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Abstract: Controlling the progression of contagious diseases is crucial for public health management,
emphasizing the importance of early viral infection diagnosis. In response, lateral flow assays (LFAs)
have been successfully utilized in point-of-care (POC) testing, emerging as a viable alternative to more
traditional diagnostic methods. Recent advancements in virus detection have primarily leveraged
methods such as reverse transcription–polymerase chain reaction (RT-PCR), reverse transcription–
loop-mediated isothermal amplification (RT-LAMP), and the enzyme-linked immunosorbent assay
(ELISA). Despite their proven effectiveness, these conventional techniques are often expensive,
require specialized expertise, and consume a significant amount of time. In contrast, LFAs utilize
nanomaterial-based optical sensing technologies, including colorimetric, fluorescence, and surface-
enhanced Raman scattering (SERS), offering quick, straightforward analyses with minimal training
and infrastructure requirements for detecting viral proteins in biological samples. This review
describes the composition and mechanism of and recent advancements in LFAs for viral protein
detection, categorizing them into colorimetric, fluorescent, and SERS-based techniques. Despite
significant progress, developing a simple, stable, highly sensitive, and selective LFA system remains
a formidable challenge. Nevertheless, an advanced LFA system promises not only to enhance clinical
diagnostics but also to extend its utility to environmental monitoring and beyond, demonstrating its
potential to revolutionize both healthcare and environmental safety.

Keywords: lateral flow assay (LFA); optical sensing; nanomaterial; virus detection; viral protein

1. Introduction

Viruses consist of a structure with a genome inside a protein-based shell that repro-
duces inside hosts. Scientists have estimated that there are approximately 1031 viruses
living on Earth [1,2]. The replication of the viral genome occurs only inside living cells
(hosts), and the hosts can be any of the major cell organisms (prokaryotes, eukaryotes) [2].
Viral infectious diseases are caused by several factors, including evolutionary and adaptive
genetic mutations of viruses, population growth and urbanization, population movement,
global warming, and climate change, which can affect human life in many ways [3–6].
For instance, viral infectious diseases include influenza [7,8], severe acute respiratory syn-
drome (SARS) [9], middle east respiratory syndrome (MERS) [10,11], coronavirus disease
(COVID-19) [7,12–14], acquired immune deficiency syndrome (AIDS) [15], Ebola virus
disease [16], norovirus gastroenteritis [17], and Zika virus infection [18]. For example, the
1918 influenza pandemic was an extremely lethal influenza pandemic caused by the H1N1
virus. It was one of the most widespread and deadly flus witnessed by world economies,
and hampered not only lives, but also society and trade-related activities. Due to this
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incident, approximately 500 million people were infected by influenza, wherein one third
of the world’s population suffered at the time [19]. In addition, in the past few years, more
than 115 million cases of infection have been confirmed worldwide since the emergence of
SARS-CoV-2, and more than 2.5 million deaths have been recorded [8]. As such, since the
transmission of the virus has a fatal effect on human life, an effective diagnostic method is
needed to control the transmission of the virus.

In general, nucleic acid detection is performed using polymerase chain reaction (PCR)
and loop-mediated isothermal amplification (LAMP). For many years, these conventional
diagnostic methods have been utilized especially for virus detection. In detail, RNA
virus detection techniques include reverse transcription–polymerase chain reaction (RT-
PCR), reverse transcription–loop-mediated isothermal amplification (RT-LAMP), and the
enzyme-linked immunosorbent assay (ELISA) [20–24]. For instance, diagnosis by real-time
RT-PCR using upper respiratory tract samples is the gold standard for virus detection
due to its high sensitivity and specificity [22,25–28]. On the other hand, RT-LAMP can
be performed in real time by measuring turbidity or fluorescence using dyes. Real-time
RT-LAMP diagnostic tests are simple and sensitive because they only require heating
and visual inspection [20,29–31]. Meanwhile, in addition to nucleic acid detection, viral
protein detection for virus disease detection is gaining attention due to its simplicity. This
is because a single gene can express multiple proteins with various biological functions,
and proteins expressed by genes can undergo various post-translational modifications. On
the other hand, proteins are the final form of gene products and are directly related to
biological functions. Therefore, protein biomarkers are effective for early diagnosis [32].
ELISA is a microwell plate-based assay technique that detects and quantifies proteins
(antibodies, hormones, etc.). The test can be performed both qualitatively and quanti-
tatively, and generally requires 1 to 5 h of detection [20,33–37]. In the case of sandwich
ELISA, the sensitivity is very high [33]. These conventional techniques have contributed
significantly to the diagnosis of several viral diseases. However, the disadvantages of
being expensive, requiring skilled professionals, and requiring considerable time for the
detection process have necessitated the development of affordable, accessible, and rapid
viral diagnostic methods.

In line with these needs, the lateral flow assay (LFA), a paper-based technology, has
emerged as an alternative for filling voids. LFAs have been successfully utilized in point-of-
care (POC) diagnostic applications. It has been reported that the quantitative estimation of
LFA results can significantly improve the efficiency of human and veterinary use, biological
safety, consumer protection, and ecological monitoring [38]. With the advantages of being
affordable, having a simple system with minimal training or infrastructure, having low
temperature sensitivity, and having a short diagnostic time [20], this diagnostic platform
has excellent advantages in developing and remote countries. This is due to its efficiency, es-
pecially under conditions of limited resources and scarce specially trained personnel [39,40].
Another great advantage of LFA-based testing is that it can be performed on various bio-
logical samples, including plasma, sweat, saliva, serum, urine, and whole blood. Moreover,
the number of samples required for detection is much less than what is required for other
conventional analyses [41]. Protein biomarkers such as virus antibodies, antigens, pro-
teases, and surface-presenting proteins can also be detected without sample pretreatment
in biological samples, such as respiratory samples taken directly from the nasopharynx,
oropharynx, or saliva [42–45]. Optical sensing methods, such as colorimetric, fluorescence,
and surface-enhanced Raman scattering (SERS), have a simple analysis process, high sensi-
tivity, and selectivity, and can deliver analysis information in a convenient and inexpensive
way [46]. In recent years, optical sensors using nanomaterials have been actively developed
to quickly, sensitively, and specifically identify targets. Nanomaterials also have many
useful properties relative to volume, such as a large surface area, a small size, a quantum
confinement effect, high surface reactivity, and improved magnetic/electrical/optical prop-
erties, which can be appropriately adjusted and applied to optical sensors [47–50]. In this
review, we summarize the components, structures, and principles of LFAs and present
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recent advances in LFAs for detecting viral proteins by dividing methods used from 2019
to 2024 into colorimetric, fluorescence, and SERS methods.

2. LFA Components, Structures, and Principles

Generally, most LFA platforms operate on a basic working principle. The components
of the LFA strip include a sample pad, a conjugate pad, a nitrocellulose (NC) membrane,
and an absorbent pad that are layered together on top of a backing card (Figure 1a).
LFA systems work mainly by adapting the capillary action flow rate concept in which
samples containing targets flow from the sample pad along the strip to the absorbent
pad. Furthermore, the role of each component in the LFA structures, its principle, and the
practiced LFA formats for viral protein detection will be discussed.

The first component of LFA platforms is the sample pad. The sample pad can release
analytes with high efficiency to ensure that the sample is compatible for use in subsequent
inspection steps. Samples need to be processed beforehand by filtering particulates and
changing their pH. This is due to the active binding of sample components and the destruc-
tion of substrate components such as mucins, which may interfere with the analysis. Some
examples of sample pad materials include cellulose, glass fibers, rayon, and other filtration
media. Next, the role of conjugate pads is to accommodate the target complex, keep it stable
within its shelf life, and release it efficiently and reproducibly when the analysis is carried
out. In detail, to ensure the optimal release and stability of the materials, the conjugate pad
is pretreated beforehand through immersion in an aqueous solution of proteins, surfactants,
and polymers, followed by a drying process. The materials for the conjugate pad can be
glass fibers, polyester, or rayon.

Additionally, NC membranes play a crucial role in LFA platforms. The NC membrane
houses two important analysis lines: a test line (T-line) and a control line (C-line). Moreover,
NC membranes ensure that the target complexes flow consistently through the two lines,
allowing reactions to occur and ensuring that the excess fluid, labels, and reactants escape
without binding. Finally, absorbent pads are important for attracting and holding all fluids
in this designated area throughout the duration of the analysis. Absorbent pads are as
important as other components because, in the presence of fluid flowing opposite to the
flow direction, the probability of achieving false positive results is high. Thus, for absorbent
pads, high-density cellulose is generally used [51,52].

Moving forward, an in-depth working principle of the LFA platform will be explained.
On the LFA strip, when a liquid sample is dropped on the sample pad, the sample will first
move through the strip to the conjugate pad. Basically, on the conjugate pad, specifically
tagged capture antigens or antibodies and nanoprobes such as gold nanoparticles (Au NPs),
fluorophores, and quantum dots (QDs) are present. Hence, in the presence of a target in the
samples, nanoprobe-detecting antigen/antibody complexes will form. After the interaction
between the targets and nanoprobes, the resulting complex flows to the NC membrane, in
which specific antibodies are pre-immobilized on both the T- and C-lines. On the T-line,
in the presence of a target, preformed complexes on the conjugate pad will be captured
by the primary immobilized antibody. Subsequently, unbound complexes from the T-line
flow to the C-line and are captured by the secondary immobilized antibody, indicating
that the sample solution has moved sufficiently. Finally, the absorbent pad absorbs the
processed and excess samples, preventing them from flowing back to the NC membrane
and conjugate pad [39,40,53–55].

In the last part of this section, the universally practiced LFA formats for viral protein
detection will be introduced. Accordingly, in LFA systems, sandwich and competitive
formats are typically employed (Figure 1b). Generally, the sandwich format is used to
test large analytes with multiple antigenic sites, and the competitive form is applied for
small-scale analyte detection, especially for analytes with low molecular weights and
single antigenic determinants. In addition, the main difference between the two formats
is the number of antibodies used in each LFA system. Three different types of antibodies
for sandwich and two types of antibodies for competitive formats of LFA platforms are
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used. First and foremost, in the sandwich formation, the three antibodies used are the
nanoprobe-labeled antibody (conjugated pad), primary antibody (T-line), and secondary
antibody (C-line). In the presence of a target, the nanoprobe-labeled antibody and target
will form a complex on the conjugate pad. Then, the formed complex will be recognized
and captured by the pre-immobilized primary antibody on the T-line, resulting in sandwich
formation. Moving forward, the unbounded nanoprobe-labeled antibody will interact
with the secondary antibody, resulting in an observable C-line indicating a positive result.
Subsequently, the number of analytes present in the sample can be determined by the
color intensity observed on the T-line. In the event of a negative result, only an observable
C-line will be observed, indicating that the nanoprobe-labeled antibody interacts with the
secondary antibody on the C-line. In the case of the competitive formation of the LFA
system, the two antibodies used are primary (T-line) and secondary antibodies (C-line). In
the event of the target’s presence in the sample, the labeled analyte will compete with the
target to bind with the primary antibody. Consequently, the target will bind to the primary
antibody on the T-line, forming a visible red signal on the T-line. In contrast, the labeled
analyte will bind to the secondary antibody on the C-line forming a visible red signal on
the C-line. Hence, a positive result is obtained. Contradictorily, under the absence of the
target, the labeled analyte will bind to both the T- and C-lines, resulting in two visible red
lines, hence, portraying a negative result [56,57].
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In terms of nanomaterial-based LFA, the general principles are attained with only
the addition of nanomaterials integrated in the system. In detail, various nanomaterials
are used to aid in detection, especially for the signal amplification of optical sensing. The
most commonly used nanomaterials are Au NPs. Au NPs can be synthesized in vari-
ous sizes and shapes and produce a strong red color when viewed with the naked eye.
Carbon-based materials, such as carbon nanoparticles, carbon nanotubes, etc., have been
proposed as alternatives to Au NPs. Although this has a weak signal compared to Au NPs,
it is stable and has significant cost advantages. In addition to this, dye-containing latex
beads are inexpensive and resistant to chemical and physical damage. These nanomaterials
also produce a weaker signal than Au NPs. Typically, QDs are the most commonly used
in fluorescence-based LFAs and produce strong fluorescence signals through UV radia-
tion. However, QDs have the disadvantages of being toxic and expensive. Upconversion
nanoparticles (UCNPs) produce strong fluorescence signals in the near-infrared region;
however, UCNPs are expensive and require NIR lasers. Liposomes are also used as nanoma-
terials for optical sensing. Liposomes are easy to use because they can encapsulate various
nanomaterials, but they have the disadvantage of low stability due to their sensitivity to
pH and ion strength [58]. In the subsequent chapter, we will present the latest studies
on nanomaterial-based LFAs divided into three categories of optical sensing techniques:
colorimetric, fluorescent, and SERS.

3. Colorimetric-Based LFAs for Viral Protein Detection

Au NPs are plasmon NPs commonly utilized as colorimetric diagnostic probes. Lever-
aging their inherent optical localized surface plasmon resonance (LSPR) and biocompatible
properties, Au NPs are usually integrated into LFA systems. In detail, Au NPs are absorbed
and scattered in the visible region, and they absorb millions of times more light than organic
dye molecules due to their very high extinction coefficient (~109 for 20 nm Au NPs) [59,60].
Thus, the conjugation of Au NPs with antibodies is a simple, fast, and reliable method for
virus detection in the presence of a target virus on the T-line of an LFA system [59–61].

For this reason, many studies of colorimetric-based LFAs have reported the detection of
viruses using Au NPs as nanoprobes [62–68]. For example, Shen et al. reported on a signal-
enhanced LFA based on double Au NPs to determine hepatitis B surface antigens (HBsAgs).
The Au NPs were modified with biotin and antibodies, Au NPs modified with streptavidin
were used as conjugates, and the Au NPs were aggregated twice to improve the signal.
When the sample solution flowed along the strip, the first conjugate was captured on the
T-line by an antigen–antibody reaction, and the second conjugate was also immobilized on
the T-line via biotin–streptavidin, resulting in a detection limit of 0.06 ng/mL HBsAgs [62].
To achieve the rapid diagnosis and field detection of IgM antibodies against the SARS-
CoV-2 virus, Huang et al. coated SARS-CoV-2 nucleoprotein on an alkaline membrane,
conjugated anti-human IgM with Au NPs to form a detection reporter, and constructed a
colloidal Au NP-based LFA. Compared with real-time PCR, the sensitivity and specificity
of Au NP-based LFAs are 100% and 93.3%, respectively (Figure 2a) [64]. Cavalera et al.
designed a double-line LFA, which consists of recombinant SARS-CoV-2 nucleocapsid
(N) protein and Au NPs as colorimetric signal reporters, and functions as a detector by
indiscriminately binding to human Immunoglobulin G (IgG), Immunoglobulin M (IgM),
and Immunoglobulin A (IgA). Both test lines comprised staphylococcal protein A (SpA)
(T-line 1) and N antigen (T-line 2) [66]. The plasmon color-preserved (PLASCOP) Au NP
clusters developed by Oh et al. were made by mixing a streptavidin-coated Au NP core
with satellite Au NPs coated with biotinylated antibodies. The biotinylated antibody–
streptavidin linker forms a gap of more than 15 nm to avoid plasmon bonding between
the Au NPs, thus retaining the plasmon color while increasing the overall light absorption.
LFA detection with PLASCOP Au NP clusters composed of 40 nm Au NPs had a limit of
detection (LoD) of 0.038 ng/mL, indicating high detection sensitivity for the SARS-CoV-2
N protein [67].
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Au NP-based LFA for the detection of SARS-CoV-2. Reprinted in part with permission from
ref. [64]. Copyright 2020 American Chemical Society. (b) Scheme of the polydopamine (PDA)@MnO2

nanocomposite-based LFA for the detection of SARS-CoV-2. Reprinted in part with permission from
ref. [69]. Copyright 2023 American Chemical Society. (c) Scheme of the SiO2@Au/QD fluorescent
labels of a dual-functional LFA for detecting SARS-CoV-2. Reprinted in part with permission from
ref. [70]. Copyright 2022 Elsevier. (d) Scheme of the MoS2@Au–Au-based LFA for the detection of
the monkeypox virus (MPXV) antigen. Reprinted in part with permission from ref. [71]. Copyright
2023 Elsevier.

Enzyme signaling enhancement has traditionally been used for ELISA and colorimet-
ric LFAs. Peroxidase enzymes have the advantages of being commercially available, stable,
and inexpensive. The native peroxidase enzymes used in ELISA and other types of im-
munoassays are mainly horseradish peroxidase (HRP) and alkaline phosphatase (ALP) [72].
HRP is preferred for conjugation with LFA nanoprobes because it is stable, cost-effective,
and easy to form into HRP-labeled antibodies/antigens for immunological recognition
compared to other enzymes [73,74]. For example, an LFA platform has been proposed that
can further amplify colorimetric signals by adding HRP to Fe3O4/Au core–shell magnetic
NPs. The developed method detected 400 PFU/mL of SARS-CoV-2 in phosphate-buffered
saline (PBS) buffer and detected 1200 PFU/mL of SARS-CoV-2 in saliva samples [75]. In
addition, LFAs have also been proposed using a combination of Au NPs and ALPs for the
high-sensitivity detection of virus X (PVX). Compared with natural enzymes, nanozymes
have advantages such as low cost, high stability, and durability compared to natural en-
zymes [76]. For this reason, substances exhibiting peroxidase-mimicking activity (PMA) are
sometimes employed as nanoprobes in LFAs [77,78]. Panferov et al. used Au@Pt core–shell
NPs with PMA as probes, reducing the detection limits of PVX in tuber and leaf extracts
to 4 and 8 pg/mL, respectively [79]. Sun et al. prepared LFAs enhanced by Au@Pd@Pt
core–shell NPs to detect SARS-CoV-2 N proteins. Because Au@Pd@Pt nanozymes have
good peroxidase-like activity due to their dendrite morphology and uniform particle
size, they can generate catalytic signals even in small amounts [80]. Dong et al. used
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PDA@MnO2 nanocomposites with PMA as colorimetric labels, lowering the detection limit
of SARS-CoV-2 spike antigens to 8.01 pg/mL (Figure 2b) [69].

Recently, dual detection methods have been developed to compensate for the sen-
sitivity of colorimetric-based LFAs. Han et al. proposed a colorimetric and fluorescent
dual-functional LFA that detects the spike 1 protein of SARS-CoV-2. For strong colorimet-
ric and fluorescent signal generation, single dispersion, and high stability, a single-layer
shell was formed by mixing 20 nm Au NPs with a SiO2 core with QDs to generate a
single-layer shell, resulting in a strong colorimetric and fluorescent signal and ensuring
good monodispersity and high stability, thus creating a novel bifunctional immune marker.
The colorimetric concentration of LoD is 1 ng/mL, and the fluorescence is 0.033 ng/mL
(Figure 2c) [70]. Cheng et al. built a platform to simultaneously detect common respira-
tory viral influenza A and respiratory bacteria by forming a multi-layered double-signal
nanofilm on a 16 nm layer, two layers of colorimetric Au NPs, and a QD monolayer
graphene oxide (GO) surface [81]. Nanocomposites (MoS2@Au-Au) adsorbed dense 30 nm
Au NPs bilayers by coating a thickness-regulated polyethyleneimine intermediate layer
(1 nm) on a two-dimensional molybdenum disulfide (MoS2) nanosheet, which significantly
enhanced the colorimetric capacity and SERS activity. Yu et al. showed that colorimet-
ric signals supported the rapid identification of MPXV, and SERS signals enabled the
quantitative detection of MPXV, with LoDs of 0.2 and 0.002 ng/mL (Figure 2d) [71]. Li
et al. established a colorimetric and Raman bimodal LFA for the ultrasensitive detection
of SARS-CoV-2 N proteins based on 4-mercaptobenzoic acid (MBA) Fe3O4-AgMBA@Au
NPs with magnetic–Raman–colorimetric properties. Under optimal conditions, N protein
antibodies could be detected qualitatively in colorimetric mode, with a visual limit of
10−8 mg/mL, and quantitatively by SERS signals between 10−6 and 10−10 mg/mL, with
a detection limit of 0.08 pg/mL [82]. Wang et al. developed a colorimetric–fluorescent
dual-mode LFA that simultaneously detects SARS-CoV-2-specific IgM and IgG in human
serum. This proposal uses SiO2@Au@QD nanobeads (NBs) as a label and has high enough
sensitivity to require only one microliter of serum sample [83]. Liu et al. developed a
colorimetric and fluorescent dual-functional LFA strip that introduced MXene and QDs
to simultaneously detect IAV and SARS-CoV-2, which are difficult to distinguish due to
their similar symptoms. High-sensitivity multiple detection of 1 ng/mL or 2.4 pg/mL IAV
and 1 ng/mL or 6.2 pg/mL SARS-CoV-2 can be completed within 20 min [84]. Liang et al.
prepared Ag NPs with ultrathin Au shells (~2 nm) embedded with MBA (AgMBA@Au) and
incorporated them into LFAs for colorimetric and SERS bimodal detection of SARS-CoV-2
IgG. Qualitative analysis was performed through visual observation of the T-line, and
quantitative analysis was performed by measuring the SERS signal [85]. A detailed list of
colorimetric-based LFAs for viral protein detections is presented (Table 1).

Table 1. List of colorimetric-based LFAs for viral protein detection.

Target Nanoprobe LoD Reference

Au NP

HBsAg Au NP 1.8 ng/mL [62]
Nodavirus Au NP 6 × 10−3 TCID50 [63]

SARS-CoV-2 PLASCOP Au NP cluster 0.038 ng/mL [67]
Japanese Encephalitis Virus Au NP 10 pg/mL [86]

SARS-CoV-2 Au NP 0.2 mg/mL [59]
SARS-CoV-2 Au NP 5 × 104 copies/mL [65]

Enzyme reaction

IAV, IBV HRP 0.001~0.00025 HA units (IAV),
0.016~0.004 HA units (IBV) [73]

Dengue virus HRP 5 ng/mL [74]

SARS-CoV-2 HRP-labeled Fe3O4/Au
core–shell magnetic NP 400 PFU/mL [75]

PVX ALP-labeled Au NP 0.3 ng/mL [87]
SARS-CoV-2 Au@Pd@Pt nanozyme 0.037 ng/mL [80]



Biosensors 2024, 14, 197 8 of 19

Table 1. Cont.

Target Nanoprobe LoD Reference

Enzyme reaction
SARS-CoV-2 ChF/ZnO/CNT

nanohybrid 0.05 pg/mL [88]

SARS-CoV-2 PDA@MnO2
nanocomposite 8.01 pg/mL [69]

Dual detection

SARS-CoV-2 SiO2@Au NP/QD 1 ng/mL,
33 pg/mL (*C, F) [70]

IAV GO-Au/QD-QD 5 × 104 copies/mL,
891 copies/mL (*C, F)

[81]

MPXV MoS2@Au–Au 0.2 ng/mL, 0.002 ng/mL (*C, S) [71]

SARS-CoV-2 Fe3O4-AgMBA@Au NP 10−8 mg/mL,
0.08 pg/mL (*C, S)

[82]

IAV, SARS-CoV-2 Ti3C2-QD

1 ng/mL, 2.4 pg/mL (IAV)
1 ng/mL, 6.2 pg/mL

(SARS-CoV-2)
(*C, F)

[84]

SARS-CoV-2 AgMBA@Au 10−6 mg/mL,
0.22 pg/mL (*C, S)

[85]

SARS-CoV-2 Ag@Au
triangular nanoplate

1 ng/mL,
40 pg/mL (*C, P) [89]

SARS-CoV-2 Plasmonic-active
Au nanocrown

91.24 pg/mL,
57.21 fg/mL (*C, S) [90]

*C: colorimetric signal, F: fluorescence signal, S: SERS signal, P: photothermal.

4. Fluorescence-Based LFAs for Viral Protein Detection

Fluorescence-based LFAs using QDs [68,91–95], fluorescent dye, and dye-doped
NPs [96–100] as probes have been developed to improve analysis performance through
strong fluorescence intensity [92,101]. For example, LFA, which detects anti-SARV-CoV-2
IgG in serum using lanthanide-doped polystyrene NPs (LNPs), achieves high sensitivity
by labeling mouse anti-human IgG antibodies with self-assembled LNPs that act as fluo-
rescent reporters [102]. Recently, for the detection of dengue fever (DF), a new diagnostic
platform called spin-enhanced LFA (SELFIA) using fluorescent nanodiamonds (FNDs) as
reporters has been reported. Leveraging the inherent magneto-optical properties of nega-
tively charged nitrogen-vacancy centers in FNDs, the SELFIA platform utilizes alternating
electromagnetic fields to modulate signals from the fluorescence of FNDs, providing sensi-
tive and specific results. This enabled us to efficiently detect all four dengue non-structural
protein (NS1) serotypes (DV1, DV2, DV3, and DV4) [103].

A metal-enhanced fluorescence (MEF) probe based on core–shell nanostructures using
a gold nanorod core, mesoporous silica shell, and cyanine 5 (Cy5) fluorophore has also
been designed. In this study, the distance dependence of plasma coupling between Cy5
and gold nanorods was experimentally and theoretically investigated by adjusting the
shell thickness to optimize the efficiency of the MEF probe, which significantly improved
fluorescence. This platform enabled the high-sensitivity detection of the IAV N protein
with an LoD of 0.52 pg/mL within 20 min (Figure 3b) [104].
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Although there are a variety of fluorescent reporters, QDs have several prominent
features, such as high quantum yields, wide excitation, and narrow, size-adjustable fluores-
cence emission spectra, which are widely used in fluorescent LFAs [101,106]. Wang et al.
developed a magnetic-QD-based dual-mode LFA for the simultaneous high-sensitivity
detection of SARS-CoV-2 spoke (S) and N protein antigens. A high-performance magnetic
QD with a triple-QD shell (MagTQD) nanotag was used to provide excellent fluorescence
signals, enrichment capabilities, and detection potential. The LoDs for the two antigens
under direct and enrichment modes were 1 and 0.5 pg/mL, respectively [107]. Li et al.
designed an LFA to rapidly detect SARS-CoV-2-specific antibodies using ZnCdSe/ZnS
QDs as probes. The LoD of IgG was 48.84 ng/mL [108]. For the multiple detection of
four respiratory viruses, a QD NB-based LFA was presented by Chen and their research
group. The sandwich complex formed by the detection antibody on the QDs’ surface and
the capture antibody on the T-line was excited by ultraviolet light, emitting a red fluores-
cence signal at a specific wavelength. Their study achieved excellent LoDs of 0.01 ng/mL,
0.05 ng/mL, 0.31 ng/mL, and 0.40 ng/mL for the SARS-CoV-2 antigen, IAV antigen,
IBV antigen, and adenovirus (ADV) antigen, respectively [109]. Researchers constructed
magnetic–fluorescent CdSe-CdS (QD)/Fe3O4 nanoclusters (CFNCs) consisting of magnetic
NPs and CdSe-CdS core–shells for detecting rotaviruses. QDs are embedded in the inner
and outer shells of Fe3O4 NCs, which can weaken the solubility interactions mediated by
solvent polarity, and by increasing the particle-to-particle distances, the CFNCs can over-
come the fluorescence quenching effect. The LoD was improved to 1.0 × 101 TCID50/mL,
and high sensitivity was achieved (Figure 3c) [105]. A detailed list of fluorescence-based
LFAs for viral protein detections is tabulated (Table 2).
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Table 2. List of fluorescence-based LFAs for viral protein detection.

Target Nanoprobe LoD Reference

Fluorophore

SARS-CoV-2 Fluorescent microsphere 100 ng/mL [98]

SARS-CoV-2 Aggregation-induced
emission810 NP

0.236 µg/mL (IgM),
0.125 µg/mL (IgG) [97]

Dengue NS1 serotypes
(DV1, DV2, DV3, DV4) FND 0.33, 0.24, 0.10, 1.33 ng/mL [103]

IAV Cy5-mSiO2@GNR 0.52 pg /mL [104]
SARS-CoV-2 Fluorescent microsphere 0.01 ng/mL [105]

QD

Zika virus QD microsphere 0.045 ng/mL [68]
Thrombocytopenia

syndrome virus
Fluorescent carbon dots
(CDs)/SiO2 nanosphere 10 pg/mL [91]

IAV CdSe/CdS/ZnS QD 2.5 HAU/mL (H1N1),
0.63 HAU/mL (H3N2) [93]

Zika virus Fluorescent CD-based
silica colloid 10 pg/mL [94]

IAV Magnetic-QD NB 22 pfu/mL [95]
SARS-CoV-2 MagTQD 0.5 pg/mL [107]

SARS-CoV-2, IAV,
IBV, ADV QD NB 0.01, 0.05, 0.31, 0.40 ng/mL [109]

Rotavirus CFNC 1.0 × 101 TCID50/mL [105]

5. SERS-Based LFAs for Viral Protein Detection

Based on LSPR excitation, SERS can enhance the Raman signaling of targets adsorbed
by Au or Ag metal nanomaterials by several orders of magnitude. For an LFA system
using NIR dye-labeled Au NPs as probes, the LoD of SARS-CoV-2-specific IgM/IgG was
100 fg/mL [110]. The LoDs of SARS-CoV-2 and IAV were 5.2 PFU/mL and 23 HAU/mL,
respectively, in an LFA platform constructed by attaching malachite green isothiocyanate
(MGITC) to Au NPs [111]. However, Raman reporter molecules may dissociate from the
surface of Au NPs when exposed to high temperatures, harsh pH, or salty conditions [112].
To address this issue, silica-encapsulated metal NPs have been developed to prevent
the desorption of Raman reporter molecules and the adsorption of external species of
molecules [113,114]. For this reason, a platform has been reported that can apply silica-
encapsulated metal NPs to LFA strips to minimize changes in SERS intensity and maintain
stability even under high-temperature conditions (Figure 4) [115,116]. Furthermore, to
overcome the limitations of single metals, hybrid fabrication methods for metal cores and
metal shells have been developed, such as uniformly coating the Ag core with an ultrathin
film of Au to functionalize the surface chemistry of Au and the optical properties of Ag to
the probe itself [117–119]. This structure enhances the SERS signal via the SERS-enhancing
effect of precious metals, large numbers of Raman molecules, and the hotspot effect in
the narrow gap between metal cores and metal shells [117]. Metal shells aid in binding
to biomolecules, protecting the inner metal core and keeping Raman reporter molecules
unaffected by outside conditions, thereby enhancing the biocompatibility and the chemical
and signal stability of the particles [85]. Liang et al. developed a SERS/photothermal
(PT)-based dual-mode LFA based on Au-core–Ag-shell bimetallic NPs (Au4-ATP@Ag NPs)
for the antigen detection of infectious disease pathogens. The quantified LoDs for IAV, in-
fluenza B virus (IBV), and SARS-CoV-2 were 31.25 pg/mL, 93.75 pg/mL, and 31.25 pg/mL,
respectively [119]. Recently, researchers have developed an ultralight SERS probe [120–122]
by coating an Au core and Ag shell NPs (Au@Ag NPs) with an Au layer and encapsulating
Raman molecules between them, in which the Raman reporter between the core and shell
has an intense electromagnetic field enhancement effect, which significantly boosts the
Raman signals in virus detection [123,124].
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Magnetic SERS tags can be used as stable SERS tags for separating target analytes
from complex solutions by using external magnetic fields and improving the Raman signal
of the target [125–127]. LFAs that simultaneously detect IAV H1N1 and human ADV
using Fe3O4@Ag NPs as magnetic SERS nanotags have been reported. A new type of
Fe3O4@Ag magnetic tag combined with a bilayer Raman dye molecule and a target virus-
capture antibody allows for the specific recognition of the target virus in solution and
SERS detection of the virus via magnetic enrichment and strips. The LoDs of H1N1 and
human ADV were 50 pfu/mL and 10 pfu/mL, respectively, making this method 2000
times more sensitive than the standard colloidal Au strip method [128]. For the rapid
and accurate measurement of SARS-CoV-2 N proteins, a novel multifunctional NB-based
magnetic/fluorescent dual-mode LFA was developed by combining a superparamagnetic
Fe3O4 core with double quantum dot shells (MagDQDs) using polyethyleneimine (PEI)
as the carrier shell. Both the magnetic and fluorescent signals showed high sensitivity
with LoDs of 0.235 ng/mL and 0.012 ng/mL, respectively [129]. A SERS LFA system
based on Fe3O4@Au magnetic NPs for the simultaneous and supersensitive detection of
three respiratory viruses (H1N1/SARS-CoV-2/RSV) has been proposed. 5,5′-Dithiobis-
(2-nitrobenzoic acid) (DTNB) was modified from Fe3O4@Au magnetic NPs to prepare a
magnetic SERS tag, providing abundant binding sites for high SERS signals and antibodies.
The concentrations of LoD were 85 copies/mL, 8 pg/mL, and 8 pg/mL for H1N1, SARS-
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CoV-2 and RSV, respectively [130]. A detailed list of SERS-based LFAs for viral protein
detection is presented (Table 3).

Table 3. List of SERS-based LFAs for viral protein detection.

Target Nanoprobe LoD Reference

Noble metal

Pseudorabies virus AuAg4−ATP@Ag NP 5 ng/mL [120]
Avian influenza virus AuAg4−ATP@Ag NP 0.0018 HAU [121]

Dengue virus, Zika virus MGITC-labeled Si-Au NP 1.906 µg/mL [115]

SARS-CoV-2 dual-layer DTNB-modified
SiO2@Ag NP 1 pg/mL [116]

Rotavirus Au/DTNB/Ag/DTNB 8 pg/mL [117]
West Nile virus Au@Ag NP 0.2 × 102 copy/µL [118]

SARS-CoV-2 NIR-797-ITC-labeled Au
nanostar 100 fg/mL [110]

SARS-CoV-2, IAV MGITC-labeled Au NP 5.2 PFU/mL (SARS-CoV-2), 23
HAU/mL (IAV) [111]

Magnetic NP

IAV, human ADV Fe3O4@Ag magnetic tag 50 pfu/mL, 10 pfu/mL [128]

SARS-CoV-2 MagDQD 0.235 ng/mL, 0.012 ng/mL
(*M, F) [129]

IAV, SARS-CoV-2,
respiratory syncytial virus Fe3O4/DTNB@Au/DTNB 85 copies/mL, 8 pg/mL

8 pg/mL [130]

SARS-CoV-2 DTNB–encoded satellite
Fe3O4@Au SERS tag 23 pg/mL, 2 pg/mL [131]

*M: magnetic signal, F: fluorescence signal.

6. Conclusions

This review identified and discussed the principles, mechanisms, and research trends
of LFA-based analyses for viral protein detection. Since viral infectious diseases occur and
spread worldwide and have a significant influence on human life, accurate and highly
sensitive methods for quickly diagnosing infectious diseases and controlling their spread
are essential. Thus, we believe that using LFA platforms can be an appropriate method
because they have the advantages of significant cost benefits, simple analysis with minimal
training or infrastructure, and a short diagnosis time.

Briefly, LFAs can generally be classified based on the detection method. Au NPs
are most often used in colorimetric LFAs. The sensitivity is increased through a double
detection mode in which peroxidase enzyme activity is used or colorimetric detection is
integrated with detection methods such as fluorescence or SERS. For example, fluorescent
LFAs using QDs, fluorescent dyes, and dye-doped NPs as probes improve analysis per-
formance through strong fluorescence intensity. Finally, based on the excitation of LSPR,
SERS LFAs can improve the Raman signal of the target adsorbed on the precious metal
nanostructure by several times. Recently, to maximize SERS intensity and maintain stability
even under high-temperature conditions, silica-encapsulated metal NPs and core–shell
structures composed of precious metals have been used as probes.

Despite the steady progress of research on LFA systems, developing a simple and
stable LFA system capable of exhibiting high selectivity and sensitivity is still a major
and fundamental task. Throughout the course of a viral infectious disease, protein levels
tend to increase towards the end of the infection, whereas nucleic acid levels are typically
higher at the beginning. Based on the literature that we compiled, the idea of integrating
the current approaches for the individual detection of proteins and nucleic acids into
a unified LFA system capable of simultaneously identifying both components makes it
feasible to consistently achieve high-sensitivity detection outcomes throughout the infection
period. Additionally, in recent times, the method of multiplexing capabilities for biomarker
detection has also actively flourished within the scientific field [132]. In addition to this,
trends such as the development of equipment-free signal readout for semi-quantitative
and quantitative analysis have been gaining attention due to its indispensable increased
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usability and accessibility within paper-based sensors, especially the LFA system [133]. As
an example, the conventional qualitative detection output of yes/no has been transformed
into measurements based on color distance, counts of area color changes, text readout
displays, and other technologies [134–136]. In detail, this concise review on the trend of
transformation was put together based on a review paper by a group of researchers on
papers published from 2020 to 2023 [137]. In conclusion, the integration of nanomaterials
in LFA systems can be expected to detect viral proteins in clinical diagnosis, and to be used
in various fields, such as environmental protection.
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