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Abstract: Accurate determination of serotonin (ST) provides insight into neurological processes and
enables applications in clinical diagnostics of brain diseases. Herein, we present an electrochemical ap-
tasensor based on truncated DNA aptamers and a polyethylene glycol (PEG) molecule-functionalized
sensing interface for highly sensitive and selective ST detection. The truncated aptamers have a small
size and adopt a stable stem-loop configuration, which improves the accessibility of the aptamer
for the analyte and enhances the sensitivity of the aptasensor. Upon target binding, these aptamers
perform a conformational change, leading to a variation in the Faraday current of the redox tag, which
was recorded by square wave voltammetry (SWV). Using PEG as blocking molecules minimizes
nonspecific adsorption of other interfering molecules and thus endows an enhanced antifouling
ability. The proposed electrochemical aptamer sensor showed a wide range of detection lasting
from 0.1 nM to 1000 nM with a low limit of detection of 0.14 nM. Owing to the unique properties
of aptamer receptors, the aptasensor also exhibits high selectivity and stability. Furthermore, with
the reduced unspecific adsorption, assaying of ST in human serum and artificial cerebrospinal fluid
(aCSF) showed excellent performance. The reported strategy of utilizing antifouling PEG describes
a novel approach to building antifouling aptasensors and holds great potential for neurochemical
investigations and clinical diagnosis.

Keywords: aptamer; neurotransmitter; polyethylene glycol; antifouling; electrochemistry

1. Introduction

Serotonin (ST), as a catecholamine neurotransmitter, plays a critical role in mediating
various biological and physiological functions in different parts of the human body [1,2].
Normally, ST appears in blood at a concentration of around 0.6–2 µM, 0.03–0.13 µM in
urine, and approximately 10 nM in cerebrospinal fluid (CSF) [3,4]. In the central nervous
system (CNS), ST is engaged in different regulatory processes including mood, sleep,
emesis, sexuality, and appetite [5,6]. Abnormal expression of ST has been linked to several
neurological disorders, such as depression, Alzheimer’s, and Parkinson’s disease [7,8].
However, only 5% of the overall ST content in the body is found within the CNS. The
majority of ST is found peripherally, in blood and the gut. Raised ST levels in the plasma are
associated with several gastrointestinal illnesses such as serotoninergic malfunctions [9,10].
Recently, the interdependence of gastrointestinal and brain health has attracted considerable
scientific interest [11]. Accordingly, ST is considered a potential biomarker in medical

Biosensors 2023, 13, 881. https://doi.org/10.3390/bios13090881 https://www.mdpi.com/journal/biosensors

https://doi.org/10.3390/bios13090881
https://doi.org/10.3390/bios13090881
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biosensors
https://www.mdpi.com
https://orcid.org/0000-0001-6885-4502
https://orcid.org/0000-0002-7056-5547
https://orcid.org/0000-0001-9817-8680
https://orcid.org/0000-0001-6143-2702
https://orcid.org/0000-0003-1296-8265
https://doi.org/10.3390/bios13090881
https://www.mdpi.com/journal/biosensors
https://www.mdpi.com/article/10.3390/bios13090881?type=check_update&version=1


Biosensors 2023, 13, 881 2 of 16

diagnosis for a variety of illnesses and thus an attractive target for the development
of biosensors.

To date, numerous methods have been established for the analysis of ST, including
high-pressure liquid chromatography (HPLC), fluorescence, and mass spectroscopy [12–15].
Although these approaches exhibit high selectivity and precision in ST detection, they
nevertheless require the use of expensive instruments and complex sample preparation
procedures, making them unsuitable for routine tests and point-of-care examinations. By
utilizing the electroactive properties of ST, electrochemical methods are commonly em-
ployed due to their simplicity, fast response, high sensitivity, and repeatability [16–19]. In
the past few years, several electrochemical sensors with nanomaterial-modified surfaces,
which enhanced their electrocatalytic activity, have been developed and demonstrated an
improved performance for the ST detection [20–23]. However, the coexistence of interfering
molecules with similar oxidation potential to ST such as dopamine (DA) and ascorbic acid
(AA) cause selectivity issues due to overlapping redox responses [24,25]. Furthermore,
despite recent progress in surface modification methods, the strong electrode fouling due
to ST oxidation products leads to vulnerable fouling issues and affects the sensing per-
formance [26]. Thus, further advancements are required to develop simple and reliable
analytical methods for ST determination.

Recently, aptamers for ST detection have been introduced as receptor molecules in
the electrochemical sensors [27,28]. These receptors were selected from libraries of single-
stranded nucleic acid oligomers via a process known as systematic evolution of ligands by
exponential enrichment (SELEX). With the properties of high binding affinity, selectivity,
and stability aptamers have the potential to revolve neurotransmitter analysis [29,30]. Re-
cently, Nakatsuka et al. reported the first aptamer against ST with high affinity (Kd = 30 nM)
and used it for ST analysis by field-effect transistors and nanopipette devices [31–33]. In
our previous work, we applied this aptamer for the development of a first-generation
electrochemical aptasensor and achieved fM-level detection limits for ST [34]. However,
the original aptamer strand possesses a long chain length with a large stem-loop structure,
which impairs its sensitivity during electrochemical detection. In particular, the interaction
between neighboring strands can affect the sensor sensitivity during the binding of the
small molecule target [35,36]. Therefore, an elaborated nano-fabrication transducer or
specific redox molecule labeling had to be used to facilitate sensitive ST monitoring with
this aptamer [37,38]. Therefore, there is a remaining need for the optimization of the ST
aptamer sequence to enable simple sensor fabrication and versatile deployment.

Besides the receptor molecules, the biofouling effects also lead to decreased sensing
performances of electrochemical aptamer-based (E-AB) sensors when detecting targets
in real complex samples (e.g., human plasma, blood serum, and cell pulverization) [39].
The undesired nonspecific adsorption, especially the adsorption of matrix proteins on the
electrode interfaces, can impair the selectivity and sensitivity of the device, thereby decreas-
ing the accuracy and reproducibility of the detected signals [40]. To overcome this issue,
aptamer molecules are immobilized together with blocking molecules to build a receptor
layer with antifouling properties. At present, various antifouling materials, including zwit-
terionic molecules, peptides, and alkanethiols, have been proposed and widely utilized for
the fabrication of aptasensors [41–43]. Although in general these materials show biofouling
resistance and enhance selectivity in complex environments, their synthesis and immobi-
lization processes are partially tedious and time consuming. Polyethylene glycol (PEG), a
biocompatible and very hydrophilic coating molecule, is commonly regarded as the “gold
standard” of anti-biofouling polymers to prevent nonspecific protein adsorption [44–46].
The entropic effect of steric repulsion, which is connected with the unfavorable variation of
free energy linked to confinement and dehydration of the polymer chains, is considered a
reason for the prevention of protein adsorption on PEG-modified surfaces [47,48]. Recently,
our group utilized a PEG-mediated coating interface for an electrochemical impedance
aptasensor and obtained promising results for Malaria biomarker detection in human
serum [49].
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In this work, we propose an electrochemical sensor utilizing a truncated ST aptamer
and PEG as blocking molecules. As depicted in Scheme 1, the thiol-tagged aptamer strand
was tethered to the gold electrode (AuE) through typical Au–S bonding forming a mixed
self-assembled monolayer together with the PEG blocking agent. To facilitate charge-
transfer-based detection, methylene blue (MB) was attached as a redox tag at the distal
end of the aptamer for signal reporting. The surface-associated binding processes were
monitored by SWV, which facilitated signal recording with a low noise level. In the absence
of analyte ST, the probe adopts a stem-loop configuration that clamps the attached redox
tag in proximity to the electrode, which causes a high charge transfer signal. During target
binding, the aptamer performs a conformational rearrangement resulting in a G-quadruplex
complex that positions the MB tag away from the electrode, impending the electron transfer
and leading to a distinct decrease in the redox current. By monitoring the variation of the
Faraday current, a quantitative analysis of ST was achieved.
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Scheme 1. The schematic illustration of the working principle of the electrochemical aptasensor for
serotonin detection with PEG backfill.

2. Materials and Methods
2.1. Regents

The used HPLC-purified DNA aptamers were obtained from FRIZ Biochem (Neuried,
Germany). The sequences were as follows:

S1: 5′-OH-(CH2)6-S-S-(CH2)6- CGA CTG GTA GGC AGA TAG GGG AAG CTG ATT
CGA TGC GTG GGT CG -MB-3′

S2: 5′-OH-(CH2)6-S-S-(CH2)6- TAG GCA GAT AGG GGA AGC TGA TTC GAT GCG
TG-MB-3′

S3: 5′-OH-(CH2)6-S-S-(CH2)6- GCA GAT AGG GGA AGC TGA TTC GAT GC-MB-3′

The aptamer concentration was obtained by recording the absorbance at a 260 nm
wavelength with UV/vis spectroscopy (DS-11 Series Spectrophotometer/Fluorometer,
DeNovix Inc., Wilmington, DE, USA). All tested solutions were prepared with Milli-Q
water produced by a Milli-Q ultrapure water system (18.25 MΩ cm, Gradient A10, Merck
Millipore, Burlington, MA, USA). Monofunctional methoxy-polyethylene glycol thiol (PEG,
2 kDa), tris-(2-carboxyethyl) phosphine hydrochloride (TCEP), 6-mercaptho-1-hexanol
(MCH), potassium chloride, magnesium chloride, potassium ferrocyanide (K4[Fe(CN)6]),
sodium chloride, potassium ferricyanide (K3[Fe(CN)6]), and human serum from human
male AB plasma were obtained from Sigma-Aldrich Chemie GmbH (Darmstadt, Germany).
Ethanol and isopropanol were ordered from Merck (Darmstadt, Germany).

2.2. Electrode Cleaning, Aptasensor Preparation, and Target Detection

Before the aptamer modification, the blank AuE (ø 2 mm, Shanghai Chenhua CHI)
was polished with alumina powder (0.3 and 0.05 µm) and then sonicated in MilliQ water
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to remove polishing agent residuals. Afterwards, an electrochemical cleaning procedure
was applied following the protocol described previously [50]. The active electrode area
was obtained from cyclic voltammetry (CV) scans recorded in 0.05 M H2SO4 [51].

Before any modification, the thiolated aptamer was mixed with 10 mM TCEP at room
temperature for 60 min to split the disulfide bonds. Then, the cleaned AuE was immersed
in high salt Tris-HCl buffer (10 mM Tris, 1.5 M NaCl, 1 mM MgCl2, pH 7.4) containing
0.5 µM aptamer overnight. A self-assembled monolayer formed during this time via
thiol–gold binding between the thiolated molecules and the Au surface. Subsequently, the
aptamer-modified electrode was incubated in an aqueous solution with 1 mg/mL PEG
for various indicated times. Lastly, the modified AuE was rinsed with the low salt PBS
buffer to remove non-covalently bound molecules and stored in the same buffer before
the measurements. Artificial cerebrospinal fluid (aCSF) was made by mixing 150 mM
NaCl, 1.4 mM CaCl2·2H2O, 3.0 mM KCl, 1 mM NaH2PO4, and 0.8 mM MgCl2·6H2O in
Milli-Q water. To demonstrate the versatility of our aptasensor, the aCSF was spiked with
45 mg dL−1 human serum albumin to imitate its native analogous liquor. The diluted
human serum solution was prepared by mixing the purchased human serum with the low
salt phosphate-buffered saline (PBS, 137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 1.8 mM
NaH2PO4, 2 mM MgCl2, pH 7.4) based on the volumetric ratio. All experiments were
carried out in triplicate. The statistical standard deviation (SD) was calculated as:

SD =

√
∑(X−M)2

n− 1

where X refers to the individual data points, M is the mean, and n the number of data points.

2.3. Electrochemical Measurements

All electrochemical data were obtained from an Autolab potentiostat/galvanostat PG-
STAT302 (Eco Chemie, Utrecht, The Netherlands) with a three-electrode system including
a AuE working electrode, saturated Ag/AgCl reference electrode, and a platinum wire
counter electrode. SWV measurements were performed in low salt PBS buffer at room
temperature (25 ◦C) via potential scans between −0.5 and 0 V and a pulse frequency of
10 Hz. This technique was utilized since it resulted in the largest signals for ST detection.
Electrochemical impedance spectroscopy (EIS) and CV measurements were performed
to characterize the electrode modification with a 5 mM solution of 1:1 ferro/ferricyanide
dissolved in PBS. CV measurements were recorded in a potential window lasting from
−0.2 V to 0.6 V with a scan rate of 100 mV/s. Electrochemical impedance spectroscopy
measurements were conducted at a potential bias of 0.2 V within a frequency range from
1 Hz to 10 kHz with an amplitude of 10 mV.

Additionally, the surface aptamer density was determined on an electrochemical
workstation CHI1030B (Austin, USA) by chronocoulometric measurements of potential
steps between 0.2 and −0.5 V in 10 mM hexaammineruthenium (III) chloride (RuHex)
containing 10 mM Tris-HCl buffer (pH 7.4).

2.4. QCM-D Measurements

The quartz crystal microbalance measurements with dissipation monitoring (QCM-D,
Västra Frölunda, Schweden) were used to monitor the mass change during each immobi-
lization step. Before the measurements, all QCM-D components, including the microfluidic
flow cell and gold sensors were cleaned as suggested by the supplier. Therefore, the QCM
gold samples were treated in an oxygen plasma at an O2 pressure of 0.5 mbar for 3 min with
a power of 50%. Subsequently, the gold oxide that was formed during the plasma treatment
was removed by incubating the sample in ethanol for 30 min. After the cleaning, the
QCM-D cell was mounted and the sensor was placed onto the QCM-D module. Afterwards,
the buffer solution was rinsed through the cell driven by a pump until the signal stabilized
with a frequency shift below 0.2 Hz over 10 min. For the actual experiment, the different
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molecule solutions were consecutively flushed over the sensor followed by a rinsing with
PBS buffer.

2.5. Measurements by Atomic Force Microscopy

Atomic force microscopy (AFM) images were recorded using a Nanoscope Multimode
8 microscope (Bruker). The microscope was equipped with a piezoelectric E-scanner
and aluminum back-coated Si cantilevers from Bruker (OTESPA-R3) were utilized for
imaging with a resonant frequency range of 115–300 kHz. The 1 × 1 µm images were
recorded with 512 × 512 pixels at a scan rate of 1 Hz. An ultrasmooth polished gold (111)
single-crystal disk was employed as a model electrode surface to be able to identify the
step-wise immobilization of aptamer and blocking molecules. At first, a coarse cleaning of
the single crystal was performed by rinsing it in ethanol, isopropanol, and Milli-Q water.
Subsequently, the crystal was flame-treated in a hydrogen flame for 10 min. After cooling
to room temperature under an argon atmosphere, aptamer immobilization and analyte
detection experiments were performed as described in Section 2.2.

3. Results and Discussion
3.1. Optimization of the Biosensor Fabrication

The aptamer receptor used in this work was selected by Nakatsuka et al. and contains a
stem-loop structure, which results in signal-off characteristics for E-AB sensors. The greatest
advantage of this stem-loop-containing aptamer is the strong conformational change that is
induced during the binding of the analyte. Furthermore, stem-loop structures effectively
reduce unspecific charge transfer because of the reduced degree of freedom of the aptamer
immobilized on the electrode surface. To obtain a high signal response, the stem-loop
configuration of the aptamer was optimized by sequence truncation. Therefore, the relative
signal suppression (SS) of the MB Faraday current was recorded as the sensor signal
according to (I − I0)/I0 (%), where I and I0 are peak faradic currents from the terminal
redox molecule of the aptamer with and without target binding, respectively. Here, the SS
of the originally selected oligonucleotide sequence (S1) and two aptamers with different
lengths (S2 and S3) truncated from the original aptamer were tested after target binding.
Their responses to the same concentration of ST (10 nM) are shown in Figure 1A. The
AuE modified with the S2 strand (32 bp) exhibited the biggest signal decrease of about
27.2 ± 4.6%, whereas the SS% of S1 (44 bp) and S3 (26 bp) were 19.8 ± 3.5% and 9.5 ± 5.2%,
respectively. The signal difference can be attributed to differences in the stem length of the
aptamer stem-loop structure, which is a key parameter for the charge transfer response
from redox probes located at the terminal end of the aptamer. It has been reported that the
hairpin-like conformation will not open or open too easily if the stem is too long or short,
respectively, thus affecting the signal response upon target binding [36,52]. Compared to
the S2 strand, the S1 strand owns a longer stem length which means strong competition
between stem formation and target binding. Consequently, the stem structure is preserved,
even in the presence of the analyte and the distance between the electrode surface and the
redox probe does not significantly change. For strand S3, some binding regions necessary
for the interaction have been ousted in the truncation process, and a sturdy stem-loop
structure could not form because of the short stem length after truncation. The majority of
the aptamer molecules just undergo a small conformational change after target binding [53].
In contrast, the S2 strand adopts a stable and proper stem-loop configuration, which is
crucial for the binding capability of the aptamers. Moreover, the smaller size of the S2
strand not only lowers the synthesis cost but also improves the accessibility of the target to
the aptamer, which further enhances the sensor sensitivity [54]. Therefore, we chose the S2
strand with optimal stem length and large signal change for the subsequent experiments.
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To ensure optimal sensor performance, the S2 aptamer density on the sensor surface
was tuned by optimizing the aptamer concentration during its binding to the electrode,
Figure 1B. The data show that the SS% first increased with the increasing aptamer concen-
tration, followed by a strong decrease. The maximum SS% was obtained at 0.5 µM aptamer
and its surface coverage was calculated to 1.05× 1012 molecules/cm2 by chronocoulometric
measurements, Figure S1. The reason for the low signal for the low aptamer concentration
is the small surface density and thus the small number of binding events. For high aptamer
concentrations, electrostatic repulsion between neighboring negatively charged aptamer
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molecules can prevent the analyte binding. Furthermore, the dense aptamer packing on the
surface does not provide enough space for the aptamer to fold into the 3D conformation
required for target binding [55]. Therefore, a 0.5 µM aptamer concentration was used
during our sensor fabrication.

In addition, the incubation condition of the blocking molecule can affect the sensor
performance. Therefore, the composition of the mixed S2 aptamer-PEG receptor layer was
optimized by varying the PEG incubation time, Figure 1C. For short PEG incubation times,
the SS% was low due to the low density of the blocking molecules. There, some uncovered
electrode area remained after aptamer modification and the aptamer molecules lay down
and interacted un-specifically with the electrode surface, which impaired the recognition of
the analyte. Furthermore, the mixed monolayer with low PEG density could not effectively
prevent antifouling and corresponding protein adsorption [49]. As the incubation time
increased, latterly PEG molecules occupied the bare sites of the electrode and cleaved
the interactions between lying aptamers and AuE leading to upright standing molecules,
making target binding more favorable. Thus, the SS% value rose with increasing PEG
incubation times and reached its maximum at 4 h. A long incubation forms a high-density
PEG layer, which leads to a complete blocking of the analyte binding and an associated
signal drop since the aptamer molecules require a certain area on the transducer surface for
its 3D conformational adaptation to its target. Interestingly, the optimal PEG incubation
time of 4 h for the serotonin sensor is shorter than the previously reported 7 h found for
an aptasensor for malaria biomarker indicating that the PEG incubation time is either
dependent on the aptamer or on the analyte size.

Finally, to elucidate the dependence of ST binding to its aptamer on the analyte
incubation time, the SS% was recorded for different incubation times from 10 to 50 min,
Figure S2. A saturation of the aptasensor signal was achieved after 40 min indicating a
steady state between the analyte association and dissociation after this time.

3.2. The Characterization of the Biosensor Fabrication Process

The AuE electrodes were characterized by CV and EIS after each modification step.
The cleaned bare AuE showed a well-defined redox peak for the [Fe(CN)6]3−/4− containing
the solution, Figure 2A. After the ST aptamer was immobilized, the peak current decreased
due to the blocking of the charge transfer by the ssDNA adlayer. The peak current further
decreased when PEG was applied on the electrode since those surface sites were then deco-
rated by PEG molecules, which were previously uncovered by aptamers. In the presence
of ST, the peak current further decreased due to further hampering the charge transfer
between the electroactive [Fe(CN)6]3−/4− probe and the electrode surface. Additionally, EIS
measurements were employed to evaluate the process of biosensor fabrication, Figure 2B.
The diameters of the Nyquist plot semicircles reflect the charge transfer resistance (Ret)
values of the electrode after the different preparation steps. As shown in Figure 2B, the
Ret value of bare AuE was as small as 203 Ω, indicating a direct and fast charge transfer
process. Upon aptamer assembly on the surface, the Ret value increased to 2000 Ω, due to
the electrostatic repulsion between the redox probes and the negatively charged backbone
of the ssDNA molecules. After incubation with 1 mg/mL PEG, an obvious enhancement
of the Ret value to about 7490 Ω was obtained, implying that the direct charge transfer
to the modified electrode was well suppressed. Finally, 10 nM target ST was added to
the sensor system causing a slight increase in Ret to 7970 Ω due to the small size of the
analyte molecule.
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Figure 2. (A) CV of stepwise-modified electrode surfaces in PBS buffer with 5 mM [Fe(CN)6]3−/4−.
(B) Nyquist plots of the EIS measurements recorded for the same electrodes as in (A), where dots
represent the experimental data and solid lines represent the fits corresponding to the equivalent
circuit shown in the inset.

Furthermore, the mass change associated with the stepwise immobilization process
onto the electrode surface was monitored by using a QCM-D equipped with a fluidic
system. This method facilitated the recording of changes in mass load and dissipation
during the assembly of a mixed monolayer by the stepwise immobilization of the aptamer
receptors and the PEG backfill molecules [56]. According to the Sauerbrey equation [57],

∆ f =
2 f 2

o
A√ρqµq

∆m

the frequency change is proportional to the mass increase when the molecules bind to the
sensor surface, Figure 3. The purging of 1 µM aptamer solution over the bare Au sensor
and subsequent PBS rinsing caused a decrease in the frequency (∆f = 5.05 Hz) indicating
the attachment of the aptamer molecules. After flushing the PEG solution (4 h incubation)
and rinsing with PBS buffer, a further frequency shift of 7.05 Hz was obtained due to the
immobilization of the blocking molecules to the electrode area that was not decorated by
aptamer molecules before. Finally, a relatively small frequency shift (∆f = 0.45 Hz) was
recorded due to the low molecule weight of ST associated with the binding process of this
analyte to aptamer receptors.

Alterations of the surface morphology corresponding to the aptamer and PEG immo-
bilization were investigated by AFM measurements, Figure 4. A bare gold (111) disk-single
crystal with a surface roughness of 0.31 ± 0.01 nm was used as a model surface, which can
provide unambiguous imaging of morphological changes during receptor layer formation
since it processes atomically flat terraces. After incubation of the aptamer solution, the
overall surface roughness rose to 0.96 ± 0.02 nm, indicating that these receptor molecules
bound to the surface. However, the AFM image did not show a homogeneous monolayer
morphology. It can be assumed that the immobilized aptamer presented an unordered ar-
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rangement presumably with molecules partially lying down on the surface and others with
upright orientation [49]. The addition of PEG solution can block the remaining free surface
area and facilitate the formation of upstanding aptamers surrounded by PEG molecules.
Thus, the surface roughness manifested an increment to 1.23 ± 0.01 nm, and the mixed
monolayer also indicated common molecular features in AFM images [58,59].
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3.3. Analytical Performance of the Designed Biosensor

Under the optimized conditions, the sensitivity and dynamic working range of our
aptasensor were investigated by detecting a series of different concentrations of ST in
PBS buffer (137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 1.8 mM NaH2PO4, 2 mM
MgCl2, pH 7.4). As shown in Figure 5A, the SWV peak current decreased with rising
target concentrations, due to the binding of ST to the aptamer, which followed a Langmuir–
Freundlich equilibrium model (Figure 5A, insert). In addition, the sensor showed a semi-
logarithmic concentration-dependence in the range from 0.1 nM to 1 µM and the liner
calibration equation was SS (%) = 11.0 log C (nM) + 17.9 with a correlation coefficient of
0.99 (Figure 5B). The limit of detection (LOD) was estimated to be 0.14 nM according to
the IUPAC definition: LOD = Mean + 3 SD with Mean as the mean value of the signal gain
at the lowest tested concentration from at least three independent experiments and SD as
the standard deviation value of the signal gain [60]. The proposed aptasensor exhibited
high sensitivity and was able to cover the physiological range of ST. Compared to other
existing ST assays (Table S1), our sensor with truncated aptamer showed a competitive
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analytical performance compared with most previously reported strategies [61–66]. More
importantly, this method facilitates a simple and universal operation without additional
complex modifications.
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Figure 5. (A) SWV curves of the aptasensor with different concentrations of serotonin in PBS
buffer (137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 1.8 mM NaH2PO4, 2 mM MgCl2, pH 7.4),
inset shows the relation of the SS% vs. analyte concentration with a fit by a Langmuir equation.
(B) Semi-logarithmic presentation of the SS% and the analyte concentration. (Error bar means data
standard deviation (SD), n = 3).

3.4. Selectivity, Regeneration, and Stability

Apart from the sensitivity, the selectivity of the proposed aptasensor was evaluated
towards neurochemicals with similar structured and/or interfering electrochemical activity.
The sensor response to 10 nM ST was evaluated in comparison to high concentrations
(1 µM) of uric acid (UA), dopamine (DA), and ascorbic acid (AA), Figure 6A. Although,
all these molecules possess a similar structure, the sensor with the truncated aptamer S2
displayed comparably low signal variations for interfering molecules, while a distinct SS%
increase was observed for ST although its concentration was two orders of magnitude lower
concerning the analog molecules. Consequently, the target ST can be easily distinguished
from other neurochemicals by this aptasensor due to the high selectivity of the aptamer
receptor, which was not impaired by the sequence truncation.

To characterize the reusability and thermo-stability, the regeneration of the aptasensor
was examined by consecutive detection to 10 nM ST. After each analyte detection step,
the sensor electrode was rinsed with 6 M urea solution for 30 s to dissociate the linkage
between aptamer and target and to reactivate the sensor. Owing to the high chemical
stability of our sensor system, both thiol-based aptamer and the surface-bound PEG can
resist the harsh reactivation treatment and conserve the affinity of the aptamer receptor
for its analyte. The analyte binding procedure was repeated several times and the signal
change was kept on average over 90% even after four times regeneration, Figure 6B.
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Figure 6. (A) Selectivity of the ST aptasensor, where either 1 µM of uric acid (UA), dopamine (DA),
ascorbic acid (AA), or 10 nM of ST were added. (B) Regeneration of the aptasensor in 10 nM serotonin
after a 30 s rinse in 6 M urea over four uses. (C) Stability of the aptasensor after 0, 7, and 14 days
storage at 4 ◦C. (Error bar means data standard deviation (SD), n = 3).

Moreover, to further characterize the stability of the detection system, the developed
aptasensor was employed to detect ST after 7 and 14 days of storage in a buffer solution at
4 ◦C, Figure 6C. Compared to a freshly prepared aptasensor, the stored devices maintained
around 85% of the original signal, suggesting a considerable shelf life, although the sensor
was not yet optimized for long-term storage.

3.5. Real Sample Analysis

One persistent challenge during the implementation of practical applications for newly
developed biosensors is severe nonspecific protein adsorption in complex biological matri-
ces. To assess the antifouling ability of the constructed aptasensor, EIS responses of PEG
and MCH (common blocking molecules in biosensor fabrication) blocking interfaces were
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tested before (black lines) and after (red lines) incubation in 100% human serum samples.
As shown in Figure 7A, impedance increments of 20% were observed in the Nyquist plot
of MCH decorated sensing surfaces, indicating non-negligible protein adsorption on the
electrode surface. In contrast, PEG-coated interfaces effectively reduced the unspecific
adsorption, and only a 2.7% impedance change was observed after incubation in human
serum, Figure 7B. Moreover, SWV responses of aptasensors were also tested after incu-
bation in various diluted human serum samples. It can be seen from Figure S3 that the
SWV current response varied with an amplitude of only 6.25% after soaking in 50% diluted
serum solution. More importantly, when the PEG mediating aptasensor was incubated into
an undiluted human serum sample, the current intensity remained at ~90% of its initial
value. The exceptional antifouling property of the PEG monolayer originates from the low
gain of adhesion enthalpy and the associated loss of entropy due to steric repulsion during
the protein interaction process, which can significantly prevent nonspecific adsorption in
complex biological media. The same antifouling performance of PEG has been previously
characterized and reported by our group with an aptasensor for malaria detection in blood
samples [49]. Moreover, we have also tested the sensor composed of AuE modified only
with the S2 aptamer and challenged it with 10 nM ST spiked in human serum. The results
obtained for this sensor show only small or inconsistent signals (Figure 7C), in contrast to
the data obtained for the sensor with PEG blocking (Table 1). The signal degradation can be
ascribed to interfering interactions between aptamer and uncovered electrode areas as well
as unspecific adsorption of matrix proteins on the same. Those results further indicated the
necessity of the PEG blocking agent for the fabrication of reliable ST sensors that can be
operated in complex biological samples.

Table 1. The recovery experiments in 50% human serum (n = 3).

Samples Added Found Recovery RSD

0.1 nM 0.101 nM 101.4% 4.3%
10 nM 9.54 nM 95.4% 3.9%

100 nM 100.9 nM 100.9% 3.1%

To further test the potential practical performance of the developed ST aptasensor,
recovery experiments were performed in 50% human serum solution by the standard
addition method, Table 1. The recovery ranged from 95.4 to 101.4%, with RSD between
3.1 and 4.3%. Besides human serum, also cerebrospinal fluid is a valuable test sample for
ST testing. It is found in the CNS and its composition is routinely examined to diagnose
various neurological diseases. To verify the versatility of this biosensor, ST detection was
conducted in aCSF containing 45 mg dL−1 human serum albumin. Our data showed
promising conformance of 98.2–103.5% recovery with RSD from 4.8% to 8.7 %, Table 2.
From these recovery values, it can be concluded that the biosensor with truncated aptamer
demonstrated an assaying performance that complies with the demands of the lab and
clinical testing in complex matrices such as human serum and protein-loaded aCSF samples.

Table 2. The recovery experiments in aCSF (n = 3).

Samples Added Found Recovery RSD

1 nM 0.98 nM 98.2% 5.6%
10 nM 10.35 nM 103.5% 4.8%

100 nM 99.20 nM 99.2% 8.7%
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Figure 7. EIS Nyquist plots of Au electrodes demonstrate the non-specific adsorption with (A) MCH
and (B) PEG blocking before (black line) and after (red line) incubation in 100% human serum.
(C) SWV curves of AuE modified only with the aptamer and challenged it with 10 nM ST spiked in
50% human serum.

4. Conclusions

In summary, an electrochemical aptasensor with enhanced antifouling ability was
developed for sensitive ST detection by monitoring the SWV current changes. To obtain
satisfactory performance, the stem-loop structure of the proposed ST aptamer was truncated
and optimized to achieve a proper stem length for enhanced electrochemical signal output.
Furthermore, PEG-blocking molecules significantly enhanced the antifouling capabilities of
the constructed sensing interface without affecting target-binding performance. Combining
the excellent antifouling property of PEG and the high specificity of the aptamer, the
developed aptasensor exhibited a wide detection range and a very low LOD for ST. In
addition, the proposed aptasensor showed high selectivity and stability. It can also be
used for assays targeting ST in complex biological media such as human serum and aCSF.
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In this work, we essentially optimized all parts of a previously reported aptasensor and
distinctly improved the sensing performance and matrix resistance of the electrochemical
ST biosensor to pave the way for its direct utilization in in vivo neurotransmitter detection.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/bios13090881/s1, Figure S1: Determination of the sur-
face density by chronocoulometric measurements in 10 mM Tris buffer and 50 mM RuHex; Figure S2:
Optimization of the target incubation time; Figure S3: SWV responses of AuE with PEG blocking after
incubation in different concentrations of human serum samples; Table S1: Performance comparison
of the proposed electrochemical aptasensor with other serotonin sensors.
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