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Abstract: We report a versatile platform based on an array of porous silicon (PSi) thin films that
can identify analytes based on their physical and chemical properties without the use of specific
capture agents. The ability of this system to reproducibly classify, quantify, and discriminate three
proteins separately is demonstrated by probing the reflectance of PSi array elements with a unique
combination of pore size and buffer pH, and by analyzing the optical signals using machine learning.
Protein identification and discrimination are reported over a concentration range of two orders of
magnitude. This work represents a significant first step towards a low-cost, simple, versatile, and
robust sensor platform that is able to detect biomolecules without the added expense and limitations
of using capture agents.

Keywords: biosensing; porous silicon; sensor array; machine learning; dimensionality reduction;
point-of-care; electronic noses; linear discriminant analysis; support vector machines; principal
component analysis

1. Introduction

The need to detect biological analytes for applications including medical diagnostics,
environmental monitoring, and food safety, is typically met by a biosensor composed
of two primary components: a capture agent (also sometimes referred to as a probe
molecule or bioreceptor), which specifically binds to the desired target analyte, and a
transducer, which converts the binding of the target species into a measurable optical,
electrochemical, thermal, or microelectromechanical signal [1–7]. Examples of specific
capture agent–target analyte ‘lock and key’ interactions are antibody–antigen interactions,
enzyme–substrate interactions, peptide interactions, and oligonucleotide interactions [8–10].
However, despite their effectiveness and well-established use in many applications, the
reliance on capture agents for analyte detection can bring about several challenges. The
first is that a capture agent, by design, typically only binds to one species. If the aim
is to identify and quantify multiple molecular constituents in a solution of unknown
composition, multiple capture agents are required, which leads to larger, more complex,
and expensive biosensors. Furthermore, if the appropriate capture agents are not present
on a sensor, there is a possibility of hazardous species going undetected. In addition,
many capture agents denature or degrade over time and/or in harsh environments, which
limits the shelf life, ease of transportation, and types of locations where the sensor can be
used [11–13]. Finally, when challenged with detecting a new target molecule of interest for
which there is no existing capture agent, it can take significant time to develop an effective
capture agent with sufficient specificity and affinity [14–16].

While there are molecular sensing approaches that do not require capture agents,
they are not without their challenges as well. For example, spectroscopic techniques and
many other protein detection assays typically require costly and bulky instrumentation,
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and their performance for analytes in complex media can often be limited [17]. Moreover,
cost, ease and scalability of manufacture, and high sensitivity remain significant challenges
for molecular imprinting approaches [18,19]. In addition, electronic noses or tongues
typically face a trade-off between sensitivity and robustness, stability, complexity, and
cost, especially when operating outside of controlled environments [20–27]. Different
sensor platforms used in cross-reactive sensor arrays have their own inherent limitations.
For example, colorimetric sensor arrays, which have been the subject of wide research
interest, are limited in terms of their number of array elements due to the complexity of
their manufacture, reproducibility, and printing quality; the minimum spot size of chemo-
responsive dyes as a result of edge effects and a limited printing resolution; and their utility
in detecting analytes in the aqueous phase, which poses additional significant challenges
and often results in underwhelming detection limits (>1 µM) [21].

In this work, we report an initial demonstration showing that, under the appropriate
preparation conditions, an array of porous silicon (PSi) sensors [28–34] has the potential to
robustly classify, quantify, and discriminate a select number of molecular species without
capture agents, based on their size, conformation, and surface charge. In particular, we
demonstrate the detection of three proteins—bovine serum albumin (BSA), chicken oval-
bumin (OVA), and avidin—separately, without the use of capture agents. These proteins,
suspended in buffer solutions with varying pHs, are exposed to PSi films with different
pore sizes. The proteins were chosen for this initial demonstration based on their overlap-
ping combinations of isoelectric points and molecular weights, and because they are well
characterized, which allows for the incorporation of prior knowledge into the machine
learning analysis. The proteins can be discriminated at concentrations down to at least
300 nM, meeting clinically relevant detection limits for many applications [35–37] with 100%
accuracy when the discrete set of possible concentrations is known, and 87.5% accuracy
when classifying the protein type only for unseen concentrations. Given the large internal
surface area and strong light matter interaction afforded by PSi, we anticipate that lower
detection limits are achievable with further refinement of the platform and the inclusion of
more degrees of freedom in the array element design and experimental testing conditions.
The novel approach presented here for protein identification and quantification uniquely
bridges the trade-off between the robustness and sensitivity of current sensor arrays by
probing a wide reactivity space (encompassing more than purely hydrophobicity [20])
without requiring any surface treatments. Furthermore, PSi sensor arrays are cost effective,
straightforward to fabricate, and easily scalable to high-volume manufacturing and large
numbers of sensor array elements, to an extent which is not possible with most other
platforms. This work opens the door to more advanced studies investigating the limits
of using capture-agent-free PSi arrays for molecular identification and quantification in
mixtures and other complex solutions.

2. Materials and Methods
2.1. Preparation of Single Layer PSi

Single-layer PSi thin films were fabricated [28,29] by electrochemically etching p-type
single-side polished, boron-doped silicon wafers (〈100〉, 0.01−0.02 Ω cm, 500−550 µm,
Pure Wafer, San Jose, CA, USA) using a 15% v/v solution of aqueous hydrofluoric acid (HF;
48–51%, Acros Organics, Antwerp, Belgium) in ethanol (Thermo Fisher Scientific, Waltham,
MA, USA) in an Advanced Micromachining Tools (AMMT, Frankenthal, Germany) MPSB
PSi wafer-etching system. Note that HF is an extremely dangerous chemical and should be
handled with the utmost caution [28], and that alternative fabrication methods exist [38].
The wafer was secured in a wafer holder, which was immersed in a HF bath. The wafer
holder was subsequently clamped against an inner wall of the etching tool with an o-ring
seal, which isolated two half cells, each containing a platinum mesh electrode. The anode
was in contact with the exposed back side of the wafer in one of the half cells, the cathode
was immersed in the HF bath in the other half cell, and a voltage was applied between
the electrodes to provide a constant etching current. Firstly, a sacrificial layer was etched
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using a current density of 70 mA cm−2 for 100 s, which was subsequently dissolved in a
1 M NaOH solution. Secondly, the wafer was washed with deionized (DI) water (resistivity
15 MΩ cm, Elix water purification system, Millipore, Burlington, MA, USA) and ethanol to
remove the HF residue and then etched again at a current density of either 55 mA cm−2,
40 mA cm−2, or 25 mA cm−2, to form thin films with different pore size distributions
for the different elements in the sensing array. The etching time used to fabricate the PSi
films (57 s, 66 s, and 93 s for 55 mA cm−2, 40 mA cm−2, and 25 mA cm−2, respectively)
was tailored to give approximately the same thickness, regardless of the etching current
density (and associated etch rate). We note that, if experimental conditions such as the HF
electrolyte concentration, temperature, and electrode size, position, and conductivity are
precisely controlled, then the fabrication is repeatable. Thirdly, the wafer was diced into
square 5 mm × 5 mm samples using a DISCO (Tokyo, Japan) DAD3220 dicing saw. Finally,
the samples were oxidized at 800 ◦C in ambient air for 10 min, forming a passivating
surface layer of SiO2, which is hydrophilic and accumulates a negative surface charge in
pH > 2 conditions.

2.2. Material Characterization

The properties of the PSi films were measured by analyzing scanning electron micro-
scope (SEM) top-view and cross-sectional images; one PSi sensor for each etching current
density was imaged to calculate the pore size distribution (Figure 1) and four PSi sensors
for each etching current density were imaged to compute the mean pore size, porosity, and
thickness (Table 1). To extract the pore distribution and average pore size, analysis was car-
ried out in MATLAB (R2022b) [39] in a similar manner to that previously reported [40,41].
First, the contrast of the top-view SEM images was made uniform across the image and
enhanced using the adapthisteq MATLAB function [42], and then a threshold was used
for conversion into a binary image. Isolated pixels were removed and a median filter was
applied. The perimeter and area of each of the pores were found using the regionprops
MATLAB function, and the pixel to nm conversion was performed using the scale bar
in the SEM images. The count of pores in each bin of the pore distribution histogram
was weighted by the average perimeter length for each of the pores in that bin. The four
top-view SEM images for each etching current density, representing an area of 5.3 µm2

or approximately 0.1% of one PSi sensor, were analyzed and the results were averaged to
extrapolate the pore size distribution of the PSi as a whole. Similarly, ten measurements
across four cross-sectional images were used to calculate the thickness of the PSi layer for
each etching current density. For both the pore size distribution and thin film thickness, the
errors reported are the standard deviation of the measurements.

Table 1. Average pore size, porosity, thickness, and fraction of pores larger than 30 nm determined
from measurements of four PSi thin films for each of the three etching current densities used to
fabricate elements of the sensor array.

Etching Current Density 25 mA cm−2 40 mA cm−2 55 mA cm−2

Mean Pore Diameter (nm) 12.0 ± 0.2 15.1 ± 0.2 17.3 ± 0.2
Pore Diameter Standard Deviation (nm) 6.0 ± 0.2 6.7 ± 0.3 7.9 ± 0.3

Thickness (µm) 1.78 ± 0.01 1.94 ± 0.01 2.04 ± 0.01
Mean Effective Optical Thickness in Air (µm) 6.91 6.34 5.82

Mean Effective Refractive Index in Air 1.94 ± 0.02 1.63 ± 0.01 1.43 ± 0.01
% Porosity 53 ± 1 61 ± 1 66 ± 1

Fraction of Pores > 30 nm 0.2 ± 0.1% 2.0 ± 0.4% 5.8 ± 1.3%
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500 nm. 
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Figure 1. Pore diameter distributions and SEM top-view images for three PSi films, one for each
etching current density, formed with current densities of (a) 25 mA cm−2, (b) 40 mA cm−2, and
(c) 55 mA cm−2. (d) Measured reflectance spectra for each of these PSi films. Scale bars on SEM
images are 500 nm.

2.3. Optical Reflectance Measurements

Reflectance spectra were collected by coupling the light from a quartz tungsten light
source into a bifurcated optical fiber through one fiber port and measuring the reflected
light using an Ocean Optics (Orlando, FL, USA) USB 4000 CCD spectrometer connected
to the second fiber port. The height of the fiber was adjusted to form a spot size with a
5 mm diameter on the PSi sensor surface. The output spectra from the spectrometer were
fed into a PC running the Ocean Optics Spectra Suite software (version 2), which averaged
100 spectra and saved the result once per second. The reflectance spectra of a single layer
of PSi exhibited characteristic Fabry–Perot interference fringes, which are sinusoidal as
a function of wavenumber (inverse of wavelength). The sinusoid frequency is equal to
the effective optical thickness 2 nL, where n and L are the effective refractive index and
thickness of the PSi film, respectively. Molecule adsorption inside the pores causes an
increase in the effective refractive index, increasing the frequency of the fringes [28,43].

2.4. Experimental Procedure

The PSi samples (5 mm × 5 mm) were washed with water and ethanol and dried under
nitrogen. The reflectance spectra of the sensing elements in an array were measured before
protein incubation to establish a baseline reference spectrum; representative reflectance
spectra for each etching current density are shown in Figure 1d. To keep the experimental
conditions as consistent as possible across the large number of experiments needed to
compile a reasonable dataset for analysis, bulk protein solutions were prepared in DI water
(10 g/L) and stored at 4 ◦C. The bulk protein solutions were further diluted with either
pH 10 and pH 4 reference standard buffers (Sigma-Aldrich, Burlington, MA, USA) and
water to prepare three concentrations of each protein (2 g/L, 0.2 g/L, and 0.02 g/L). The
ratio of DI water:reference standard buffer (pH 4 or pH 10) was maintained at 1:4 for all the
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experiments; this ratio was chosen as a tradeoff between maximizing the proportion of the
buffer for optimal pH control and stability and a sufficiently high volume of protein solution
to enable a large dynamic range of accessible concentrations using 10 g/L stock protein
solution. The pHs of the solutions using the pH 4 buffer and pH 10 buffer were found
to be 4.0 ± 0.1 and 10.0 ± 0.1, respectively, measured using a Mettler Toledo (Columbus,
OH, USA) Seven Easy pH meter. The corresponding molar concentrations of the protein
solutions were 30 µM, 3 µM, and 300 nM for BSA (pI = 4.63, MW = 66.4 kDa, Thermo Fisher
Scientific), 45 µM, 4.5 µM, and 450 nM for OVA (pI = 4.54, MW = 44.3 kDa, Thermo Fisher
Scientific), and 30 µM, 3 µM, and 300 nM for avidin (pI = 10, MW = 66–67 kDa, Thermo
Fisher Scientific). A 20 µL volume of protein solution was drop cast on each sensing element
in the array and left to incubate for 2 h under ambient conditions in a sealed container to
prevent evaporation. Afterwards, the sensors were placed in an 800 mL water bath for 10 s,
and then removed and dried under nitrogen. The purpose of this wash was to remove
unbound molecules from the PSi surface and inside the pores. A much smaller number
of weakly bound molecules would also be removed, but the reflectance change during
the washing was small and almost entirely independent of the wash duration, indicating
that most molecules were adsorbed strongly enough to remain in the pores. Each sensing
element in the array was then dried under nitrogen and measured again, and the resulting
spectrum was compared to the reference spectrum before protein solution exposure by
calculating the Morlet wavelet phase response [43]. The total number of elements in each
array that were exposed to one concentration of a given protein was twelve, corresponding
to three average pore sizes, two buffers, and two repeats. Since each sensor element was
5 mm × 5 mm, the total area of each sensor array was 300 mm2. An overview of the PSi
sensor array is shown in Figure S1.

2.5. Data Analysis

Linear discriminant analysis (LDA) was used to reduce the dimensionality and visual-
ize the six-dimensional sensor array responses in 3D, elucidating the separability of the
three proteins. LDA is a statistical method that determines a series of linear projections of a
given training dataset that best separate data points by their associated class [44]. This is
achieved by maximizing the ratio of between-class variance to within-class variance.

Support vector machines (SVMs) are supervised optimal margin classifiers, chosen
due to their stability, interpretability, and applicability to small datasets [45].

3. Results and Discussion

The PSi thin films were fabricated using three different current densities, achieving
three distinct pore size distributions with different average pore sizes. The pore size
distributions were weighted by the circumference of the pores, which is proportional to the
number of binding sites.

Table 1 shows the average pore diameter and thickness, which were determined by
analyzing the SEM images, porosity, which was calculated from the optical reflectance
measurements, and average effective optical thickness and refractive index, which were
calculated through an analysis of the reflectance spectra, as a function of the etching current
density.

The appropriate selection of PSi formation conditions, including current density, etch-
ing time, HF concentration, and silicon wafer doping, enables a relatively wide range of
tunability in the PSi properties shown in Table 1 [28]. Both Figure 1 and Table 1 show
the pore size distributions shifting to larger diameters as the etching current density was
increased. Important for size selectivity, the fraction of larger (>30 nm) pores dramati-
cally increased by an order of magnitude as the etching current density increased from
25 mA cm−2 to 40 mA cm−2 and increased again by a factor of nearly three as the etching
current density was increased to 55 mA cm−2. We believe this metric was a dominant
effect governing the response of the PSi films to protein exposure compared to the average
pore size, which exhibited only a modest increase with etching current density. While the
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porosity also increased as a function of the etching current density, porosity changes would
alter the response of all the proteins proportionally and, consequently, would provide
no additional discriminatory information, unlike the pore size, which had an important
differential effect [46]. We note that our analysis of the top-view SEM images established a
clear general trend of an increasing pore size with an increasing etching current density.
Thresholding to convert the images from greyscale into binary was performed manually
and the fine structure of the pore branches within the pores was not rigorously taken
into account. Consequently, although the standard deviation of the repeated independent
measurements was low, there could have been systematic uncertainty associated with the
resolution of the SEM images and manually chosen thresholds. Further detailed analyses
of the pore size and morphology for PSi layers fabricated using a range of different etching
conditions can be found elsewhere [30,47,48].

Solutions of BSA, OVA, and avidin at three different concentrations and a negative
control with no protein were prepared in DI water and either pH 4 or pH 10 buffers at a
ratio of 1:4, resulting in overall solvent pHs of 4.0 ± 0.1 and 10.0 ± 0.1, respectively. The
solutions were drop cast and incubated for 2 h on the PSi films with three different pore
sizes, resulting in six combinations of pore sizes and pHs in the sensing array. Sixteen of
these sensor arrays were constructed for every concentration of each protein, and randomly
sampled pairs of array measurements were averaged to reduce the variance in the response
arising from the nature of the adsorption phenomenon, yielding eight independent repeats,
allowing for an estimation of the mean and variance for every experimental condition.
The reflectance spectrum of each sensor array element was measured before and after the
protein solution exposure, and spectral shifts indicative of infiltration and adsorption in the
pores were transduced by processing the spectra using Morlet wavelet phase analysis [43].
Here, infiltration refers to the diffusion of molecules into the pores and adsorption refers to
the attachment of the molecules to the pore walls.

From the response of each sensor in the array (Figure 2), it was clear that the differences
between the proteins were subtle at low concentrations, but easily discriminable by eye
at the highest concentrations, allowing for several observations to be made. Firstly, the
response to all the protein solutions was proportional to the pore size: as the pore size
distribution shifted to higher diameters and the average pore size increased, the response
increased, as expected [49]. Notably, the relationship between the response and pore
size for a given protein was not linear, and there were three regimes to consider: (1) at
higher average pore sizes, the proteins experienced essentially uninhibited entry and
diffusion into the majority of the pores, (2) at lower average pore sizes, inhibited molecular
transport began to pinch off the response because there were few pores large enough to
permit infiltration and adsorption, and (3) at intermediate pore sizes, there was a transition
between the other two regimes.

A second observation can be made regarding the effect of pH on the response of the
PSi films. Multiple studies have shown that the maximum infiltration of proteins in the
pores occurs when the pH environment is at the isoelectric point of the protein, resulting in
a net neutral molecular charge [51,52]. This condition provides the minimum inhibition of
protein transport and promotes close packing in the pores by avoiding extensive protein–
protein and protein–PSi interactions. Accordingly, the results in Figure 2 show that the
largest response of the PSi to each of the proteins occurred when the pH of the solution
was approximately equal to the isoelectric point of that given protein. We note that the
surface of the oxidized PSi was negatively charged when the pH of the environment was
above 2, which was the case for all the experiments carried out in this work [53]. We further
note that, while the pH at which maximum adsorption occurred was indicated simply by a
molecule’s isoelectric point, the dependence of the adsorption characteristics on the pH
will generally have a different shape for every molecule, providing another fingerprinting
mechanism: the properties governing infiltration and adsorption, such as protein charge
distribution [54], agglomeration, and conformational changes [55], are unique to any given
molecule and are pH-dependent.
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to average pore size) and concentration for three proteins—OVA, BSA, and avidin—and a negative
control with no protein, in solutions of DI water and (a) pH 4 and (b) pH 10 buffer, in a ratio of
1:4 (v/v). The data points represent the average value of sixteen measurements taken at the same
condition and the error bars represent the standard deviation of the measurements. Each response
curve was fit with the Redlich–Peterson adsorption isotherm [50]. Equivalent 2D plots are shown in
the Supporting Information (Figure S2).

Thirdly, by combining the first two observations, we can understand that, when the
pH 4 buffer was used, close to the isoelectric point of both OVA and BSA, a higher response
was given by OVA due to its smaller molecular size.

Finally, for the solutions using the pH 10 buffer, the baseline was negative due to
the oxidation and dissolution of the PSi matrix by the hydroxide ions present in the basic
protein solutions [28,56], which competed with the rising response due to the protein
adsorption in the pores. This dissolution effect diminished the sensor array response to all
three proteins and notably caused the sensor array response to avidin in the pH 10 buffer to
be lower than that of avidin in the pH 4 buffer, even though the latter condition was farther
from avidin‘s pI. Importantly, machine learning models can utilize all this information to
discriminate between proteins, implicitly taking the complex interplay of adsorption and
dissolution effects into account.

To summarize, each protein at each different concentration gave a unique combination
of responses to each of the sensor elements in the sensor array, which all had different
properties. The resulting fingerprint of the responses for this protein was distinct from that
of other proteins. For example, while 2 g/L of BSA gave a very similar response to 2 g/L of
avidin when exposed to a sensor etched with 55 mA cm−2 in the pH 4 buffer, when the pH
10 buffer was used instead, the BSA response was negligible and the two proteins were
easily distinguishable.

Following the optical measurements and Morlet wavelet phase analysis, LDA was used
to reduce the dimensionality of the sensor array response matrices from six-dimensional
(due to the combination of the three unique formation conditions of the PSi films and two
pH values used in the experiments) to three-dimensional, enabling a visualization of the
degree to which the three proteins could be separated. LDA was selected for its ability
to maximize the ratio of between-class variance to within-class variance [44]. Figure 3
shows the PSi sensing array response to different concentrations of the target proteins,
projected along the dominant three canonical factors given by LDA with 95% confidence
ellipsoids overlaid and stems indicating the class means; a rotating graphic is included in
the Supplementary Materials.
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Figure 3. Canonical score plot of the three dominant factors obtained from LDA for (a) 3 proteins
(OVA, BSA, and avidin) at 3 concentrations (2 g/L, 0.2 g/L, and 0.02 g/L) and a negative control
with no protein, and (b) the same 3 proteins at the lowest concentration (0.02 g/L) and a negative
control. The ease of classification and quantification of the proteins at the higher concentrations can be
observed, as well as the separability at a low concentration. See Video S1 in Supporting Information
for additional views of the data in (a).

We note that an additional larger pore size (obtained using an etching current density
of 70 mA cm−2) was included in the preliminary experiments but was found to provide
negligible additional discriminatory value due to its high correlation with responses to
neighboring pore size features, namely PSi films fabricated using a current density of
55 mA cm−2.

Next, the concentrations of each of the three proteins were classified with support
vector machines (SVMs) using a linear kernel and regularization hyperparameter C = 100
(informed by the analysis of a small preliminary dataset). A SVM model was trained
on the reduced dimensionality dataset given by LDA, which improved the accuracy by
reducing noise. The model, when coupled with leave-one-out cross validation, gave
accurate predictions of both the protein type and concentration in 100% of the cases. To
test the ability of the model to classify unseen concentrations, the same SVM model with a
linear kernel was retrained to classify the protein type only, and a test set was compiled by
carrying out further experiments, in which sixteen sensor arrays were exposed to OVA at a
new concentration of 0.1 g/L. By averaging two measurements, these further experiments
yielded eight new data points. This choice of protein and concentration was made to
rigorously test the system. It was clear that avidin could be trivially classified due to the
large differential effect of pH, whereas in the training dataset (Figure 3), OVA and BSA
were less easily discriminable, particularly at low concentrations. The independent test
set was classified with an 87.5% accuracy (one protein was misclassified of the eight in the
test set), illustrating the promise of this approach for classifying proteins of an unknown
concentration. We note that, to avoid data leakage, the mean and standard deviation of
the training data set were used to standardize all the data of both the test and training
sets. For the same reason, the canonical factors given by LDA when applied solely to the
training set were used to transform the test set. The same process was followed in the case
of leave-one-out cross validation, for which the data point left out of the training set for
classification was considered the test set. The accuracy of the classification using these SVM
models, summarized in Table 2, could be increased with a larger array incorporating more
pore sizes and pH values to give more discriminating power. Additionally, because no
cross validation for the model selection or hyperparameter tuning was carried out due to
the limited amount of data, the accuracies reported here are a lower bound of what could
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be achieved with more data and a more complex optimized model. We note that, while
the third canonical factor in Figure 3 represented a small percentage of the discriminatory
power (3.1%), it played a critical role in separating BSA and OVA, which have a similar
pI but different molecular weights, and almost identical trajectories when projected only
onto the first two canonical factors. Consequently, the third canonical factor has a large
contribution to the accuracy of models trained on the dimensionality reduced training set.
As a result, the discriminatory power was not the best indicator of feature importance in
the context of discriminating proteins, which was partly a consequence of investigating
different concentrations of each target molecule.

Table 2. Summary of performance of SVM classifier with a linear kernel.

Test Procedure Prediction Target Accuracy

Leave-one-out cross validation
(previously seen concentrations) Protein type and concentration 100%

Independent Test Set
(previously unseen concentration) Protein type 87.5%

To investigate the capability of this new approach to sensing without capture agents
in more complex sensing scenarios, including detecting target molecules in biologically
relevant media, future work will explore increasing the size of the sensing array to encom-
pass additional degrees of freedom (e.g., including the ionic strength of analyte solution,
surface charge and hydrophobicity, and the real-time optical monitoring of adsorption and
diffusion). It is anticipated that this larger array would be able to distinguish between a
larger number of proteins and other species of interest. Given that the average pore size
of PSi is tunable in the range from <2 nm to >100 nm [28], the sensing array is potentially
applicable to a wide range of molecules with a size of ≤100 nm. Moreover, the detection
limits of the sensing array can be improved simply by reducing the size of the individual PSi
sensor elements while maintaining the same volume of solution, increasing the number of
molecules per unit area, and, consequently, the magnitude of the spectral shift. Finally, we
note that a scalable and cost-effective smartphone-based imaging approach to measuring
the optical signals [57] could be implemented, enabling the response of an almost arbitrarily
large array of PSi sensors to be captured as a function of time.

4. Conclusions

We report the first demonstration of a new approach to molecular identification and
quantification based on an array of porous silicon sensors, each with a unique combination
of properties but no functionalization or capture agents. This system was able to classify
and quantify three proteins separately with a similar molecular size down to concentrations
of ~300 nM using optical reflectance measurements and machine learning analysis. An
accuracy of 100% was achieved for the proteins and concentrations previously encountered
in the training set, and a previously unseen independent test set collected using an interme-
diate concentration of one of the proteins was classified with 87.5% accuracy. The design of
this system could obviate the need for capture agents, paving the way for cheaper, more
robust, and quicker-to-develop sensors that provide medical diagnostics, environmental
monitoring, and food safety systems to resource-limited environments.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/bios13090879/s1, Video S1: Rotating 3D view of LDA
canonical score plot to visualize protein separability, Figure S1: Schematic diagram overview of the
PSi capture agent free sensing system, showing the sensor array with two independent duplicates,
protein solution being drop cast and reflectance measurements being carried out, Figure S2: An alter-
native 2D plot visualization of Figure 2, showing a side-by-side comparison of Morlet wavelet phase
response curves for each etching current density and concentration of the three proteins (OVA, BSA

https://www.mdpi.com/article/10.3390/bios13090879/s1
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and avidin), and Table S1: Weightings of the original 6 dimensions corresponding to the six unique
experimental conditions used to project the original high dimensional data onto each canonical factor.
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