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Abstract: Microfluidic droplets accommodating a single cell as independent microreactors are fre-
quently demanded for single-cell analysis of phenotype and genotype. However, challenges exist
in identifying and reducing the covalence probability (following Poisson’s distribution) of more
than two cells encapsulated in one droplet. It is of great significance to monitor and control the
quantity of encapsulated content inside each droplet. We demonstrated a microfluidic system embed-
ded with a weakly supervised cell counting network (WSCNet) to generate microfluidic droplets,
evaluate their quality, and further recognize the locations of encapsulated cells. Here, we systemati-
cally verified our approach using encapsulated droplets from three different microfluidic structures.
Quantitative experimental results showed that our approach can not only distinguish droplet en-
capsulations (F1 score > 0.88) but also locate each cell without any supervised location information
(accuracy > 89%). The probability of a “single cell in one droplet” encapsulation is systematically
verified under different parameters, which shows good agreement with the distribution of the passive
method (Residual Sum of Squares, RSS < 0.5). This study offers a comprehensive platform for the
quantitative assessment of encapsulated microfluidic droplets.

Keywords: droplet microfluidics; convolutional neural network (CNN); single-cell encapsulation;
image recognition

1. Introduction

Droplet-based microfluidic platforms have been broadly adopted in various biotech-
nology applications, such as directed evolution, single-cell sequencing, and digital PCR,
owing to their high-throughput capacity and single-molecule sensitivity. In addition, its
miniaturization offers great advantages due to a larger surface-to-volume ratio, which
confers reproducible microreactors to discretize reagents into picoliter or nanoliter vol-
umes [1,2]. Benefiting from isolated microenvironments, precise manipulation of the
number of cells inside each droplet makes it possible to study phenotypic and genetic
heterogeneity at the single-cell level. Accordingly, it is essential to generate and monitor
highly uniform droplets with single-cell encapsulation for single-cell analysis [3,4].

Several methods have been proposed for the passive generation of uniform micro-
droplets [5]. The coflowing structure was first introduced while the dispersed phase
and continuous phase coaxially flowed along the inner and outer coaxial capillaries, re-
spectively [6]. The dispersed phase with cell contents formed a flow focusing inside the
continuous phase and automatically broke into droplets with encapsulated cells due to
capillary instability. Correspondingly, flow-focusing structures were also applied where the
dispersed phase received the combined force of the pressure drop and shear stress exerted
by the continuous phase [7]. It has shown a good advantage in throughput since smaller
droplets were periodically generated at a higher frequency. Similarly, in the T-junction
structure [8], the dispersed phase is perpendicular to the continuous phase and changes the
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symmetric force into an asymmetric force. In addition, the interface curvature of the two
phases could suddenly decrease within an abrupt change in the channel dimension, result-
ing in a decrease in the Laplacian pressure and producing outward drag [9]. Considering
their reproducibility and robustness, flow-focusing microfluidic chips fabricated by soft
lithography processing have been widely used to generate homogeneous microdroplets for
cell encapsulation.

With limited exceptions, the number of cells encapsulated per droplet using passive
methods is restricted by Poisson statistics [10], where a theoretical maximum of 36.78% (1/e)
of all droplets contain exactly one cell. However, even at the cost of specificity, 26.42%
of droplets will contain at least two cells, namely, the covalence probability, reducing the
effective rate of single-cell encapsulation. Recently, many efforts have been made to break
the inherent limits by regularly ordering cells in inertial [11,12] or close-packed channels,
on-demand encapsulation, and post-encapsulation sorting, while massive microdroplets
are produced with a generation rate on the order of 1~10 kHz. Instead of manual cell
counting and analysis, this growing advance has created an active need for computational
tools capable of processing many droplets. In addition, various parameters related to the
microdroplet formation process will affect the final size distribution and encapsulation
rate and need to be periodically monitored with quality control [13]. Therefore, it is highly
necessary to develop complementary and automatic methods to evaluate the equality of
generated droplets and quantify the encapsulated contents.

There has been some research [14–18] focusing on these tasks based on the video
frames acquired by a high-speed camera in which the droplets are clearly separated. This
dynamic strategy suffers from fuzzy motion and neglects droplet fusion that occurs down-
stream of the imaging scope. Hence, the monitoring of dynamic droplet generation is useful
but insufficient. A two-stage object detection framework [19–21] has been applied to static
microscopic images to separately recognize the generated droplets and the encapsulated
cells. In the first stage, available droplet proposals are generated with their boundaries
segmented by masks. Considering the differences between droplets and oil backgrounds,
morphological analysis is first applied to yield droplet proposals. Some research extracts
their edge feature maps and adopts the Hough transformation to find circular-like con-
tours [15,22,23]. Background models and connected component analysis [16,24] are applied
to segment the droplet foreground and locate droplet proposals. These methods work
appropriately on transparent and separate droplets while encountering difficulties with
opaque and adherent droplets. In the second stage, there are two kinds of approaches for
detecting encapsulated contents and classifying droplets, including morphological analysis
and machine learning algorithms. Basu et al. [14] directly judged whether droplets encap-
sulated any particles by quantifying the deviation of their internal grayscale. Similarly, the
standard deviation in the distance between the contour and gravity center of droplets is
employed [19]. However, these morphological methods rely heavily on imaging quality
and cannot count the cell number. Adopting machine learning, the random forest was uti-
lized to precisely detect beads inside each droplet with manual labeling [20]. Handcrafted
features were fed into a support vector machine (SVM) to classify droplets into empty,
single-cell, and multicell encapsulations [25]. Convolutional neural networks (CNNs) were
also employed [26] to classify encapsulated droplets. Although these methods can extract
superficial droplet or cellular information, they are frequently restrained in their ability
to quantify cell encapsulation and require considerable model parameters and excessive
training time.

Reconsidering the recognition task of cell-encapsulated droplets, we realized that
the key difference is the cell quantity rather than the divergence of cell-like features.
Traditional classifiers can generally learn the bias among different categories; unfortunately,
they cannot count the cell population in each droplet. Research on cell counting mostly
adopts regression approaches to estimate the density map of a given medical image [27],
while the integral of the density map might intuitively indicate the cell number. These
fully supervised learning approaches require tedious cell-level annotation for the training
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procedure, including a precise cell population [28] and the accurate location of each cell [29].
To avoid time-consuming annotation, three droplet-level labels (empty, single-cell, and
multicell encapsulation) instead of cell-level labels are adopted in this paper. Accordingly,
we developed a microfluidic system embedded with a recognition algorithm to generate
microfluidic droplets, monitor droplet size, and further recognize the encapsulated numbers
of cells. A morphological approach named adaptive scale template matching (ASTM) was
first proposed to generate proposals. Second, to distinguish and categorize droplets by the
number of encapsulated cells, the cell population inside each droplet was estimated by a
weakly supervised cell counting network (WSCNet). Next, this algorithm also provides
the location prediction of each cell, which is more explainable and reasonable compared
with a CNN-based classifier. In addition, we verified our approach with intricate droplet
data collected from three different microfluidic structures under different experimental
parameters. Quantitative experimental results showed that our approach can not only
distinguish droplet encapsulations (F1 score > 0.88) but also locate each cell without any
supervised location information (accuracy > 89%). We also demonstrated the feasibility of
this combined microfluidic system and cell counting network approach towards single-cell
encapsulation analysis. The probability of “single cell in one droplet” encapsulation is
systematically verified under different parameters and is in good agreement with the
Poisson distribution. The whole system is self-contained, and the proposed counting
networks are tiny and effective, which can be easily employed as a comprehensive platform
for the quantitative assessment of encapsulated microfluidic droplets.

2. Working Principle
2.1. Principles of Droplet Generation

The flow-focusing structures were characterized by square cross sections of identical
height h that intersected at right angles, as shown in Figure 1a,b. Two continuous phase
channels symmetrically intersected with a dispersed phase channel on both sides and
exited from the outlet channel. Different flow regimes were observed in the flow-focusing
channel, including squeezing, dipping, jetting, and tubing regimes [10,30]. In addition,
several submodes can also be observed depending on the details of the chip design and the
flow rates of the dispersed and continuous phases [31]. This study focuses on the jetting
mode and its transition from the dripping mode for cell encapsulation. Supplementary
Figure S1 shows representative pictures of these regimes.

Although several numerical simulations have been reported [32], there is no fully
defined theoretical model that can quantitatively explain the relevant parameters and
critical points of all regimes [33]. It is qualitatively explained that droplet formation in the
dripping and jetting regimes is affected by end-pinching and Plateau-Rayleigh instability,
respectively [34]. Rayleigh instability confers surface tension and magnifies the natural
disturbance in the fluid thread, while the end-pinching mechanism is due to the pressure
gradient of the continuous phase squeezing the neck of the fluid thread [35]. The transition
from dripping to jetting regimes can also be regarded as the Rayleigh instability changing
from local to convective regions [31].
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Figure 1. A microfluidic system embedded with a recognition algorithm for the generation and recog-
nition of cell-encapsulated droplets. (a–c) Optical micrographs depicting the geometry of the A-type,
B-type, and C-type microfluidic chips for cell encapsulation. (d) Photograph of the droplet generation
system composed of a microfluidic chip, multichannel syringe pumps, an inverted microscope, a
USB camera, and a computer embedded with our proposed algorithm. (e) Representative initial
microscope image of the generated droplets with cell per droplet (CPD) λ = 0. (f) Representative
result of droplet segmentation and cell classification with CPD λ = 0.22. The droplets were divided
into empty, single-cell, and multicell encapsulations (red, blue, and green circular masks, respectively)
according to the encapsulated cell count. The scale bar represents 100 µm.
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2.2. Droplet Encapsulation and Poisson Distribution

Diluting cells into the dispersed phase before droplet formation is one of the most
common methods for single-cell droplet encapsulation. The basic principle is to adequately
dilute the cell suspension (λ < 1), ensuring that no two cells appear inside the same
droplet. When the droplet is generated in a uniform and stable manner, the probability
distribution of the cell number in the droplet follows the Poisson distribution [10]. Assume
the average number of cells in each microdroplet (cell per droplet, CPD, cell density divided
by droplet volume) is λ; then, the probability of k cells in one microdroplet can be calculated
according to:

ρ(k) =
λk

k!
exp(−λ) (1)

Supplementary Figure S2 and Note S1 show that the single-encapsulated, multicell-
encapsulated, and encapsulated rates increased to different degrees, while the single-
cell rate (the proportion of droplets containing exactly one cell to those containing cells)
decreased rapidly with increasing λ. Considering the results of cell detection in the droplet,
the proportion of positive droplets is:

Md

Nd = 1− ρ(0) (2)

where Nd and Md are the numbers of detected microdroplets and positive microdroplets,
respectively. According to Equation (1), the observed value λ of CPD can be calculated
as follows:

λ = −ln

(
1− Md

Nd

)
(3)

Therefore, the posterior λ depends on three elements: uniformity of the formation
process of microdroplets (ensuring the cell number in a droplet meets the theoretical
distribution), detected microdroplets Nd, and positive microdroplets Md. The first element
is related to the microdroplet formation process, and the last two elements are related to
the sampling process.

2.3. Droplet Recognition and Cell Counting

To realize the objective statistics of the droplet quality and the number of encapsulated
cells, we developed an automatic algorithm for the image recognition of cell-encapsulated
droplets. Figure 2 exhibits the whole procedure of our approach, in which droplet proposals
are first generated by adopting ASTM, and second, the proposals are fed to a WSCNet to
remove false positive proposals and further count the cell population of true positives.

For small target segmentation of dense and adhesive droplets, ASTM is proposed
by using adaptive shrinkage according to the response of circular template matching and
foreground image binarization. Next, a greedy search is utilized to locate the candidate
droplets, as shown in Figure 2b, and then the non-maximum suppression filter is used to
remove the redundant concentric circles and generate the final segmentation of droplet
proposals. Finally, to realize cell counting and localization in droplets, we proposed a
WSCNet based on a weakly supervised CNN. The training process of the model only needs
droplet-level labels, providing the droplets with two kinds of precise numbers (sterile, one)
or one fuzzy number (at least two). We optimized the truncation loss function according
to the label and the weak supervision strategy, which in turn accurately predicted the cell
counts and location by the integral and the maximum of the density maps.
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Figure 2. The framework of our proposed approach. (a) The original input for the framework is a
full-frame image with highly adherent droplets. (b) Details of the adaptive scale template matching
(ASTM) algorithm. (c) Droplet proposals are first generated by ASTM to segment all droplets.
(d) Proposals are then fed to the weakly supervised counting network (WSCNet), which not only
removes false positive proposals but also locates all cells in true positive droplets. ASTM and the
WSCNet are highlighted with an orange block diagram, while their corresponding functions are
droplet proposal generation and cell recognition, respectively. (e) False positive proposals and cells
are marked by a yellow circular mask and labeled by red points, respectively. According to the number
of encapsulated cells, all droplets are reclassified into empty, single-cell, and multicell encapsulations,
marked by red, blue, and green circular masks, respectively. (f) The detailed architecture of the
WSCNet consists of classification and counting branches, which perform cell counting and localization
or act as filters to remove false positive proposals, respectively. The scale bar represents 50 µm.

3. Materials and Methods
3.1. Microfluidic Chips and Experimental Platform

Hydrodynamic flow-focusing structures were used to generate droplets, while bacte-
rial cells were successively encapsulated. We constructed a microfluidic droplet generation
platform, as shown in Figure 1d, including different microfluidic chips, a multichannel
syringe pump (TS-1B, Longer Precision Pump Co. Ltd., Baoding, China), an inverted
microscope (Motic AE31, Panthera, Xiamen, China), a USB camera (acA1920, Basler Asia
Pte. Ltd., Singapore) with a resolution of 1920:1200, and a computer embedded with our
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proposed algorithm. The camera and microscope with 10/20/40× objectives provided clear
images of cells larger than 2 µm. Three microfluidic chips with different geometries were
established, as shown in Figure 1a–c, to compare and validate the generalization ability
of the algorithm on intricate data collected from different chips. The first two geometries
generated the encapsulated droplets based on passive methods, while a serpentine inertial
focusing channel [11] was added to the third geometry to preorder cells and attempt to
improve the single-cell encapsulation rate.

All microfluidic layers were fabricated using standard soft photolithography with
patterns etched on silicon wafers [1]. Master molds with 20–40 µm-thick SU-8 were fab-
ricated in a clean room. The PDMS (polydimethylsiloxane) base and its curing reagent
(Slygard 184, Dow Corning, Midland, MI, USA) were thoroughly mixed and degassed in a
vacuum oven. Next, the PDMS mixture was cast onto the SU-8 molds, cured at 85 ◦C for
1 h, and peeled off from the molds. The PDMS slab was cut into a suitable size, punched for
inlets and outlets, and bonded to a glass substrate after oxygen plasma treatment (Femto,
Diener Electronic, Ebhausen, Germany). Aquapel (PPG Industries, Pittsburgh, PA, USA)
was injected into the microchannels and blown out after 5 min for surface modification.

The encapsulated droplets were captured at two periods for training and inference
purposes. The first period lasted for two months, and 830 images with a resolution of
640 × 480 were collected with a mean of 191.55 droplets per image for algorithm training.
All the images were randomly divided into a training set, a validation set, and a test set
according to a ratio of 4:1:1. There were four types of samples to be classified: background,
empty, single, and multiple, while the background samples were extracted by random
sampling on the background of the droplet images. Only three droplet-level labels were
provided for the training stage. To quantify the localization performance of our approach,
we pinpointed the center of each cell (diameter 3–10 µm) in the test dataset of multicell
encapsulation, which was not applied in the training procedure. The number of samples in
each dataset is shown in Table 1.

Table 1. The distribution of the dataset in different periods for network training and inference.

Category
Stage Training *

Inference
All Train Validate Test

Background -- 28,000 7000 7000 --
Empty 134,188 12,000 3000 3000 >200,000
Single 18,933 12,185 3358 3390 ~25,000

Multiple 5830 3821 945 1064 ~8000
* The distribution of the dataset in the first period for network training.

Since the population of empty droplets is far larger than the population of single and
multiple encapsulations, a random sampling subset of the empty samples was adopted
in the training, validation, and testing. The number of background samples was approxi-
mately equal to the sum population of the other three samples, while the former and the
latter were used as the negative and positive samples for the binary classification branch,
respectively.

The second period followed the first period and lasted for six months; its purpose
was to verify the generalization performance of the proposed algorithm on multitasking.
Ninety-three groups of cell-encapsulated droplet generation are implemented for inference,
each under different parameters, including microchip structures (A/B/C type), flow rates of
the dispersed and continuous phases (Q1 and Q2), and CPD (λ), to generate different image
distributions. More than 1800 images were collected from three microfluidic geometries
(more than five chips were tested for each geometry), each containing 100~250 droplets.

3.2. Convolutional Neural Network-Based Imaging Recognition

We proposed a CNN-based recognition algorithm to evaluate droplet quality (size and
distribution) and further recognize the encapsulated cell (amounts and position) in two
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stages. In the first stage, ASTM is proposed to heuristically generate droplet proposals from
the binary foreground of highly adherent droplet images segmented by the Otsu algorithm,
as shown in Figure 2b. Specifically, assuming a circular binary template is denoted by
T and its initial diameter is r, the matching response in the foreground D (x, y) can be
computed by:

D(x, y) = ∑a,b ∈ [0,r) T (a, b)F
(

x + a− r
2

, y + b− r
2

)
(4)

where F denotes the binary foreground image. D (x, y) is essentially the ratio of the
foreground area inside the template to the full template area. Consequently, its maximum
corresponds to the largest foreground area covered by the template, which can be computed
by πr2Dmax. Droplet proposals can be generated by the greedy search of all local maxima.

Nevertheless, the diameter of the droplets varied due to unpredicted fusion or flow
disturbances. A template with a minor r can locate small droplets but yield an inaccurate
Dmax for large droplets, and vice versa. It is necessary to elaborate an adaptive scale
template to find all droplets with different diameters. The pixels with Dmax higher than a
predefined threshold σ were marked as the center of a droplet proposal, while the current
template scale suggests its diameter. In contrast, if allDmax are less than σ, the next template
scale is adaptively shrunk by:

rnext =
√
Dmax × rcur (5)

Since overlapping bounding circles might occur in one true droplet, non-maximum suppres-
sion (NMS) [36] is employed to remove redundant circles, as shown in Supplementary Figure S3.

In the second stage, the cell-encapsulated droplets were detected using droplet propos-
als. We developed the WSCNet to estimate the number of cells and predict their positions.
To avoid tedious and manual cell-level annotation, only three droplet-level labels, including
empty, single-cell, and multicell encapsulation (0, 1, >1), are adopted. The WSCNet consists
of classification and counting branches, as shown in Figure 2f. The former serves as a filter
to remove false positives from previously generated proposals. Similar to other counting
tasks [27,28], the output of the latter branch is a single-channel density map, and its integral
and local maxima may indicate the number and location of cells, respectively. Cross entropy
was adopted by the classification branch as the loss function Lclass to provide a predicted
label (droplet or false positive). The counting branch may employ the mean square error
(MSE) between the label and the prediction as a loss function:

Lcount = ‖ f (D)− y‖2 (6)

where y suggests the supervision, i.e., the true counting label, and D and f (D) denote the
output density map and its counting prediction, respectively. Considering that the multicell
encapsulation contains at least 2 cells, we quantify its label as 2 and truncate its counting
prediction to 2, which can be formulated by:

f (D) =
{

Dsum Dsum < 2
2 + γ×Dsum Dsum ≥ 2

(7)

where Dsum = ∑
i,j
D(i, j) indicates the integral of the density map obtained by global sum

pooling and γ represents a small constant that provides a gradient. A regularization
performed on each density value is added to Equation (6) to avoid overestimating the
counting prediction caused by the truncation:

ψ(D) =
{

Dmax − 1 Dmax > 1
0 Dsum ≤ 1

(8)
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where Dmax represents the max value in the density map obtained by global max pooling.
The loss function Equation (6) for the counting branch can be rewritten as follows:

Lcount = ‖ f (D)− y‖2 + ψ(D) (9)

Finally, the loss function of the whole network containing two branches is given with
a weight of ω:

L = ω×Lcount + (1−ω)×Lcount (10)

The classification branch provides a predicted label, and the counting branch outputs
a density map with the same resolution as the input image. The density map is valid only
when the predicted label is a droplet. Dsum suggests the number of encapsulated cells, and
the first bDsum + 0.5cmaxima in the density map indicate the cell location. According to
the predicted cell numbers, it is easy to reclassify the droplets into three categories (empty,
single cell, and multicell) for comparison with other classification-based approaches:

id = arg min
k ∈ {0,1,2}

(Dsum − k)2 (11)

More details on the proposed algorithm are described in Supplementary Notes S2 and S3.

3.3. Network Implementation and Evaluation Metrics

We set the matching response threshold σ, the small constant γ, and the weight ω to
0.98, 0.001, and 1, respectively. ReLU is adopted as the activation function in the whole
network. The batch size is set to 1024. The learning rate is initialized at 10−4 and adjusted
by the loss of the validation set. Inspired by the interaction over union (IoU) of bounding
boxes in object detection issues, we adopt a bounding circle IoU to distinguish the true
positive predictions, as shown in Figure S4, which is calculated by:

IoU =
Area

(
Cgt ∩ Cpre

)
Area

(
Cgt ∪ Cpre

) (12)

where Cgt and Cpre represent the true and predicted bounding circles of a droplet, re-
spectively. A droplet proposal with an IoU higher than a threshold θ indicates a true
positive prediction.

We evaluate our algorithm from three angles. First, recall and precision are adopted
to evaluate the performance of the ASTM on the generation of droplet proposals. Second,
the metric F1, computed by Equation (13), is employed to quantify the performance of
the WSCNet on the recognition of the encapsulated cell number. Additionally, the F1
score, model size, and training time are utilized to compare with other classification-based
approaches. Third, to quantify the location performance of our approach, a circular mask
with an x-pixel radius centered at each annotated cell centroid is regarded as a valid area.
Accordingly, a location prediction that is nearest to a cell centroid and falls into its valid
area is a true positive; the metrics are also adopted to evaluate the location performance of
the WSCNet.

F1 =
2× Precision× Recall

Precision + Recall
(13)

In addition, since our algorithm can provide the exact cell population of each droplet,
the cell number in the droplets can be constructed. We, therefore, selectively labeled the
exact cell population of the multicell encapsulation to evaluate the predicted number, which
is not applied in the training procedure. The counting performance can be measured by the
mean relative error (MRE).

3.4. Experimental Setup for Droplet Generation and Cell Encapsulation

The microfluidic chips were placed on the stage of an inverted microscope for ob-
servation and recording. Multichannel syringe pumps were used to inject the dispersed
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and continuous phases into the corresponding inlets. In most generation experiments,
a mixture of mineral oil was used as the continuous phase, including 3% (w/w) EM90
(ABIL, Evonik, Essen, Germany), which served as a surfactant, decreasing the surface
tension, and 0.1% (v/v) Triton-100 dissolved in light mineral oil (M5310, Sigma–Aldrich,
St. Louis, MO, USA). In partial experiments, Novec 7500 (3 M Inc., St. Paul, MN, USA)
with 1% dSURF surfactant (DR-RE-SU, Fluigent, Le Kremlin-Bicêtre, France) was used as
the continuous phase.

Yeast cell solution in PBS premix was used as the dispersed phase, consisting of
40% (v/v) OptiPrep medium (D1556, Sigma–Aldrich) or 30~50% glycerol (356350, Sigma–
Aldrich) and PBS to prevent cell sedimentation. Yeast (Saccharomyces cerevisiae) was cultured
for standard resuscitation at 28 ◦C in a YPD medium (formulated with 20 g of glucose, 10 g
of yeast extract, and 10 g of peptone dissolved in 1 L of distilled water). After well blending,
the diluted cells were incubated at room temperature, and the cell fractions were washed
twice by resuspending in PBS and discarding the supernatant after 1000 rpm centrifugation
for 5 min to remove residual debris and doublets. Before sample mixing, 10 µL of cell
solution was stained for activity analysis and density calculation (Dcell).

In all experiments, droplets were generated within the microfluidic chips by injecting
the dispersed and continuous phases at designated flow rates. The cell-encapsulated
droplets were collected into EP tubes, and one drop was added onto glass slides pasted
with rectangular enclosures that were prepacked with oil. Microscopic images of droplets
were acquired with a USB camera, while the mean size (Rcell) and coefficient of variation
(CV) were automatically calculated with the proposed algorithm. Therefore, the average
number of cells in each microdroplet (CPD, λ) was quantified as the cell density Dcell
divided by the droplet volume 4/3πR3

cell. The cell counts of the encapsulated droplets
were automatically analyzed and labeled by the proposed method. Multiple statistical
results were fitted to the Poisson distributions, with error analysis conducted by the Chi-
Squared and Residual Sum of Squares (RSS) tests.

4. Results and Discussion
4.1. Preliminary Experimental Analysis of Droplet Generation

Preliminary experiments with the droplet system are crucial for the transition from
recorded images to recognized data, as mentioned in the working principle and Equation (3).
The uniformity in the droplet formation process is essential for cell encapsulation, which
is highly influenced by flow regimes; e.g., droplets are not stably generated in the tubing
or transition regime. The relationships of droplet generation between different regimes
are summarized as flow patterns according to the flow rates of Q1 and Q2. As shown in
Figures 3a–c and S1 when Q2 was fixed and Q1 increased, the flow transitioned between
dripping, jetting, and tubing regimes. However, the reverse transition occurred in most
cases when Q1 was fixed and Q2 increased. This trend is intuitively understandable: an
increase in Q1 means that its occupied area at the exit of the cross channel will be larger,
so it will take a longer distance for the disturbance to expand until the dispersed phase
breaks into droplets. In addition, the increase in the total flow rate allows the fluid to move
a longer distance at the same interval. Growth in Q2 also had a stronger effect on reducing
the cross-sectional area of the dispersed phase. Therefore, the transition direction was
usually from the tubing to the jetting and then to the dripping regime.

From the comparative study, it is not difficult to conclude that at the same Q2 flow rate,
reducing the surface tension (surfactant) and increasing the viscosity of the dispersed phase
(glycerol ratio) can make the regime change from dripping to jetting at a lower Q1 flow rate.
This is a logical result when the transition from dripping to jetting is considered a transition
in Rayleigh’s theory from local instability to convective instability. Similarly, decreasing
the surface tension and increasing the viscosity both moved the jetting-tubing boundary
down. In addition, we also found the capillary numbers CQ1 and CQ2 to be more relevant
in terms of the influence of physicochemical properties. According to the independent
change in Q1 or Q2 over at least one order of magnitude, it is suggested that the transitions
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between dripping and jetting usually occur around the critical value Cac ≈ 10−1, which is
consistent with a previous study [31]. These results were reproducible for different batches
of microfluidic chips, as shown in Figure 1e,f.
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Figure 3. Mode diagrams of droplet generation as a function of the two-phase velocity. (a) Flow
patterns of a 30% glycerol-PBS solution as the dispersant phase and a surfactant-added mineral oil
solution as the continuous phase. (b) Flow patterns of a 30% glycerol-PBS solution as the dispersant
phase and mineral oil as the continuous phase. (c) Flow patterns of a 50% glycerol-PBS solution
as the dispersant phase and mineral oil as the continuous phase. The flow rates of the dispersed
and continuous phases are introduced as Q1 and Q2, respectively. n = 3 independent experiments.
(d) The performance results of recall and precision at different IoU thresholds in recognizing droplet
proposals. Inset: predicted droplet proposals marked with red circles.

4.2. Quantitative Performance of Droplet Recognition

To validate the sensitivity of droplet proposals generated by the ASTM approach, we
evaluated its performance under different IoU thresholds θ, from 0.5 to 0.85 with a step of
0.05, as shown in Figure 3d. In the case of object segmentation, IoU evaluated the overlap
between the ground truth and the prediction region. When θ was set to the traditional 0.5,
the recall and precision were greater than 0.97 and 0.9, respectively, which suggests that
the droplet proposals cover more than 97% of the true droplets and more than 90% of the
droplet proposals are true positives. In addition, the recall was still greater than 0.93 even
though θ rose to 0.8 (a tougher condition), indicating that ASTM is robust and insensitive
to the thresholds θ. Insets of Figures 3d and S5 also show representative results of droplet
proposals in some special images, including multiscale and highly adherent droplets.
In addition, the ASTM algorithm also calculated the droplet diameter and distribution
deviation, as shown in Figure 4 and Supplementary Video S1.
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Figure 4. The size uniformity of generated droplets can be characterized and monitored with the
proposed method. (a) Relationship between normalized jetting droplet diameter (droplet diameter
divided by the length scale of the nozzle) and the flow rate ratio ϕ (Q1/Q2). (b–d) The mean
diameters of generated droplets were calculated under different mean numbers of CPD λ on A-type,
B-type, and C-type microfluidic chips. The mean diameters of the generated droplets are 20.88 ± 2.28,
27.29 ± 2.91, and 26.29 ± 5.33 µm. More than 1500 droplets are measured in each independent
experiment. Chip symbol: yellow A-type, blue B-type, and violet C-type microchips.

To evaluate the droplet generation under different parameters, we recorded and
recognized the static images of generated droplets on A/B/C chips at different flow rates
of Q1 and Q2 and CFD λ. For example, using the A-type chip, the same compatibility ratio
of dispersed and continuous phases, and different λ, we set the flow rate of the dispersed
phase to 0.06 mL/h and adjusted the Q2 flow rate in the range of 0.8 to 1.2 mL/h. The
droplets were obtained with a mean diameter of 19 µm and a CV of less than 4% and
verified by repeated experiments (n > 5). The droplet was also generated in the B-type
chips at a frequency of 6 kHz, and the droplet size CV was approximately 2.6%, indicating
good monodispersity. Considering the independent change in ϕ = Q1/Q2 over at least one
order of magnitude, as shown in Figure 4a, the droplets generated by A-type and B-type
chips shared similar normalized droplet diameters (diameter divided by the length scale of
the nozzle) of 1.76 ± 0.14 and 1.50 ± 0.06, respectively. In contrast, the droplets generated
by C-type chips showed less normalized droplet diameter, which also decreased with
increasing flow rate ratio ϕ. To compare the influence of encapsulated cells on the diameter
of droplets, we calculated the average diameter and standard deviation at different λ ratios,
as shown in Figure 4b–d. More than 1500 droplets are measured in each independent
experiment. The mean diameters of the generated droplets on different microchips were
20.88 ± 2.28, 27.29 ± 2.91, and 26.29 ± 5.33. In addition, it was obvious that as the CFD
λ increased, the cell burden on droplets increased, so that the droplet diameter increased
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in response. These experiments also showed that in the C-type chip, the diameter is most
susceptible to the influence of λ, as the slope (19.6± 4.0) of the fitting curve was significantly
higher than that of the other groups (p value < 0.01). In contrast, the B-type chip with a
straight inlet channel demonstrated a more independent diameter. These results suggested
differentiated applications for the different chips, while the performance of the inertial
focusing channel depended on the flow rates and CFD λ.

4.3. Quantitative Performance and Comparison of Cell Recognition

For the cell recognition stage, we quantified the cell location performance under
different radii ranging from 4 to 10 pixels, which is shown in Supplementary Figure S6.
To quantify the localization performance, we first pinpointed the center of each cell in the
test dataset of multicell encapsulation, which was not applied in the training procedure.
According to the location of the ground truth pixel and the predicted pixel by our method,
a circular mask with a preset threshold of the x-pixel radius centered at the annotated cell
centroid was regarded as a valid area. It can be assumed that more than 80% of cells in
droplets were precisely located when the radius was set to 10 pixels; meanwhile, over
89% of location predictions fell into valid cell areas. Even though the radius drops to
5 pixels, the precision and recall remain above 0.73 and 0.66, respectively, indicating that
the proposed WSCNet effectively achieved the assignment of cell location. Figure 5a shows
representative results of cell location in droplets, with green and red points marking the
ground truth and predicted location, respectively. The encapsulated cells were detected
and localized from the droplet proposals in the second period for inference on different
chips, as shown in Figure 5b. Reconsidering the weak supervision of droplet-level labels,
it can be explained that the network learns both cell features and cell numbers from the
difference between empty and single-cell encapsulation and identifies the learned features
to determine multicell droplet encapsulations.

Classification-based algorithms were applied as benchmarks by classifying the propos-
als into different categories. Because these algorithms only categorize the droplet proposals
into three categories, Equation (11) was adopted to reclassify the cell counting result of
our algorithm for the comparative study of the entire process. The metric F1 score was
adopted to quantify the overall recognition performance of the three droplet categories un-
der different θ values ranging from 0.5 to 0.85. Comparing the WSCNet with AlexNet [37],
VGG16, Inception V3 [38], ResNet18, ResNet34 [39], and other classification networks,
it was found in Figure 5c–e that the WSCNet algorithm showed the highest F1 scores
in empty, single-cell, and multicell encapsulated droplets. The increase in θ indicated a
tougher judgment criterion for true positives and consequently led to a decrease in the F1
score of each category. It is noticeable that the F1 scores did not drop significantly until
θ rose to 0.8, suggesting the same conclusion as the performance quantification in the
droplet proposal generation stage.

At the junction ratio of θ = 0.7, the F1 scores of the WSCNet were 0.86, 0.86, and
0.93, showing a mean F1 score > 0.88. In addition, our approach counted the number of
cells without the heavy burden of manual annotation on the precise number (only 0, 1,
or > 1 was provided). Therefore, it outperformed other classification-based algorithms by a
large margin in recognizing multicell droplet encapsulations. It is important to note that the
WSCNet not only counted the cell population but also located cells without any location
information in the network training by searching the local maxima in the density map.
Some visualization examples are shown in Figure 5a,b, in which the counting network
managed to locate cells with different scales in droplets.

Table S1 summarizes the recognition performance in the comparative study. It is
obvious that most of the approaches achieved comparable performance in recognizing
empty droplets, while our counting-based method ranked first in distinguishing both
single-cell and multicell droplet encapsulation. Our method achieved nearly the same
recognition performance as ResNet34 and maintained only one-eighth the size of the model.
Although VGG16 and InceptionV3 achieved better performance on the recognition of
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empty encapsulated droplets, their model size was much larger, and their training time was
nearly ten times that of ours. In addition, the model parameters of the proposed network
occupied the smallest memory, suggesting that our algorithm is small and effective. More
than 300,000 images of droplets are verified by the proposed algorithm, and the MRE of the
cell count was 5.96% for droplets with single cells and 12.54% for droplets with multiple
cells. It is worth noting that this weakly supervised learning strategy avoids pixel-level
labeling of cell location.
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Figure 5. Comparative results of image recognition algorithms for cell-encapsulated droplets. (a) Vi-
sualization of cell location in the first period for network training and testing. Only three droplet-level
labels were provided for this training stage. The ground truth of each cell in the test dataset of mul-
ticell encapsulation is marked as green points, which were not applied in the training procedure.
(b) Visualization of cell location in the second period for inference on three different microfluidic chips.
The first rows denote the original droplet images. Red points mark the predicted location of each cell.
(c–e) The F1 values of encapsulation recognition on each droplet type, including multicell, single-cell,
and empty droplets, were derived from comparative methods under different IoU thresholds.

4.4. Independent Test Performance on Cell-Encapsulated Droplets

We further verified this microfluidic droplet platform embedded with the proposed
algorithm for multitask recognition performance on cell-encapsulated droplets. The images
of cell-encapsulated droplets were further analyzed after generation from microfluidic
chips with different geometries at different λ. It has been proven that droplets with a size of
14–26 µm can be stably generated with a diameter deviation of less than 4% at a generation
frequency of 2–9 kHz. Typical values of single-cell and multicell encapsulation rates were
24.89% and 3.74%, 17.75% and 1.63%, and 24.05% and 3.72%, respectively, given by the
recognition algorithm. In addition, the representative result of the cell number distribution
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is exhibited in Supplementary Figure S7 with CPD λ = 0.16 encapsulated in microfluidic
droplets. The single-cell and double-cell encapsulation rates were approximately 12% and
2%, respectively, while less than 1% of the total drops encapsulated more than two cells. In
this inference stage, it is suggested that there is no significant difference (p value < 0.05)
between the number predicted by the proposed method and the true cell count.

Finally, we summarized the recognition results of 93 group images of cell-encapsulated
droplets under different parameters. The comparison between the experimental results,
their nonlinear fitting, and the theoretical distribution of different droplets is plotted
in Figure 6 under different CFDs λ. It was first concluded that the overall variation
tendency, including the empty, single-cell, and multicell encapsulation rates and the single-
cell rate, was basically consistent with Poisson’s distribution curve because all their RSS
tests were less than 0.5. Especially for the multicell encapsulation rate in Figure 6b, the
experimental results of A-type and B-type chips are in accord with Poisson’s distribution
with an RSS < 0.06. In addition, as shown in Supplementary Note S4, different nonlinear
curves were applied for the approximated fitting of the theoretical distributions on the
encapsulation rates and the single-cell rate. From the graph in Figure 6, it was noticed
that the 95% prediction band of nearly all groups covered the related theoretical curves.
The relatively wide prediction band may be caused by a deviation in the droplet diameter,
which is cubically utilized for calculating CFD λ.

In addition, except for the single-cell encapsulation rate, the 95% confidence band
of most groups covered or was close to their related theoretical curves. As shown in
Figure 6a, the nonlinear fitting curves of all three microfluidic geometries were lower than
the theoretical distribution. Considering the increase in CFD, the single-cell encapsulation
rate showed a greater deviation from the theoretical distribution. This deviation may be
because the actual concentration of cells in the high-concentration solution (high λ) was
relatively low owing to the inevitable cell aggregation and sedimentation, which may have
had a side effect on Poisson’s assumption of sparse and independent events. Some observed
outliers, including single-cell and multicell encapsulation rates of 21.62% and 5.33% and
22.65% and 4.55%, also supported this judgment. Therefore, the exact relationship between
the high λ and initial concentrations of cells and the droplet diameter should be established
in the future.

It was also found that the A-type chip demonstrated a better approximation to all the-
oretical distributions. For example, if the flow rates of the dispersed and continuous phases
were set to 0.06 mL/h and 0.8 mL/h, respectively, the diameter of the droplets reached
19.42 µm, while the single-cell and multicell encapsulation rates were 24.87% and 4.6%,
respectively, which were close to their theoretical values. By establishing the relationship
between λ and cell concentration, the optimal droplet diameter was calculated, preset by
flow rates, and monitored by the proposed method so that the single-cell and multicell
encapsulated rates could be stabilized at a desired range. For example, according to the the-
oretical curve in Figure S2, when λ is controlled between 0.26 and 0.27, the single-cell and
multicell encapsulation rates can reach >20% and <3%, respectively, ensuring a single-cell
rate of >87%. The recognized results of several repeated experiments showed that droplets
with diameters between 19 and 21 µm could be obtained, the single-cell encapsulation rate
fluctuated between 15.69% and 25.06%, and the multicell encapsulation rate fluctuated by
approximately 3%. It was also observed that droplets with a larger diameter, under the
same conditions of initial cell density, led to a higher multicell encapsulation rate.

Inertial focusing allows cells to be ordered in a microchannel to break the limits of
the Poisson distribution. This study also investigated their effects on cell-encapsulated
droplets, and a serpentine structure was added to the C-type chip. Instead of an increase
in the single-cell encapsulation rate, a decrease in the multicell encapsulation rate was
observed, as shown in Figure 6b. A slight increase in the single-cell droplet rate was
suggested when λ > 0.5. Considering that the performance of the inertial focusing channel
depended on the flow rates and CFD λ, it is necessary to strengthen the quality control
of experimental conditions, such as improving the uniformity of cell dispersibility and
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viability and exploring more suitable flow rates for Q1 and Q2. In the future, a detailed
study on the inertial focusing geometry should be performed to draw a more accurate
conclusion, while this platform with embedded algorithms will provide an accurate and
labor-saving evaluation method for the recognition of cell-encapsulated droplets.
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Figure 6. Evaluation results of cell-encapsulated droplets generated at different parameters. Plots of
the experimentally measured, nonlinear fitting, and Poisson’s theoretical distribution of the single-
cell encapsulation rate (a), multicell encapsulation rate (b), empty droplet rate (c), and single-cell
rate (d). The results were systematically verified under different values of λ on three different chip
geometries. Each data point represents different flow rates (Q1 and Q2) or CPD λ. More than
1500 droplets were measured in each independent experiment. Chip symbol: yellow A-type, blue
B-type, and violet C-type microchips.

5. Conclusions and Perspectives

In this study, we have illustrated passive cell encapsulation in microfluidic droplets as
well as the principles and performance of image recognition algorithms. A novel weakly
supervised algorithm, WSCNet, was designed to recognize cell-encapsulated droplets from
highly adherent droplet images and was systematically verified by different experiments.
Compared to classification-based approaches, our method can not only distinguish the
droplets encapsulated with different amounts of cells but also locate them without any
supervised location information. Reconsidering the weak supervision of droplet-level
labels, the WSCNet learns to recognize cell features from the difference between empty and
single-cell droplets and then applies the learned knowledge to multicell droplets. Because
a multicell droplet encapsulation contains at least two cells inside, the WSCNet can learn
to count the cell population from the precise labels and the imprecise labels. In addition,
the maximum value in the density map also provides the precise location information
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of the cell. Unfortunately, if the cells in a multicell encapsulation are highly crowded,
which results in a deformed morphological feature, the network may fail to count the cell
population and locate each of them.

In addition, the architecture of the proposed counting network only contains seven
convolutional layers, which is very tiny and effective. In the future, inertial cell ordering
in the dispersed phase should be further investigated to improve the single-cell rate and
break Poisson’s distribution [11,12]. We will attempt to extend the proposed method to real-
time recognition of video frames. More experiments on cells with different morphologies
and the differentiation and enumeration of cell subpopulations should be carried out
to make our system available for clinical applications. Considering the integration of a
microfluidic chip and imaging algorithm, this system is suitable for applications where
rapid analysis of single-cell encapsulation is demanded, such as single-cell sequencing and
droplet-based analysis.

6. Patents

The author has a patent pending at Tsinghua University that results from the work
reported in this manuscript.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/bios13080821/s1. Supplementary Note S1. Calculation of the encapsulated
cell per droplet by Poisson statistics. Supplementary Note S2. Illustration for adaptive scale template
matching (ASTM). Supplementary Note S3. Details for the weakly supervised counting network
(WSCNet). Supplementary Note S4. Illustration for nonlinear fitting applied in this study. Figure S1.
Optical micrographs of different flow regimes during droplet generation. Figure S2. The encapsulated
probability restricted by Poisson’s distribution. Figure S3. Schematic diagram for removing redundant
bounding circles. Figure S4. The interaction over union (IoU) of bounding circles. Figure S5.
Representative images of the original droplets and the droplet proposals. Figure S6. The quantitative
performance of cell localization predicted by the WSCNet. Figure S7. Representative result of
the distribution of cell number encapsulated in microfluidic droplets with CPD λ = 0.16. Table S1.
Comparative performance of the recognition rate of cell-encapsulated droplets on different methods.
Video S1. Representative results of droplet segmentation and cell classification.
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