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Abstract: DNA ligases are essential enzymes involved in DNA replication and repair processes in all
organisms. These enzymes seal DNA breaks by catalyzing the formation of phosphodiester bonds
between juxtaposed 5′ phosphate and 3′ hydroxyl termini in double-stranded DNA. In addition
to their critical roles in maintaining genomic integrity, DNA ligases have been recently identified
as diagnostic biomarkers for several types of cancers and recognized as potential drug targets for
the treatment of various diseases. Although DNA ligases are significant in basic research and
medical applications, developing strategies for efficiently detecting and precisely quantifying these
crucial enzymes is still challenging. Here, we report our design and fabrication of a highly sensitive
and specific biosensor in which a stable DNA hairpin is utilized to stimulate the generation of
fluorescence signals. This probe is verified to be stable under a wide range of experimental conditions
and exhibits promising performance in detecting DNA ligases. We anticipate that this hairpin-based
biosensor will significantly benefit the development of new targeting strategies and diagnostic tools
for certain diseases.

Keywords: DNA ligases; extraordinarily stable hairpins; biomarker detection; fluorescence probes;
molecular sensing

1. Introduction

Deoxyribonucleic acid (DNA) ligase is an essential and ubiquitous enzyme involved
in DNA replication, repair, and recombination in prokaryotic and eukaryotic cells. This
enzyme catalyzes the formation of phosphodiester bonds between the juxtaposed 5′ phos-
phate end and 3′ hydroxyl end in double-stranded DNA in the presence of ATP [1–4].
Regardless of their sources, DNA ligase-catalyzed reactions’ ligation mechanism shares
a common feature: the critical step is forming a covalent DNA ligase–adenylate interme-
diate [5]. In addition, it has been known that DNA ligases in eukaryotes, archaea, and
viruses are ATP-dependent, while those in bacteria are NAD-dependent [6–8]. As a result,
NAD-dependent DNA ligases have been the targets of new antibacterial agents, as they
are widely present in bacteria but rare in mammalian cells [9]. DNA ligases have also
been used as cancer biomarkers in recent years [10] because their over-expressions and
defects are closely correlated with the pathogenesis of cancer and neurodegeneration [11].
Furthermore, DNA ligases have been used as vital tools in in vitro manipulations of DNA,
such as DNA nanotechnology, DNA computing, and DNA sensing [12]. Therefore, DNA
ligase activity detection is significant for drug development, medical diagnosis, and basic
biochemical research. The conventional means for detecting DNA ligases’ activities mainly
rely on immunological detection methods, such as Western blot and ELISA, which are
complicated and require specialized facilities. In addition, DNA ligase detection through
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multiple enzymes and multi-step reactions has been developed in the past [13,14]. How-
ever, a drawback of these methods is that their detections introduced many unnecessary
factors, reducing their specificity and limiting their real-time application.

On the other hand, the concept of an “extraordinarily stable hairpin” was introduced
to the research fields of nucleic acid chemistry in 1989 [15,16], which refers commonly
to specific short DNA or RNA sequences that possess exceptionally high thermostability
and elevated resistance to nucleases. These DNA and RNA sequences usually contain
7 to 10 long nucleotides and display hairpin-like structures. Although the stem sequences
of the extraordinarily stable hairpins are relatively short, their melting temperatures (as
represented by Hairpin 1 and Hairpin 2 in Table 1) are significantly higher than those of
regular DNA hairpins (represented by Hairpin 3 in Table 1). The high thermostability
of this extraordinarily stable hairpin has been attributed to the balance between its high
bendability and stacking ability in the loop region, favorable formations of B-form DNA
in the stem regions, relatively high GC content, and other factors [15,16]. Even though
extraordinarily stable hairpins possess unique properties, these readily formed structures
have not yet been utilized for detecting DNA modification enzymes. Here, we present
T4 DNA ligase as an example, showcasing for the first time our approach to detecting
DNA ligase activity through the formation of extraordinarily stable hairpins. Our studies
show that these methods are fast, sensitive, and suitable for the real-time detection of DNA
ligase activity.

Table 1. Examples of extraordinarily stable hairpins (Hairpin 1 and Hairpin 2) and ordinary DNA
hairpins (Hairpin 3) [17].

Name Structure Stem Length Stem GC Content Tm (◦C)

Hairpin 1
(extraordinarily stable hairpin used in our biosensor)
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2.1. Reagents
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2.2. Oligonucleotides

All oligonucleotides used in this study were synthesized by Sangon Biotech (Shanghai,
China). Nucleotide sequences and the modification details of these oligonucleotides are
given in Table 2. Cyanine 3 (Cy3) is a commonly used cyanine fluorescent dye with an
excitation peak at 554 nm and an emission peak at 568 nm. Due to its high quantum yield
and stability under physiological conditions, Cy3 was used as the fluorophore in our study
for labeling the DNA probes. Black Hole Quencher-2 (BHQ-2) is a fluorescence quencher
with an effective absorbance range of 550 to 650 nm, which provides low background fluo-
rescence and a better signal-to-noise ratio in our study. BHQ-2 was modified on the DNA
probes for effectively quenching the fluorescence signals generated from Cy3 fluorophores.

Table 2. Nucleotide sequences of the oligonucleotides used to construct DNA probes.

Name Sequence (5′ to 3′) Modification

Oligo 1 AAACTCCACGC
Oligo 2 CTTCGCGTGGAGTTT
Oligo 3 GAAGCGTGGAGTTTA 5′ P, 3′ Cy3
Oligo 4 TAAACTCCACG 5′ BHQ2

2.3. Fluorescence Spectroscopic Examinations

A 60 µL solution containing DNA probes with or without DNA ligase was placed in a
micro quartz cuvette (0.3 cm optical path) at room temperature for fluorescence spectroscopic
analysis using F-7100 Fluorescence Spectrophotometer (Hitachi). Fluorescence emission
spectra were measured using 515 nm excitation light at an angle 90◦ and recorded every
nanometer from 530 nm to 650 nm. Both excitation and emission slits were set to 5 nm.

2.4. Preparation of DNA Probes

A solution containing 900 nM (unless otherwise stated) of Oligo 1, Oligo 2, Oligo 3,
and Oligo 4 (Table 2), 40 mM Tris-HCl (pH 8.0), and 20 mM NaCl was mixed to a total
volume of 30 µL at room temperature. This solution was then incubated at 95 ◦C for 5 min
then slowly cooled to room temperature.

2.5. DNA Ligase-Catalyzed Ligation and Dissociation of DNA Probes

As shown in Figure 1, 60 µL solutions containing 40 mM Tris-HCl (pH 7.8), 10 mM
NaCl, 10 mM MgCl2, 10 mM DTT, 0.5 mM ATP, 900 nM of DNA probes (unless otherwise
stated), and certain concentrations of T4 DNA ligases were prepared and incubated at room
temperature for 0.5 h (unless otherwise stated). As shown in Figure 1, the solution was
further set at 44 ◦C for 5 min and then cooled to room temperature over 10 min for efficient
dissociation of the fluorophores and quenchers.



Biosensors 2023, 13, 875 4 of 9Biosensors 2023, 13, x FOR PEER REVIEW 4 of 10 
 

 
Figure 1. Schematic illustrations of our extraordinarily stable hairpin-based designs for detecting 
DNA ligase activities. Without DNA ligase, duplex forms of DNAs are in equilibrium, and the fluor-
ophore and quencher moieties always remain in proximity. In the presence of DNA ligase, on the 
other hand, this enzyme catalyzes the nick-sealing between Oligo 1 and Oligo 3, which leads to the 
generation of Oligo 5 (Stage 1). Since the newly formed Oligo 5 holds a 5′ CGCGAAGCG 3′ segment 
in its sequence, it will form an extraordinarily stable hairpin spontaneously (Stage 2). As a result, 
signals of the previously quenched fluorophore are restored. 

3. Results and Discussion 
3.1. Design Strategies of the DNA Probes Targeting DNA Ligases 

The unique thermodynamic properties of extraordinarily stable mini-hairpins 
(ESMHs) [15,16] were fully utilized in our studies to determine the catalytic activity of 
DNA ligases. Our “one-pot” design strategy for the rapid and efficient detection of DNA 
ligases is illustrated in Figure 1. By ingeniously designing the chain length, the stable hair-
pin can preferentially form during annealing, competing with the duplex to achieve the 
effect of separating the double-stranded DNA. Accordingly, we designed a double-
stranded DNA with one end modified with a fluorescent group and a quencher, and the 
stable hairpin was cleaved to form a sticky end. The DNA design is shown in Table 2. 

Figure 1. Schematic illustrations of our extraordinarily stable hairpin-based designs for detecting
DNA ligase activities. Without DNA ligase, duplex forms of DNAs are in equilibrium, and the
fluorophore and quencher moieties always remain in proximity. In the presence of DNA ligase, on
the other hand, this enzyme catalyzes the nick-sealing between Oligo 1 and Oligo 3, which leads
to the generation of Oligo 5 (Stage 1). Since the newly formed Oligo 5 holds a 5′ CGCGAAGCG 3′

segment in its sequence, it will form an extraordinarily stable hairpin spontaneously (Stage 2). As a
result, signals of the previously quenched fluorophore are restored.

3. Results and Discussion
3.1. Design Strategies of the DNA Probes Targeting DNA Ligases

The unique thermodynamic properties of extraordinarily stable mini-hairpins (ES-
MHs) [15,16] were fully utilized in our studies to determine the catalytic activity of DNA
ligases. Our “one-pot” design strategy for the rapid and efficient detection of DNA ligases
is illustrated in Figure 1. By ingeniously designing the chain length, the stable hairpin can
preferentially form during annealing, competing with the duplex to achieve the effect of
separating the double-stranded DNA. Accordingly, we designed a double-stranded DNA
with one end modified with a fluorescent group and a quencher, and the stable hairpin was
cleaved to form a sticky end. The DNA design is shown in Table 2.
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In consideration of the facts that Tm (5′ CGCGAAGCG 3′) 88.5 ◦C > Tm (complete du-
plex) 74 ◦C > Tm (the double-stranded structures formed by Oligo 1 and Oligo 2) 44 ◦C > Tm
(the double-stranded structures formed by Oligo 3 and Oligo 4) 38 ◦C > 37 ◦C, Oligo 1 and
Oligo 3 can be ligated in the presence of DNA ligase to form a long single-stranded Oligo 5,
in which an extraordinarily stable hairpin was induced to stimulate the dehybridization of
Oligo 5 from the double-stranded structures (Figure 1). The abovementioned Tm (melting
temperature) values were simulated using the Tm Calculator from Thermo Scientific Web
Tools, provided by Thermo Scientific. This thermodynamic-driven spontaneous process
causes the efficient dissociation of fluorophores and quenchers and produces remarkable
fluorescence signals. Without DNA ligases, the double-stranded structures formed by
Oligo 3, Oligo 4, and Oligo 5 remain stable upon heating and thus produce no fluorescence
signals. The details of our designed biosensors are depicted in Figure 2. They consist of a
26-bp nucleotide sequence with a GC content of 50%. The target structure it aims to form is
an extraordinarily stable hairpin, comprising a single-stranded oligonucleotide chain of
26 deoxyribonucleotides. Within this sequence, there are 11 base pairs of complementary
pairings. The “nick” refers to the absence of phosphodiester bonds between the adjacent
5′ phosphate and 3′ hydroxyl ends. Between the two “nicks”, there exists a cohesive end
featuring four complementary base pairings, which provides sufficient recognition and
binding regions for DNA ligases.
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Figure 2. Detailed illustration of the biosensor’s state in the absence of DNA ligase. The probe
solution was prepared with 20 mM NaCl in deionized water.

3.2. Selection of DNA Ligase

The design of our biosensor leverages the DNA ligase’s most universal property, which
is its ability to form phosphodiester bonds between the juxtaposed 5′ phosphate end and 3′

hydroxyl end of dsDNA containing cohesive ends in the presence of ATP. Among these
ligases, the T4 DNA ligase stands out as the most extensively utilized enzyme in molecular
biology and biochemical experiments. Its ubiquity and ease of acquisition, as well as the
comprehensive understanding of its properties and activities, facilitate the prediction of
its performance under specific conditions. Moreover, the T4 DNA ligase exhibits wide
adaptability and high efficiency under varying reaction conditions. Consequently, these
factors make the T4 DNA ligase a suitable representative of DNA ligases for our purposes.
Additionally, since the detection strategy for DNA ligases primarily relies on the inherent
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catalytic activity of these enzymes, our current experimental findings can be extrapolated
to other DNA ligases as well.

3.3. Detection of T4 DNA Ligase Using the DNA Probes

A pilot study was carried out first to demonstrate the feasibility of our newly designed
DNA probes for detecting the presence of T4 DNA ligase. As depicted in the fluorescence
spectroscopic results (Figure 3(A)), the DNA probe exhibited a relatively low fluorescence
intensity (the blue curve with a peak value of 24.9 a.u.) in the absence of the T4 DNA ligase,
which indicated that only a partial dissociation of the double-stranded structures formed
by Oligo 3 and Oligo 4 occurred at room temperature, resulting in a small amount of
fluorescence produced by the residual unquenched fluorophore under the excitation light.
On the other hand, the fluorescence signal was greatly enhanced (the orange curve with a
peak value of 106.7 a.u.) when the DNA probes were incubated with 1.3 U/mL of the T4
DNA ligase (Figure 3(B)). This significant increase in fluorescence intensity indicated that
most of Oligo 1 and Oligo 3 were connected by T4 DNA ligase to form Oligo 5. After the
dissociation (Stage 2 in Figure 1) process, an extraordinarily stable hairpin was generated
from Oligo 5, which resulted in the separation of the Cy3 fluorophore from the BHQ-2
quencher that was modified on the 5′ terminal end of Oligo 4. Consequently, a large
amount of fluorescence was induced with the laser excitation at 515 nm, demonstrating
our DNA probe’s feasibility in detecting T4 DNA ligase using the F-7100 Fluorescence
Spectrophotometer.
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Figure 3. Fluorescence emission spectra in the absence (A) and presence (B) of T4 DNA ligase. DNA
probes (900 nM) and T4 DNA ligase (1.3 U/mL) were incubated with 40 mM Tris-HCl (pH 7.8),
10 mM NaCl, 10 mM MgCl2, 10 mM DTT, and 0.5 mM ATP at room temperature for 0.5 h, followed
by fluorescence spectroscopic examinations.

3.4. Optimization of Experimental Conditions for Effective Detecting of DNA Ligase

To achieve better sensing performance, several investigations were subsequently
carried out to optimize two main factors: incubation time and probe concentration. As
shown in Figure 4A, the fluorescence intensity of the DNA probes increases with the
incubation time. It reaches a plateau after 30 min (Figure 4A), which suggests that DNA
ligases can be rapidly and efficiently detected using our newly developed probes within
hours. Therefore, 30 min was chosen as the incubation time for the interaction of DNA
probes and DNA ligases in our following experiments. In the ligase-catalyzed DNA
ligation process, reaction efficiency is determined by the local equilibrium between four
free reactants (Oligos 1–4) and the intermediate formed by these oligonucleotides (DNA
duplex with two nick sites), which could be one of the rate-determining steps before the
enzyme recognizes and binds to its substrates. In addition, the separation of fluorophores
and quenchers is highly dependent on the effective induction of extraordinarily stable
hairpins from the nick-containing DNA duplex, which is a thermodynamic competition
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between different hydrogen bond combinations. Both of the two factors could contribute
to the slow rise in fluorescence as shown in Figure 4A.
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Figure 4. Optimization of experimental conditions for effective detecting of DNA ligase. (A) Opti-
mization of the incubation time for the interaction of DNA probes and DNA ligases. Five parallel
experiments were performed with a probe concentration of 800 nM and different incubation times of
5, 15, 30, 60, and 90 min to determine the optimal incubation time. All other experimental conditions
are described in the Materials and Methods section. (B) Optimization of the concentration of DNA
probes. To determine the optimal concentration of the DNA probe, six parallel experiments were
performed with DNA probe concentrations of 0.3, 0.6, 0.7, 0.9, 1, and 1.1 µM, respectively. All other
experimental conditions are described in the Materials and Methods section.

In addition to the incubation time, the DNA probe concentration was also optimized
in our study. In theory, it is evident that fluorescence intensity increases with an increase in
probe concentration, particularly in the presence of a relatively high enzyme concentration.
As depicted in Figure 4B, under conditions of 1.3 U/mL DNA ligase (a relatively high
concentration), we observed that when the concentration of the DNA probes reached
900 nM, the growth rate began to decrease. Further increasing the probe quantity would
hardly result in better sensitivities. Thus, 900 nM was selected in our current studies as the
standard probe concentration, which can also be adjusted according to the actual situation
of the specific application environment.

3.5. Measurement of the Limit of Detection (LoD) of DNA Probes

At optimal conditions, the fluorescence emission spectra of our DNA probes were
determined with T4 DNA ligases at different concentrations (0.01, 0.02, 0.05, 0.08, 0.1,
0.2, 0.5, 0.8, 1.0, and 1.3 U/mL), the results of which are given in Figure 5A. We found
that the fluorescence intensity increased with the concentration of the T4 DNA ligases.
Additionally, there was still a certain degree of increment in fluorescence intensity that
could be observed even at a low ligase concentration of 0.01 U/mL, which demonstrated
that T4 DNA ligases could efficiently catalyze ligation reactions and induce a certain
amount of fluorophore-containing hairpin structures at such a low concentration.

A regression analysis was performed with the fluorescence intensities collected at
561 nm, as shown in Figure 5B. According to the guideline EP17 [18], published by the
Clinical and Laboratory Standards Institute (CLSI), the limit of detection (LoD) of our
newly developed DNA probes on T4 DNA ligases is calculated as 0.055 U/mL as follows,
which is at the same level as some of the previously reported susceptible methods [13,14].

Fit model: Logarithm (Log3P1)
Fitting equation: y = A − B × ln(x + C)
A = 34.70, B = −83.88, C = 0.89
Meanblank = 0.00017 U/mL
SDblank = 0.028 U/mL
SDlow concentration sample = 0.0053 U/mL
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Limit of Blank: LoB was defined as the highest apparent analyte concentration ex-
pected to be found when replicates of a sample containing no analyte are tested. LoB is
estimated by measuring replicates of a blank sample and calculating the mean result and
the standard deviation (SD):

LoB = Meanblank + 1.645 (SDblank) = 0.046 U/mL

Limit of Detection: LoD is determined by utilizing both the measured LoB and test
replicates of a sample known to contain a low concentration of analyte. The mean and SD
of the low-concentration sample are then calculated according to

LoD = LoB + 1.645 (SDlow concentration sample) = 0.055 U/mL
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Figure 5. Measurement of the limit of detection (LoD) of DNA probes. (A) Fluorescent signal
responses with different concentrations of T4 DNA ligases. T4 DNA ligase concentration increases
from bottom to top: 0.01, 0.02, 0.05, 0.08, 0.1, 0.2, 0.5, 0.8, 1.0, and 1.3 U/mL. All experimental
conditions except for the enzyme concentration were kept the same as in the Materials and Methods
section. (B) Correlation between fluorescence intensity generated and T4 DNA ligase concentration.
The dashed line is obtained by linear regression. T4 DNA ligase unit (U) definitions: in the ATP-PPi
exchange reaction, 1 U is the enzyme required to convert 1 nmol [32PPi] to the Norit absorbable form
within 20 min at 37 ◦C.

4. Conclusions

In this study, we designed a highly sensitive and specific method for detecting DNA
ligases, taking advantage of the unique properties of extraordinarily stable DNA mini-hairpins.
The catalytic activity of DNA ligases was utilized to rejoin the nick sites that occurred within
the nucleotide sequences of these hairpins, which stimulated the separation of the fluorophores
and quenchers and further induced fluorescence signals from the DNA probes. It is the first
time that the detection of DNA ligases with particular hairpin sequences has been achieved
in a simple and fast manner, requiring only one reaction and mild conditions. This versatile
detection method can be further applied to the real-time monitoring of intracellular DNA ligase
activity, offering valuable insights for biomedical research. Currently, the insufficient cellular
affinity of this biosensor prevents it from effectively entering cells. Our next steps involve
transforming the dual-molecular probes into single-molecule ones and further integrating
our fundamental principles with a variety of nanocarriers (e.g., quantum dots, liposomes,
and polymeric micelles), which could help the probes extravasate into cells and tissues via
enhanced permeability and retention effect. In addition, the native deoxyribonucleic acid
backbones of the non-extraordinarily stable hairpin structure can be replaced with methyl-
or phosphorothioate-modified backbones to improve its metabolic stability from nuclease-
mediated degradation in serum. As research on cellular detection techniques advances,
this approach could potentially evolve into diagnostic tools for various diseases and target
identification in drug discovery in the future.
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