
directional accuracy of the temperature-measuring antenna while elucidating the methods
for mitigating non-target radiation interference in the measurement environment. Second,
it introduces a highly sensitive correlated radiometer design and a precise calibration
approach to minimize the impact of extraneous error factors within the system units. Third,
it explores the microwave radiation transmission model in human tissue and develops
an efficient temperature inversion algorithm to address the challenge of energy scattering
transmission among skin tissues.
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2. Application of Microwave Radiometry in Biomedical Research

In the 1970s, Enander B. introduced a technique using a Dicke-type microwave ra-
diometer, operating within the frequency band of 0.9 GHz to 1.2 GHz, to detect cancerous
tumors by assessing the internal temperature of the human body [21]. Similarly, Barett
A.H. and Myers P.C. employed Dicke-type microwave radiometers at center frequencies of
1.3 GHz, 3.3 GHz, 5 GHz, and 10 GHz to measure the human body temperature [22].

This marked the inception of passive microwave applications in the medical field,
subsequently encouraging scientists worldwide to conduct related research. Microwave
radiometric approaches to measuring the human body temperature can be categorized into
contact and non-contact methods. Currently, contact measurements are predominant in the
use of microwave radiometers for assessing the human body temperature, with non-contact
methods being less common. Table 1 compiles significant studies from the past decade on
microwave radiometry in biomedical research, alongside their performance metrics

Table 1. The last 10 years of representative studies of microwave radiometry in biomedical research.

Year Author Architecture of
Radiometer

Method of
Measurement

Number of
Frequency Bands Accuracy (K) Sensitivity (K)

2013 Rodrigues D.B. et al. [10] Total power Contact 1 0.8 0.4

2014 Scheeler R. et al. [23] Dicke Contact 3 0.5 0.2

2015 He F. et al. [24] Dicke Non-contact 1 7 2

2017 Park W. et al. [25] Total power Non-contact 1 0.85 0.62

2018 Momenroodaki P. et al. [26] Dicke Contact 1 0.6 0.4

2021 Vesnin S.G. et al. [27] Dicke Contact 1 0.6 0.3

2021 Villa E. et al. [28] Correlation Contact 1 0.4 0.15

2022 Streeter R. et al. [29] Correlation Contact 1 0.5 0.25

2022 Issac J.P. et al. [30] Dicke Contact 2 0.41 0.25

2024 Tian H. et al. [31] Dicke Non-contact 1 0.7 0.062

2.1. Contact Thermometry by Microwave Radiometers

Between 1987 and 1995, Xiang X.X. et al. developed the S-band Dicke microwave ra-
diometer diagnostic system [32], characterized by an operating frequency of 2.25–2.65 GHz,
with a thermometry sensitivity of up to 0.2 K and a probe receiving a nonlinearly polarized
wave with a standing wave ratio (VSWR) of less than 2.0. This system could probe mus-
cular tissue to a depth of 10 cm. Subsequent enhancements from 1989 to 1991 included Li
E.Z.’s clinical investigation into detecting nasopharyngeal and esophageal cancers using a
thermal radiometer [33,34]. Data were acquired by establishing collection points on either
side of the face and neck at corresponding positions, then recording the voltage outputs
from two symmetrically placed collection points. A predefined threshold was used; if
exceeded, this indicated a potential tumor presence.

From 2000 to 2004, Hand J.W. et al. devised a five-band Dicke radiometer system
for monitoring infant brain temperature [35]. Each band featured a multistage low-noise,
high-gain amplifier with a 0.4 GHz bandwidth and a 5 s measurement integration time. The
system achieved a theoretical luminance temperature resolution of 0, with the temperature
measurement precision derived from brightness temperature data through model fitting
and Monte Carlo methods to invert the temperature profiles. Each radiometer channel was
calibrated to 0.4 K. The 2σ confidence interval for temperature estimations at the head’s
center was better than 0.8 K. However, the discrepancy between the inverted and initial
temperature values reached up to 1.5 K in the 2D model [36,37].

Between 2008 and 2012, Jacobsen S.K. et al. developed a Dicke-type microwave
radiometer operating within a frequency range of 1–4 GHz. This instrument was utilized
to assess temperature gradients in human tissue during microwave thermotherapy and
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to detect bladder urinary reflux in children [38]. The radiometer identified an extremely
weak thermal noise signal from the lossy material. To increase the precision of temperature
measurements, an active antenna probe was constructed [39]. Tests were conducted on real
mannequins and human subjects near the surface, with statistical analysis demonstrating
a notable enhancement in the signal-to-noise ratio of the Dicke-type radiometer when
employing the active antenna probe versus a standard antenna [40–43].

From 2013 to 2015, Rodrigues D.B. et al. created a compact microwave radiometer
thermometry system for non-invasive monitoring of the average temperature in human
tissue up to 5 cm deep [10,44–48]. The radiometer, operating at a center frequency of
1.35 GHz and with a 500 MHz bandwidth, features an EMC logarithmic helical microstrip
antenna that emits energy uniaxially with high gain. Evaluations of the radiometric system,
through simulation and physical experimental modeling at various clinical measurement
sites, demonstrated its ability to accurately monitor temperature increases in human tissues
and decreases in brain temperature beneath the scalp and skull. Moreover, it exhibited
long-term accuracy and a stability of approximately ±0.4 ◦C/4.6 h.

Between 2013 and 2017, Scheeler R. et al. explored a wearable microwave radiome-
ter system for measuring subcutaneous temperature fluctuations using a near-field
probe [23,49]. Two Dicke-type microwave radiometers, with center frequencies of 1.4 GHz
and 2.7 GHz, were employed to simulate human skin. Additionally, dual-frequency and
triple-frequency oscillator antennas, with center frequencies of 400 MHz/1.4 GHz and
1.4 GHz/2.7 GHz/4.9 GHz, respectively, were utilized. The human skin model involved
two emitters at a center frequency of 1 GHz. Radiometers at 1.4 GHz and 2.7 GHz tested
and confirmed the accuracy of the simulated human skin structure. Data inversion was
conducted using the least-squares method, and the near-field weighting factor for the
antenna was optimized through an optimal estimation approach.

From 2017 to 2018, Haines W. et al. developed a wireless wearable microwave radiome-
ter system for monitoring internal human body temperatures [50]. This system operated
within the 1.4–1.427 GHz range, featuring a circular patch antenna probe calibrated to the
radiometer receiver using a cold noise source alone. The system’s ability to measure intrao-
ral temperature was demonstrated by recording intrabuccal water temperature, although
the initial temperature measurement accuracy was limited. Further development led to a
Dicke-type microwave radiometer equipped with a cold/hot noise source. Comparative
experiments revealed that the 1.4 GHz Dicke-type microwave radiometer provided more
accurate intraoral temperature readings in the human oral cavity than the system calibrated
with a thermistor.

From 2019 to 2022, various research teams conducted extensive diagnostic tests on real
patients using advanced commercial contact microwave medical devices [12,15,18,51,52].
These tests provided valuable data, enabling physicians to form more comprehensive
diagnostic conclusions. However, the current contact diagnostic devices are bulky, and
their stability needs to be improved, particularly in terms of their application scope. In
medical settings, especially in emergency departments and other critical care environments,
non-contact microwave radiometry could expedite the triage process, saving vital treatment
time. This technique enables the accurate measurement of body temperature without the
need to remove clothing and allows for real-time, non-contact monitoring of body surface
temperature at a safe distance, which is particularly beneficial for critically ill patients in
ICUs and those with skin tissue damage.

Table 2 details the applications of microwave radiometers in contact measurements,
accompanied by a comprehensive analysis of the specific performance indicator values.



Biosensors 2024, 14, 221 5 of 20

Table 2. Selected published studies on contact applications for microwave radiometers.

Reference Type of Microwave
Radiometer

Operation Frequency
(GHz) Performance Assessed Target

Hand J.W. et al., 2001 [35] Dicke 1~4 Resolution of 0.07 K
Standard error of 0.75 K Brain of newborn infant

Arunachalam K. et al.,
2008 [44] Digital 3.7~4.2 Resolution of 0.075 K

Standard error of 0.217 K
Homogeneous and

layered water

Birkelund Y. et al.,
2011 [38] Dicke 3~4 Standard error of 0.8 K

Detection depth of 8 mm
Urine inside a pediatric

bladder

Rodrigues D.B. et al.,
2013 [10] Total power 1.5~2.2

Resolution of 0.4 K
Detection depth of

12 mm

Multilayer 3D
computational model of
skin, subcutaneous fat,

muscle, and a BAT region
located between fat and

muscle

Stauffer P.R. et al., 2014
[47] Total power 1.1~1.6 Maximum error of 0.4 K

Correlation (r = 0.9979)

Head model with
separate brain and scalp

regions

Popovic Z. et al.,
2014 [49] Dicke 1.4, 2.7 Resolution of 0.2 K

Minimum error of 0.5 K Skin, fat, and muscle

Haines W. et al., 2017 [50] Total power 1.4~1.427 Maximum error of 0.6 K
Detection depth of 8 mm

Phantoms of muscle, fat,
and skin

Momenroodaki P. et al.,
2018 [26] Dicke 1.4~1.427 Resolution of 0.4 K

Minimum error of 0.6 K Human cheek and mouth

Ravi V.M. et al., 2019 [51] Total power 1.0~1.6 Resolution of 0.25 K
Standard error of 0.4 K Knee joints

Laskari K. et al., 2020 [12] RTM-01-RES 1.14, 3.8 Standard error of 0.4 K
Detection depth of 7 cm

Small and large joints
(hand/arm, foot/leg,

wrist, elbow, knee, ankle);
sacroiliac joints

Tarakanov A.V. et al.,
2021 [13] MWR-2020 3.4~4.2 Accuracy of 0.2 K

Detection depth of 7 cm Knee

Tarakanov A.V. et al.,
2021 [18] MWR-2020 3.4~4.2 Accuracy of 0.2 K

Detection depth of 7 cm Lumbar spine

Tarakanov A.V. et al.,
2022 [52] MWR-2020 3.4~4.2 Accuracy of 0.2 K

Detection depth of 7 cm Lumbar spine

Levshinskii V. et al.,
2022 [15] MWR-2020 3.4~4.2 Accuracy of 0.2 K

Detection depth of 7 cm
Lower extremities and

their models

2.2. Non-Contact Thermometry by Microwave Radiometers

Between 2009 and 2012, Bonds Q. et al. introduced a non-contact technique for mea-
suring human body temperature using a microwave Dicke-type radiometer [53,54]. This
approach introduced new challenges for non-contact sensors, especially in antenna design.
The team developed a printed dipole antenna for the radiometer, positioned a few centime-
ters above the tissue model, to record its temperature changes. Although the radiometer
successfully tracked the temperature trend, the readings lacked precision. Subsequently,
the measurement accuracy was improved by developing an antenna probe with better
directivity and capable of uniaxial energy emission, which significantly enhanced the
system’s performance over the original microwave Dicke-type radiometer with a printed
dipole antenna [55,56].

In 2015, Li Q.X. and Lang L. investigated temperature measurement in cardiac abla-
tion areas using a C-band Dicke-type microwave radiometer. They tested two antenna
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designs—a double-slit antenna and a monopole bare probe radiometer antenna—to mea-
sure the temperature in the cardiac ablation region. The monopole antenna, connected to
the radiometer’s input, formed a temperature measurement system. Concurrently, Pi Z.F.
explored temperature measurement of a water body using both contact and non-contact
approaches [57]. The findings showed a voltage change-to-water temperature change ratio
of 19.77 mV/K for contact and 7.36 mV/K for non-contact measurements. He F. employed
the multi-angle method to model a five-layer human tissue model, measuring the emitted
brightness temperature of a water body with a linear temperature gradient using a C-
band Dicke-type radiometer and horn antenna. A calibration scheme was devised using a
room-temperature blackbody and one submerged in liquid nitrogen, which allowed for the
deduction of water temperatures at varying depths and for determining the total emitted
brightness temperature from the water body [24]. The analysis revealed relative errors of
13.9% for the first layer, 8.8% for the second layer, and 4.4% for the third layer.

Table 3 provides a detailed account of the applications of microwave radiometers in
non-contact measurements.

Table 3. Selected published studies on non-contact applications for microwave radiometers.

Reference Type of Microwave
Radiometer Type of Antenna Central

Frequency (GHz)
Bandwidth

(GHz) Performance Assessed Target

Stephan K.D.
et al., 2007 [58] Total power Microstrip array

antenna 12.5 0.47
Accuracy of 4 K

Detection depth of
2 mm

Hamburger patty

Bonds Q. et al.,
2009 [53] Total power Printed dipole

antenna 1.4 0.4
Accuracy of 4 K

Detection depth of
5 cm

Muscle tissue
phantom

Bonds Q. et al.,
2009 [55] Total power

Cavity-backed
slot antenna

(CBSA)
1.4 0.4

Accuracy of 1.5 K
Detection depth of

2 cm

Skin tissue
phantom

Pi Z.F. 2015 [57] Dicke
Monopole bare

probe cap
antenna

4.15 4 Resolution of 0.6 K
Accuracy of 0.8 K Water

He F. et al., 2015
[24] Dicke Horn antenna 4 1 Resolution of 2 K

Accuracy of 7 K
Water of different

depths

Park W. et al.,
2017 [25] Total power Horn antenna 3 0.23 Resolution of 0.62 K

Accuracy of 0.85 K Water

Ravi V.M. et al.,
2018 [59] Dicke SIW slot antenna 1.3 0.2

Resolution of 0.6 K
Detection depth of

45 mm

Tissue
phantom

Sun G.M. et al.,
2021 [60] Correlation Horn antenna 5 2

Resolution of 0.4 K
Maximum error of

0.5 K
Water

Sun G.M. et al.,
2021 [61] Correlation Horn antenna 14 4

Sensitivity of
0.047 K/mV
Detection of

215 mV/dBm

Water

Liu J. et al., 2023
[62] Correlation Horn antenna 14 4

Average error of
0.034 K

Detection of
299 mV/dBm

Palm

Tian H. et al.,
2023 [63] Dicke Horn antenna 15 6 Resolution of 0.08 K

Maximum error 0.6 K
Water, swine skin

tissue

Tian H. et al.,
2024 [31] Dicke Horn antenna 15 6 Resolution of 0.062 K

Maximum error 0.7 K

Water sheltered
by 5-layer cotton

cloth

Liu J. et al.,
2024 [64] Correlation Horn antenna 10, 14, 16 4

Mean absolute error
of 0.5921 K

Root mean squared
error of 0.6387 K

Swine skin tissue
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In 2017, Park W. et al. devised a microwave radiometer for non-contact and non-
invasive human body temperature measurement [25]. This device was calibrated in real-
time with two reference noise sources, and a highly directional waveguide horn antenna
was utilized to reduce ambient noise interference during the measurements. The team
measured water temperature with the radiometer, positioning the antenna approximately
20 cm from the water’s surface. The device demonstrated strong concordance with a stan-
dard water thermometer across temperatures ranging from 25.0 ◦C to 43.1 ◦C. With linear
fitting, measurement inaccuracies were noted as 1.93 K and 0.90 K between 34.5–43.1 ◦C
and 25.0–27.8 ◦C, respectively, which decreased to 0.62 K and 0.85 K with logarithmic fitting.
However, compared to compact planar-type antennas, the designed horn antenna remains
bulky for practical applications.

Between 2019 and 2024, various research groups employed custom-built microwave
radiation detectors to ascertain the non-contact temperatures of human tissue substitutes.
While these efforts somewhat enhanced measurement precision, a clinically applicable
medical device has yet to be realized [59–64].

3. Current Limitations of Microwave Radiometry

Current domestic and international research primarily focuses on the contact tem-
perature measurement of human epidermis and subcutaneous tissue [30,61–63,65–85].
However, in clinical settings, there is a need to implement non-contact temperature mea-
surements for patients’ epidermis and subcutaneous tissues, along with the capability to
continuously monitor within the tissue area. Yet, as of now, non-contact technology for
detecting the skin tissue temperature remains undeveloped. Challenges such as antenna
pointing accuracy [86–95], microwave radiometer sensitivity [6,7,16,18,96–100], emissivity
and temperature uniformity of calibration sources [101–112], as well as the precision and
applicability of forward and inverse algorithms [113–121] have resulted in the sensitivity
and accuracy of microwave temperature measurement systems being above ±0.4 K. This
level of performance does not yet meet the standards for medical devices. This paper
aims to explore non-contact temperature detection technology for skin and subcutaneous
tissues using microwave frequencies. Additionally, it seeks to develop a new multi-band
microwave temperature measurement system, leveraging related technologies to fulfill
the requirements of current clinical applications and achieve advancements in biological
detection technology.

The efficacy of microwave radiometry in practical applications is hindered by its in-
adequate temperature measurement accuracy, which does not meet the standards required
for clinical use. An examination of the microwave radiometry system and its operating
principles, illustrated in Figure 1, reveals key factors contributing to this accuracy limitation.
First, the presence of non-target radiation interference within the radiation power received
by the temperature-measuring antenna can degrade the performance or hinder the conver-
gence of the temperature inversion algorithm, given the nonlinear radiation interactions
among human skin tissues. Thus, addressing the trade-off between the antenna’s small
aperture and high directivity is essential. Second, variations in the operational environ-
ment of the microwave radiometer can compromise temperature measurement accuracy,
indicating that an internal calibration mechanism alone is insufficient. Consequently, there
is a need to develop a blackbody calibration source that adjusts for temperature, incor-
porating both electro-thermal characteristics and the quantification of transfer brightness
temperature uncertainty in the calibration process.
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Figure 1. The principle and system composition block diagram of microwave radiation diagnos-
tic technology.

4. Research Progress and Analysis of Key Technologies

An analysis of current studies reveals that despite extensive investigations into the
structure of microwave radiometers and temperature measurement antennas, significant
challenges and deficiencies persist. These include inaccuracies in temperature measure-
ment, the antenna’s near-field radiation properties, uncertainties in brightness temperature
calibration, the impact of skin tissue temperature on measurement weighting, and a scarcity
of research on forward and inversion modeling for assessing the layered temperature
distribution in skin tissue. This study introduces a detailed temperature measurement
strategy for human skin tissue, employing a multi-band closed-loop approach for forward
and inversion modeling. However, urgent attention must be paid to several critical tech-
nologies within this strategy. Notably, enhancing the pencil beam radiation characteristics
of the temperature measurement antenna through integration with a quantitative model of
calibration link uncertainty is crucial. Additionally, defining the correlation between crucial
system unit parameters and temperature measurement efficacy is vital. By concentrating
on establishing a precise temperature measurement process for human skin tissue through
forward and inversion modeling and addressing the effects of various variable parameters
and nonlinear scattering on measurement accuracy, this research seeks to develop an early
diagnostic system for human skin tissue anomalies that aligns with clinical testing stan-
dards. The goal is to advance the theoretical underpinnings of microwave radiometry and
lay a robust theoretical foundation for its practical application.

4.1. Optimization of Near-Field Radiation Characteristics of Temperature Measurement Antenna
and Antenna Structural Parameter Inversion Technology for Pencil-Shaped Beam Distribution

The microwave radiometry system receives extraneous radiation beyond the thermal
radiation captured by the antenna’s main lobe. Studies by Duke University, Southeast
University, and our group have demonstrated that the system’s sensitivity and accuracy
are contingent upon the antenna’s power transmission efficiency and main beam radiation
effectiveness. In near-field operations where the major lobe beam width is narrower than
15 degrees, the spatial resolution of the radiometer aligns with the antenna’s aperture
size. Thus, developing a highly focused pencil beam antenna is a strategic approach to en-
hancing the temperature measurement capability for both contact and non-contact human
body temperature assessments [46,60,122,123]. Traditional antenna parameter adjustment
methods, predominantly reliant on empirical formulas and parameter sweeps, necessitate
iterative fine-tuning of antenna structural parameters to balance various performance
metrics related to beam distribution. This approach is not only restrictive but also demands
considerable time and effort.



Biosensors 2024, 14, 221 9 of 20

Recently, researchers globally have applied neural networks and deep learning to facil-
itate antenna design [65–68,124–126]. In 2019, Budhu J. et al. at UCLA combined full-wave
simulation with particle swarm optimization and physical optics to craft an inhomogeneous
medium lens, enhancing the lens antenna’s directivity [124]. In 2020, Wu Q. from Southeast
University implemented a Gaussian process regression model to fore-cast the parameters
and gain of a microstrip antenna, developing single-output, symmetric, and asymmetric
multi-output Gaussian process regression models for various antenna types [125]. The
same year, Yuan L. and colleagues at the University of Electronic Science and Technology
of China linked reverse and forward neural networks to predict super-surface elements’
structural parameters for specific transmission amplitudes, utilizing transfer function tech-
nology despite introducing some errors [126]. They later employed a multi-branch reverse
neural network to refine the design, using data classification to manage the electromagnetic
problem’s inherent non-uniqueness [65]. For antennas with pencil beam distributions, the
need to concurrently consider multiple performance indicators has made multi-objective
machine learning approaches particularly relevant. In 2018, Xiao L.Y. and their team at
Xiamen University developed three parallel forward neural networks to predict the electro-
magnetic parameters of a Fabry–Perot Resonant Cave Antenna, establishing a preliminary
mapping relationship using multiple support vector machine models [66]. In 2021, the
same group utilized a reverse neural network to estimate the structural parameters of a
multimode resonant antenna, although they found that extreme learning machine-based
multi-objective evaluation might not always produce optimal outcomes [67]. Also in 2021,
Naseri P. from the University of Toronto employed a forward neural network, comple-
mented by a variational auto-encoder, to learn and effectively decode the relationship
between the structure, phase, and amplitude of multilayer super-surface elements [68].

In summary, this research presents a strategy for addressing the challenges of high
data requirements and the complexity of defining the optimization target in complex
electro-magnetic problem-solving. The method employs a reverse neural network as the
core element, supplemented by several forward neural networks to provide preliminary
knowledge concerning beam distribution. Furthermore, specific equations or parameters
are established to streamline the electromagnetic response of the optimization target. This
facilitates the implementation of a multi-index optimization algorithm for an all-dielectric
lens antenna and the inversion of antenna structural parameters in scenarios involving
pencil beam distribution.

4.2. Quantification of Uncertainties in Architectural Performance Bottlenecks of Microwave
Radiometers and Dual-Electro-Thermal Blackbody Calibration Sources

The accuracy of temperature measurement using the microwave radiation method is
influenced by fluctuations and additional errors in each system unit. Since 1974, scholars
worldwide have explored the structure of microwave radiometers, identifying performance
limitations in both full-power and Dicke-type devices [26,69]. Recently, our team and
other researchers have delved into the architecture of radiometers [60–62]. While the
architecture’s sensitivity is negligible in equilibrium, the correlation radiometer is prone
to gain fluctuations during operation, adversely affecting sensitivity. Furthermore, zero
drift can also impair measurement accuracy. In 2023, Hu A.Y. and colleagues at Beihang
University introduced a coherent radiometer design based on circumferential uniform poly-
phase modulation, which mitigates zero drift and minimizes the impact of gain fluctuation
on sensitivity [70].

Accurate diagnosis of early skin lesions necessitates precise temperature measure-
ments. However, the existing internal calibration scheme, relying solely on cold/hot noise
sources, is insufficient. It is essential to develop a blackbody calibration source with high
emissivity and temperature uniformity for external calibration correction. Presently, black-
body calibration sources are predominantly of two types: coated cone array and coated
cavity. The coated cone array type is favored for its compactness. Investigations by the
National Institute of Standards and Technology in the USA and the University of Bern
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in Switzerland indicate that a calibration source’s brightness temperature depends on
the temperature and emissivity performance of its coating. The calibration’s precision
is constrained by the absence of established benchmarks and transmission standards for
microwave brightness temperature, making it challenging to trace the uncertainty in the
radiometer’s brightness temperature measurement [71,72]. Recent efforts by researchers, in-
cluding our team, have focused on developing quantitative modeling methods for complex
radiation targets and near-field receiving antennas [73–76]. In 2017, Schöder A. and asso-
ciates at the University of Bern utilized far-field reciprocity in an inverse scattering model to
ascertain the local absorption rate and overall reflectivity of a radiator, integrating this with
thermal analysis to determine the radiator’s temperature distribution. They introduced a
directional radiation brightness temperature model for this purpose [73], indicating a shift
toward analyzing overall radiation brightness temperature instead of just emissivity and
temperature separately. In 2021, Virone G. et al., from the Italian Institute of Electronic In-
formation and Telecommunications, explored the cone array calibration source’s radiation
brightness temperature and its transmission to the antenna through circuit equivalence [74].
They proposed a method to calculate the calibration source’s directional radiation bright-
ness temperature, incorporating the antenna’s far-field pattern and the influence of ambient
brightness temperature through specular and diffuse reflection coefficients, leading to the
antenna port’s equivalent noise temperature. In 2022, Jin M. and colleagues from Beijing
University of Chemical Technology introduced a cone array calibration source design to
optimize broadband temperature gradient and absorption performance by adjusting the
coating thickness along the cone, achieving a balanced directional radiation brightness
temperature with respect to emissivity and temperature gradient [75].

In summary, assessing the impact on the calibration source’s radiation brightness
temperature during transmission is challenging due to variables like radiation source
distribution, environmental factors, antenna efficiency, and mirror loss. Accordingly,
through this review, we seek to support the development of a scattering model for a
calibration source, integrating forward and backward modeling theories with the finite
element method. The investigation examines the extent to which the calibration source’s
electro-thermal characteristics can be considered in terms of overall radiation brightness
temperature. Furthermore, this study analyzes how different antenna beams affect the
transmission of brightness temperature and determine the uncertainty associated with this
transmission. Ultimately, the research is aimed at facilitating the design of highly precise
calibration sources and calibration links.

4.3. Near-Field Temperature Contribution Weight Function Measurement of Skin Tissue and the
Core Difficulty of Temperature Inversion Technology

When employing the microwave radiation method for measuring human tissue tem-
peratures in the near field, the radiation brightness temperature received by the antenna
represents the volume-averaged brightness temperature, weighted by the weight func-
tion W at the antenna’s entry point within volume V. In the context of measuring human
skin tissue’s layered temperatures, it is crucial to recognize that the count of brightness
temperature data points exceeds the number of tissue temperature readings, indicating an
over-determined set of target parameters. Thus, a multi-band microwave radiometer can be
utilized, where the antenna temperature at this juncture can be equated to the matrix repre-
sentation of the weight function W and the layer temperature vector T. Given the nonlinear
nature of energy transmission between skin tissues and the weight function’s dependence
on the skin tissues’ dielectric properties and the near-field radiation characteristics of the
temperature-measuring antenna, directly measuring the weight function is challenging.
Therefore, an inversion algorithm is necessary to resolve the matrix, to derive the layer
temperature vector T [23,24,49,77,78]. In 2015, He F. and his team at Huazhong University
of Science and Technology employed a Dicke radiometer in the C-band to measure water
with a temperature gradient, using the single-frequency-band reading combined with
multiple measurement angles as auxiliary parameters to mimic multi-band temperature
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measurements [24]. In 2019, Qian P.C. and his colleagues at Westmead Hospital in Aus-
tralia simplified the temperature distribution and weight function inversion process to
solving over-determined linear equations, incorporating numerical simulations with an
anatomically realistic baby head model to swiftly ascertain the brain’s temperature distri-
bution using data from a multi-band microwave radiometer. This approach also supports
error analysis in microwave radiation measurement technology, laying the groundwork
for non-invasive body temperature monitoring [78]. Subsequently, research teams from
the University of Colorado, Tromso University, and Huazhong University of Science and
Technology explored various inversion algorithms like the least-squares method, model
fitting, and Monte Carlo methods [23,80], yielding divergent outcomes. Our team intro-
duced a neural network detection model refined by an evolutionary algorithm, though the
inversion results have yet to meet expectations [66].

The research highlighted demonstrates that the precision of the weight function calculation
is intricately connected to the near-field radiation pattern, dimensions, measure-ment distance,
and angle of the temperature-measuring antenna during near-field assessments of skin tissue
temperature. Furthermore, variations in human tissue’s dielectric properties can influence
the weight function, exacerbating the inaccuracy of the inversion process [81–83]. The total
radiation power that the antenna receives is a composite of the radiation emanating from
the environment, clothing, and skin tissues, introducing numerous varying parameters
that significantly constrain the precision of internal body temperature inversion [29,30]. In
essence, the fidelity of temperature measurements via the microwave radiation technique is
tightly linked to the antenna’s near-field radiation attributes, the calibration link brightness
temperature uncertainty, and the temperature contribution weight within the inversion
algorithm [84,127,128]. Presently, there is no comprehensive or flawless methodology
available, especially considering that the human tissue model and inversion technique
necessitate further exploration. With the growing emphasis on the application and theoreti-
cal examination of microwave radiometry in the industry, there is an imperative need to
expedite research into a layered, precise temperature measurement approach utilizing the
multi-band method.

5. Implementation Routes of Key Technologies
5.1. A Priori Knowledge Neural Network Optimization Model Combining Multi-Node Matching
with Q-Value Constraints and Multi-Objective Function Constraints

(a) Investigate the factors limiting the voltage standing wave ratio (VSWR) for each
structural segment of a temperature-measuring antenna under octave conditions;
enhance the antenna’s power transmission efficiency by optimizing VSWR parameters;
introduce a Q-constrained multi-branch broadband matching approach utilizing
Chebyshev and multi-branch matching theories.

(b) Investigate the drawbacks of manual tuning in antenna optimization; implement
an optimization algorithm that integrates swarm intelligence with neural networks;
simultaneously target the optimization of the main lobe beam, side-lobe, and transi-
tion zone; establish the constraint ranges for various sub-objective functions; adjust
weights to enhance the pointing accuracy of the temperature measurement antenna.

(c) Overcome the challenge of excessive data requirements for inverse modeling of the
antenna structure; explore a neural network model informed by a priori knowledge;
as illustrated in Figure 2, employ multiple sub-forward neural networks (FNNs) for
the structural parameter inversion of the antenna, incorporating prior knowledge
and multiple indices, culminating in the development of a multi-index optimization
system equipped with an ultra-narrow pencil beam temperature-measuring antenna.
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5.2. Channel Phase Shifting Correction Algorithm and Calibration Link Uncertainty Calibration
for Measuring Radiation Brightness Temperature Errors

(a) Develop an error model for the microwave radiometer architecture focusing on key
metrics like sensitivity and accuracy; examine how phase, amplitude, offset, and
other errors affect radiometer output; devise a periodic phase-shifting error correction
algorithm using a uniform polar circle combined with a phase modulation circuit to
adjust the detected output data.

(b) Propose a finite element method informed by forward and backward modeling theory
to calibrate the scattering model of the calibration source; explore control strategies
for the electro-thermal performance of the calibration source, refine its structure, and
analyze the impact of the antenna beam on the brightness temperature transmission
from the perspective of overall directional radiation temperature; trace the uncertainty
in the calibration link and correct the transmission brightness temperature error.

The radiation brightness temperature for the coated array calibration source is deter-
mined using a directional radiation brightness temperature model, predicated on reciprocity
in far-field conditions, which enables the calculation of radiation brightness temperature
perpendicular to the calibration source’s front direction. Figure 3 illustrates the scenario for
calculating the directional radiation brightness temperature for the calibration source.
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5.3. Incoherent Skin Tissue Radiation Forward Model and Objective Function Constrained Deep
Learning Combined Inversion Method

(a) Define the relationship between the human skin tissue radiation brightness tempera-
ture and the weight function; study the temperature distribution across the human
epidermis, dermis, subcutaneous tissue, and muscle layer utilizing C, X, and Ku
frequency bands; formulate a mathematical representation of skin tissue heat transfer
using an incoherent method; deduce the estimation equation for apparent brightness
temperature when the human body’s transmissivity is zero; incorporate scattering
effects and establish the forward model for radiation transmission of incoherent skin
tissue, as illustrated in Figure 4.
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(b) Investigate the factors influencing the accuracy of temperature measurement in near-
field conditions; examine the microwave radiation forward model for human skin tissue;
determine the constraint range for temperature variations between adjacent skin tissue
areas by calculating the contribution weight of each tissue layer’s brightness temperature;
establish the objective function for the penalty function correction algorithm.

(c) To enhance the accuracy, generalization, and robustness of the inversion algorithm,
introduce a closed-loop high-precision forward and inversion modeling detection
method for human tissue temperature measurement, as depicted in Figure 5. Begin
by constructing a dataset and defining constraint conditions using the forward model;
then, perform tests on human-simulated tissue fluids, skin tissues, and other samples,
and collect clinical data to validate the inversion algorithm. A clinical experiment
guided by test outcomes and evaluation metrics refines the forward model’s mathe-
matical and physical relationships through comparisons of clinical and simulation
data, thereby improving the method’s scientific validity.
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6. Conclusions and Future Perspectives

Microwave radiometry differs from other prevalent temperature measurement tech-
niques such as thermal imaging, infrared thermometry, and liquid crystal methods, offering
significant advantages in diagnosing internal tissue conditions. While these conventional
methods generally reflect only the temperature of the epidermal layer, microwave ra-
diometry provides a non-invasive, non-destructive, and harmless means of detecting the
thermodynamic changes that precede structural alterations within tissues. According to
Planck’s law, the electromagnetic waves radiated by subcutaneous tissues mostly fall within
the microwave band, allowing for the detection of temperature changes several centimeters
beneath the skin. This capability is particularly advantageous over infrared methods that
only gauge surface temperatures. By accessing temperature variations at different depths
within the tissues and organs, microwave radiometry can assess internal organ health based
on uneven temperature distributions. These temperature profiles are compared against
existing databases to form diagnostic conclusions.

This study primarily focused on investigating the key technical challenges associated
with non-contact human tissue temperature measurement in the microwave frequency band.
Current research, both domestically and internationally, is predominantly oriented towards
contact-based measurement of human epidermis temperature. However, for the early
diagnosis of skin cancer, it is imperative to measure both epidermal and subcutaneous tissue
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temperatures, necessitating continuous monitoring of internal tissue regions. Currently,
a notable gap exists in the domain of subcutaneous tissue temperature measurement
within the domestic context. Factors such as antenna directivity, microwave radiometer
sensitivity, calibration source emissivity, temperature uniformity, inversion algorithm
accuracy, and applicability prevent the sensitivity and precision of microwave temperature
measurement systems from meeting clinical standards. This review embarked on an
exhaustive investigation of factors that constrain the accurate measurement of subcutaneous
tissue temperature, aiming to support efforts to develop an innovative system for measuring
subcutaneous tissue temperature that aligns with clinical accuracy criteria.

At present, there is an urgent need for a new system to meet the accuracy required for
human internal tissue temperature measurement technology in clinical applications. The
prospects for microwave radiometry include accelerating triage processes in emergency
departments, enabling true temperature measurements of clothed individuals, facilitating
real-time temperature monitoring at a distance for ICU patients, reducing infection risks
for medical staff, ensuring normal patient routines, and monitoring subcutaneous tissue
temperatures to assess internal organ health. Additionally, technology’s utility in mass-
screening scenarios could significantly aid in effective epidemic control. If fully realized,
this technology’s capability to precisely measure core body temperatures could profoundly
impact the medical field.
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