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Abstract: The prevalence of diabetes is rapidly increasing worldwide and can lead to a range of
severe health complications that have the potential to be life-threatening. Patients need to monitor
and control blood glucose levels as it has no cure. The development of non-invasive techniques
for the measurement of blood glucose based on photoacoustic spectroscopy (PAS) has advanced
tremendously in the last couple of years. Among them, PAS in the mid-infrared (MIR) region
shows great promise as it shows the distinct fingerprint region for glucose. However, two problems
are generally encountered when it is applied to monitor real samples for in vivo measurements in
this MIR spectral range: (i) low penetration depth of MIR light into the human skin, and (ii) the
effect of other interfering components in blood, which affects the selectivity of the detection system.
This review paper systematically describes the basics of PAS in the MIR region, along with recent
developments, technical challenges, and data analysis strategies, and proposes improvements for the
detection sensitivity of glucose concentration in human bodies. It also highlights the recent trends
of incorporating machine learning (ML) to enhance the detection sensitivity of the overall system.
With further optimization of the experimental setup and incorporation of ML, this PAS in the MIR
spectral region could be a viable solution for the non-invasive measurement of blood glucose in the
near future.

Keywords: diabetes; non-invasive glucose detection; photoacoustic spectroscopy; mid-infrared
spectrum; machine learning; quantum cascade laser

1. Introduction

Diabetes mellitus (DM), which is commonly referred to as diabetes, is a prevalent
and enduring/chronic ailment in the contemporary world. It is a disorder in which the
body cannot produce enough (type-1) or respond normally (type-2) to insulin, causing
blood sugar levels to be abnormally high. Table 1 provides an overview of the customary
levels of glucose in the blood of adults in different conditions found with different testing
methods. As per the diabetes report published by the World Health Organization, the
number of individuals affected by diabetes across the world increased from 108 million
in 1980 to 422 million in 2014 [1]. In addition, DM was directly responsible for causing
1.5 million deaths in 2019. Although there is currently no cure for diabetes, it can be
managed through monitoring and regulating blood sugar levels.
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Table 1. The normal range of blood glucose level of an adult human under different conditions was
found through different test results [2].

Condition
\Results

Fasting Blood
Glucose Test

(mg/dL)

Glucose Tolerance Test
(mg/dL)

A1C Test
(%)

Normal
Pre-diabetic

Diabetic

≤99 ≤140 <5.7
100–125 141–199 5.7–6.4
≥126 ≥200 ≥6.5

Therefore, individuals with diabetes must check their blood sugar levels multiple
times a day. The traditional methods of measuring blood sugar levels involve invasive
enzyme reaction-based procedures that entail pricking fingertips to draw blood, which can
be an unpleasant and painful experience. In addition, the compromised immune systems
of individuals with diabetes make them susceptible to infections caused by needle pricks in
various areas of the body [3]. Therefore, there is an urgent demand for the development of
a new non-invasive method for glucose monitoring that could give an accuracy comparable
to commercial invasive devices.

It is estimated that the global market for blood glucose monitoring devices will grow
from its value of around USD 14.48 billion in 2021 to USD 28.75 billion by 2030 [4]. Numer-
ous researchers and companies have endeavored to create non-invasive glucose monitoring
devices in pursuit of this promising concept of measuring blood glucose levels without
the need to prick fingers. The latest technological advancements in this field incorporate
a variety of optical [5,6] and non-optical [7,8] methods. In another sense, non-invasive
glucose monitoring systems can also be classified into three categories: EM wave, trans-
dermal, and enzymatic. A brief description of these technologies with relative advantages
and disadvantages is found in Ref. [9]. In addition, the details of some other different
non-invasive techniques for glucose sensing can be found in recent review works [8,10,11].
Nonetheless, none of these methods have been able to satisfy the physiological demands
due to inadequate precision and operational instability [12]. Consequently, the demand for
developing better methods of glucose monitoring is necessary.

Figure 1 shows the overview of a vast area of non-invasive glucose measurement
techniques that are currently active areas of research. For several years, researchers have
been striving to devise a non-invasive method for detecting glucose levels in the body
without the need for pricking. This pursuit has led to the exploration of various methods,
which can be broadly categorized into two types: optical and non-optical approaches.

In general, non-optical spectroscopy measures the non-optical properties of human
skin. There are several non-optical approaches in the literature such as impedance spec-
troscopy [7], electromagnetic [13], reverse iontophoresis [14], metabolic heat confirma-
tion [15], and ultrasonic [16]. Among them, impedance spectroscopy has shown great
promise in recent years as it measures glucose levels directly, rather than relying on in-
direct measures such as blood oxygen levels or skin temperature. Moreover, it provides
real-time glucose monitoring, which means that it can measure glucose levels continuously
and provide immediate feedback. Nonetheless, this approach has the potential to alter
the properties of the skin and induce blistering, irritation, or erythema [7]. In addition,
this method also requires precise instrumentation and careful calibration, which can be
time-consuming and difficult to perform.
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Optical spectroscopy is less susceptible to skin irritation in comparison to non-optical
methods, and it exhibits a high level of specificity for detecting glucose, even in a complex
matrix such as blood. There are different optical techniques, such as fluorescence spec-
troscopy [17,18], optical coherence tomography [19], Raman spectroscopy [20,21], thermal
emission spectroscopy [22,23], diffuse reflectance spectroscopy [24,25], polarimetry [26,27],
absorption spectroscopy [28,29], and photoacoustic spectroscopy [30,31], that have been
used to sense glucose non-invasively. In addition, FTIR (Fourier Transform Infrared) spec-
troscopy is a widely used analytical technique for measuring the absorbance of a sample
by infrared (IR) radiation. An FTIR spectrometer consists of a broadband IR light source
(e.g., halogen lamp), an interferometer, a sample compartment, and a detector. The IR light
source in the FTIR spectrometer is weak and it is very difficult to obtain even transmission
spectra throughout the experiment. Recently, Chen et al. proposed a modified FTIR method
where they obtained transmission spectra of glucose at different concentrations with a
correlation factor over 99% by using a strong quantum cascade laser (QCL) with 600 mW
of output power [32].

In recent years, PAS has been proven effective in detecting glucose non-invasively
because it provides greater sensitivity compared to optical absorption spectroscopy [33–35].
In this approach, a modulated laser beam in the IR range is directed onto the skin, causing
thermal expansion. This expansion creates an acoustic wave that is influenced by both the
absorption coefficient of the sample and the physical characteristics of the propagation
medium, such as the thermal expansion coefficient and acoustic velocity [36,37]. Generally,
PAS is utilized to detect the vibration modes of glucose molecules at a specific excitation
wavelength, where considerable absorption occurs. The main advantage of acoustic signals
is that it shows less interference in biological samples than any optical signals. Additionally,
an acoustic microphone is utilized as a detector to pick up the signals, resulting in a
significant reduction in the cost of the detector.

PAS can be classified based on the wavelength range of the excitation source: near-
infrared (NIR), and mid-infrared (MIR) wavelength range. This is due to the glucose-
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specific absorption of chemicals in that region. Most of the attempts to develop non-invasive
glucose monitoring devices employ NIR light, as it can penetrate several millimeters into
human tissue. However, glucose absorption within this range is weak and significantly
interferes with other blood and tissue components [38,39], making it difficult to effectively
detect blood glucose non-invasively. On the other hand, glucose shows a strong absorption
signature in the MIR region with less interference with other tissue components [40]. One
of the significant challenges in this field is the limited penetration depth of mid-infrared
light below 100 µm into human skin due to strong water absorption [41,42]. Therefore, it is
possible to detect glucose within the interstitial fluid (ISF) of the epidermis as the blood
capillaries are not reached. Clinical trials have confirmed the strong correlation between
blood glucose levels and the concentration of glucose in the ISF. This is because metabolites
and proteins diffuse into the ISF from the blood capillaries as they make their way to the
cells [43]. Laser sources operating in the MIR range have the benefit of producing more
robust photoacoustic signals and exhibiting measurement stability.

In this article, we aimed to give an overview of the chronological development
of MIR-based PAS for non-invasive glucose sensing, where we focused on two parts:
(i) technical/experimental progress and challenges, and (ii) data analysis for correlations
with glucose. As the first concept of incorporating an MIR light source in PAS for non-
invasive glucose sensing was first implemented in 2005, this review focused on the devel-
opment and progress of this technology to date. This work is presented in the following
manner: Section 2 illustrates the basic principles and underlying physics behind the con-
ventional PAS. It also focuses on the advantages of using MIR light as the excitation source.
In Section 3, the chronological development of MIR-based PAS is summarized, and various
previously published extensive experimental results are presented with proper explana-
tion. We also focused on the experimental/instrumental challenges of MIR-based PAS for
non-invasive blood glucose detection. Section 4 focuses on the recent trend of introducing
Machine Learning (ML) in PAS to enhance the detection sensitivity of non-invasive blood
glucose detection. Finally, some prospects for MIR-based PAS are discussed in Section 5.

2. Basics of Photoacoustic Spectroscopy for Glucose Sensing

Although the photoacoustic effect was discovered by Bell in 1880, Viengerov’s 1938
publication marked the introduction of using PAS for gas concentration detection [44]. This
paper highlights the potential application of PAS in material characterization. However,
due to limitations in light sources, the progress of PAS was slow, and there were no
significant advancements in subsequent decades. In the 1970s, the invention of lasers and
advancements in acoustic sensor technology revitalized PAS. Notably, Kreuzer’s experiment
using a laser for Photoacoustic gas detection [45] rekindled interest among researchers,
establishing PAS as one of the most promising technologies in the fields of biology and
medicine. Now, PAS is considered to be a highly sensitive method that can be used for
chemical sensing, bio-sensing, and bio-imaging, utilizing an infrared laser as the light
source. As the penetration depth of MIR light into the biological sample is small (< 100 µm)
compared to visible and NIR light due to the high absorption coefficient of background
water, excitation light in the MIR region can only reach the epidermis layer, generating
acoustic waves and obtaining glucose information from the ISF under the skin. Therefore,
by combining PAS with an MIR light source, it is possible to detect blood glucose levels
non-invasively from the human skin.

In the following sections, the basic principle of generating an acoustic signal from a
human skin sample using a modulated laser beam and the factors affecting the acoustic
signal are described. They also highlight the basic requirements of the instrumentation
needed for MIR-based PAS. Furthermore, the detailed advantages of using MIR light as an
excitation source for PAS are also discussed.
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2.1. Generation and Behavior of an Acoustic Signal Using MIR Light Source

Figure 2a shows the schematic of typical human skin, which consists of mainly three
layers: epidermis, dermis, and subcutaneous tissue [46]. In general, MIR-based PAS utilizes
modulated MIR laser light that can penetrate through the human tissue and reach the ISF
of the epidermal layer, where acoustic signals are generated by the absorption of glucose
molecules. The MIR light is strongly absorbed by glucose molecules between 8–10 µm
wavelength due to the fundamental vibrational resonances [47,48]. The generated acoustic
signals can travel through the human tissue with minimal scattering and be detected by a
microphone. Thus, the glucose information in ISF can be correlated to the acoustic signal
in MIR-based PAS. The ISF is a layer of biological fluid found between cells and consists
of water, solvents, and blood vessels. It contains various substances such as sugars, fats,
amino acids, hormones, coenzymes, white blood cells, and cellular waste products. Glucose
is known to diffuse from the blood to the ISF layers, with a delay of 5 to 15 min [49,50].
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Figure 2b shows the basic experimental setup for generating and detecting the photoa-
coustic signal. The principle of PAS involves the generation of acoustic waves through a
pulsed electromagnetic source. These electromagnetic waves are absorbed by a biological
object, causing thermal expansion or pressure, resulting in the production of acoustic
waves [51,52]. Sensitive ultrasonic or piezoelectric sensors can then detect these waves,
which can be distinguished between different materials. Additionally, the characteristics
of the modulated light source, including the modulation amplitude and duty cycle, can
significantly affect the generation of acoustic waves. The properties of human skin are also
crucial to consider when generating these waves.

The pressure produced by the photoacoustic effect can be expressed by the following
wave equation with spatial heat distribution H (r, t), according to the laws of thermody-
namics [53]:

∇2 p(r, t)− 1
v2

δ2

δt2 p(r, t) = − β

Cp

δ

δt
H(r, t) (1)

where, p(r, t) represents spatial pressure distribution at time t, v is the acoustic velocity, Cp
is the heat capacity, and β is the thermal expansion coefficient.

The equation below can be used to represent the peak pressure (P) for a medium that
absorbs light weakly:

P = k
βvn

Cp
E0α (2)
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Here, k is the system constant, E0 is the incident laser pulse energy, and n is the constant
between 1 and 2, depending on the experimental condition. Sometimes, the combination
of experimental parameters can lead to a stronger photoacoustic signal compared to the
traditional spectroscopic method. It should be noted that the response from glucose does
not give a sufficient amount of signal enhancement for the detection, which requires a
photoacoustic cell (PAC) for signal amplification.

2.2. Required Instrumentation for MIR-Based PAS

As shown in Figure 2b, the MIR-based PAS experimental setup consists of mainly four
parts: MIR light source, acoustic resonator/PAC, acoustic detector, and lock-in amplifier.
New advancements in technology for generating mid-IR light have emerged, particularly
in the form of pulsed QCLs. These lasers are capable of delivering high peak powers,
reaching hundreds of milliwatts, while still maintaining average powers in the range of a
few milliwatts [54]. As a result, it is now possible to obtain stronger signals from areas of
the skin that were previously thought to be incapable of detecting MIR light [55]. In general,
the generated photoacoustic signal is weak and needs to be amplified. This amplification
is done by exciting the corresponding acoustic mode in an acoustic resonator [56]. This
helps to significantly enhance the generated photoacoustic signal, and thus, enhance the
overall detection sensitivity of PAS. In general, a resonator with an open-ended shape
resembling the letter “T” is employed to minimize the buildup of moisture inside the
enclosure, while also mitigating variations in air temperature and pressure that occur
during measurements [56,57]. To convert the amplified acoustic signal from the PAC, a
sensitive microphone [35] or piezoelectric [58] sensor is used. The electrical signal from
the sensor is amplified by lock-in amplifier (LIA), which can be further processed by using
the computer. It is noted that different sensors are employed in the PAS setup to maintain
different environmental factors (such as temperature, pressure, and humidity) constant
throughout the experiment.

By optimizing the design of the PAC and choosing an appropriate modulation fre-
quency, the acoustic signals can be improved, leading to increased detection sensitivity.
The system is designed to detect changes in acoustic signals resulting from variations
in the absorption coefficient of glucose solutions. As the concentration of glucose in the
solution increases, the absorption coefficient also increases, which in turn generates higher
acoustic signals.

2.3. Spectral Response of Glucose in the MIR Region

Unlike NIR light, glucose exhibits significant absorption characteristics in the infrared
spectrum due to the stretching and bending vibration of its C–H–O bonds within the
800–1200 cm−1 (i.e., 8.3–12.5 µm) range [50]. Figure 3 shows the glucose absorption spectra
in the MIR region, where several absorption peaks are observed [59]. The highest and
lowest peaks are found to be at 9.5 µm and 10.4 µm, respectively. However, it is important
to note that the absorption coefficient of blood glucose is in the range of ~ 10−3 cm−1,
which can vary depending on other factors/components in blood samples. As stated,
MIR-based PAS collects the information from ISF, which serves as a significantly transparent
medium compared to blood, primarily composed of glucose, albumin, and small amounts
of lactate [35]. The main advantages of using the MIR spectrum for glucose detection are
given below:
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Transform Infrared spectroscopy. The measurements were taken from glucose solutions in water,
with the absorption of water serving as a reference and removed from the readings [59]. Reprinted
with permission from Ref. [59]. 2015, The Optical Society.

(i) Greater absorption: Glucose has a relatively weak absorption in the visible and NIR
regions, but it has strong absorption in the MIR region. That means the sensitivity of
glucose detection in the MIR region can be enhanced.

(ii) High signal-to-noise (from water) ratio: Water has strong absorption in the MIR region
in comparison to visible and NIR regions, which can interfere with the detection of
glucose. However, as glucose has distinct absorption in the MIR region, the overall
signal-to-noise ratio can be improved by selecting an excitation wavelength close to
the peak absorption wavelength in the MIR region.

(iii) Ability to detect glucose in complex matrices: The use of MIR PAS can improve the
detection of glucose in complex biological matrices, such as blood, by avoiding the
interference caused by other molecules present in the matrices.

(iv) Greater specificity: MIR-based PAS can provide greater specificity for glucose de-
tection as it has distinct absorption characteristics in the MIR wavelength region
compared to visible and NIR wavelength regions. Thus, MIR-based PAS utilizing
multiple wavelengths in the MIR region can be used significantly to improve the
specificity of glucose sensing. It should be noted that specificity can be improved
by multiple wavelengths in other wavelength regions, where glucose has a good
absorption coefficient.

3. Progress of MIR-Based PAS in Glucose Sensing
3.1. Summary of the Chronological Development

This section provides a summary of the recent development of MIR-based PAS, basic
experimental setup, data analysis strategies, and possible challenges that need to be over-
come for the practical implementation of this technology into the potential future market.
Figure 4 shows the flowchart of the recent approaches and development of PAS in the
MIR region for non-invasive glucose sensing. It is shown that MIR-based PAS was first
implemented in 2005, where the researchers utilized MIR lasers as the excitation sources to
generate the photoacoustic signal, which could enhance the sensitivity and stability of the
system. However, the background water in a glucose solution and other environmental
parameters were core issues that greatly affected the accuracy of glucose detection. To
eliminate the effect of such background noises, several strategies were taken to reduce the
effect of environmental conditions by different research groups.
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In general, the experimental setup of PAS incorporates a PAC to amplify the acoustic
signal to be detected by lock-in amplifier (LIA). In 2012, some researchers used nitrogen (N2)
gas to reduce the relative humidity in a PAC. Later, in 2013, they utilized the windowless
PAC to control the relative humidity at a low level, which enabled long-term stability.
Meanwhile, many techniques were used to enhance the accuracy of the system. In 2013,
a fiber-coupled PA cell was used to make the sensor more compact and convenient for
in-vivo measurement. In addition, the detection location of the skin was also taken into
consideration. Due to the characteristic of MIR light, the penetration depth is below 100 µm,
which cannot reach the blood vessels or capillaries. Instead, they reach the epidermis layer,
which contains the ISF. Then it becomes an important detection target for in vivo detection.
In 2016, the same research group utilized two laser approaches to further enhance the
non-invasive glucose detection sensitivity and long-term stability.

Later, some researchers tried to find the optimal locations on the skin in 2018; in
the same year, another research group designed an experiment to find out the influence
of secretion from the eccrine sweat glands and to find the reasons and solutions for the
fluctuation in the spectrum using microscopic PAS. Most recently, Aloraynan et al. used a
single wavelength laser that has the second strongest absorption of glucose in the MIR re-
gion (see Figure 3), where they achieved good prediction accuracy by introducing machine
learning for a given set of photoacoustic signal data.

In summary, in the development of the MIR-based PAS, researchers dedicated them-
selves to reducing the impact of the diversified environment, such as relative humidity,
temperature, and pressure. Moreover, in the mid-infrared region, water absorption is a key
issue that needs to be effectively addressed. Then, the detection positions on the skin also
play an important role in the stability and accuracy of prediction. The general details of the
recent articles are summarized in the following Table 2.
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Table 2. A detailed summary of the recent progress of non-invasive glucose sensing using MIR-based
PAS. PAC: photoacoustic cell; QCL: quantum cascade laser; PA: photoacoustic; EC: external cavity.

Reference Year MIR Sources What Was
Examined PAC Used Results

2005
Lilienfeld-Toal

et al. [60]

Two QCLs—1080 cm−1

(9.26 µm) and 1066 cm−1

(9.38 µm)

The skin of the
forearm

PAC with a twin
measuring chamber, one
for photoacoustic signal

and another for
background signal

The relationship between the PA signal
produced and blood glucose levels are not

likely to be very strong. However, the
correlation was most significant when a
10 min time lag in blood glucose levels

was considered.

2012 Kottmann
et al. [42]

Tunable
laser—1010–1095 cm−1

(i.e., 9.9–9.13 µm)

Human epidermal
skin samples in

contact with
aqueous glucose

solution

N2 ventilated PAC
(77 mm3 volume) with

gold coated on the inner
surface and sealed with a

diamond window

The PA signal is directly proportional to
the concentration of glucose, both in a
broad range of 0 to 10 g/dL and in a
narrower range of 0 to 2000 mg/dL,

compensating PA signal changes due to a
variation of relative humidity and

temperature. Detection limit—100 mg/dL.

2012 Pleitez et al.
[35]

EC- tunable
QCL—1000–1220 cm−1

(i.e., 10–8.2 µm)

An interstitial
layer of the
human skin

T-shaped PAC

Successfully measured in vivo glucose
concentration from 50 mg/dL to

300 mg/dL and the measurement followed
to the real blood glucose level without

significant delay (<10 min).

2013 Pleitez et al.
[57]

EC- tunable
QCL—1000–1245 cm−1

(i.e., 10–8.03 µm)

Glucose in the
human epidermis
in the fingerprint

region

Windowless PAC with
two cylindrical cavities

connected perpendicularly

The prediction value correlates well with
the glucose concentration profile. The
highest SNR of 72 was achieved at a

resonance frequency of 51.7 kHz.

2013 Kottmann
et al. [34]

Tunable
QCL—1010–1095 cm−1

(i.e., 9.9–9.13 µm)

Glucose solutions
with

concentrations
ranging from 0 to
5 g/dL; human

skin at the
fingertip and the

forearm

Fiber-coupled PAC with a
conically shaped PAC

chamber and ventilated
with N2.

In the entire range of 0–5 g/dL studied, the
PA signal recorded showed a linear

increase in glucose concentration
(R2 = 0.993). An SNR of 1 was achieved

with a detection limit of 57 mg/dL during
in vitro testing. The signal generated at the

fingertip was significantly stronger than
that recorded at the forearm. However, the
sensitivity obtained was not adequate for

practical in vivo glucose detection.

2016 Kottmann
et al. [46]

Two setups—(i) tunable
QCLs, 1005–1100 cm−1

(i.e., 9.95–9.09 µm), and
(ii) two lasers, 1080 cm−1

and 1180 cm−1 (i.e., 9.26
and 8.47 µm)

The skin of the
human forearm Fiber-coupled PAC

By using the dual-wavelength method, the
stability of results was significantly

enhanced, and the uncertainty in blood
glucose concentration level was only
30 mg/dL at a 90% confidence level.

2018 Bauer
et al. [61]

Tunable QCLs—
980–1245 cm−1 (i.e.,

10.20–8.03 µm)

Index fingertip,
thumb finger,

hypothenar, and
forearm

T-shaped PAC

PA detection errors were found to be
higher than photothermal detection due to
acoustic impedance mismatch. The index

finger and thumb are the most suitable
choices for glucose measurements because
they have a dense network of capillaries,
which facilitates the transfer of glucose

from the blood to the ISF, and also because
they have less fatty tissue.

2018
Sim et al. [62]

Tunable
QCL—950–1240 cm−1 (i.e.,

10.53–8.06 µm)

2D position
scanning for the

image at the
fingertips

T-shaped PAC

Following careful hand washing, the valley
between the ridges of the skin was found
to be free from skin secretions, making it

more resilient than the area where the
eccrine sweat pores are situated on the top
of the ridges. This discovery presents an

encouraging prospect for achieving
consistent results over consecutive days, as
the skin’s exocrine activity and condition

can be managed.
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Table 2. Cont.

Reference Year MIR Sources What Was
Examined PAC Used Results

2022 Aloraynan
et al. [63]

Single QCL—1080 cm−1

(9.26 µm)

Skin samples with
different glucose
concentrations

T-shaped PAC

The sensitivity of detection was improved
to 25 mg/dL by employing a single

wavelength QCL. The models created
using unprocessed and processed data sets

demonstrated a prediction accuracy of
86.7% and 90.4%, respectively.

3.2. Experimental/Instrumentation Development and Data Analysis

As stated in the previous Section, the combination of MIR lasers and PAS was first
introduced in 2005. This method overcame the difficulties of other methods suffered by low
sensitivity or low intensity of output signal at that time. It can successfully correlate the
photoacoustic signal and the blood glucose level in an in vivo environment, which can lead
to possible non-invasive glucose detection in the future. However, due to the technique
being immature at that time, it did not consider the physical environment impact, such as
humidity or temperature, which can greatly influence the experimental results. As a result,
a poor correlation was obtained, which is shown in Figure 5.
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ment, wherein a tunable external cavity QCL is directed towards a PAC and focused on 

Figure 5. (a) Photoacoustic signals (black points) taken during oral glucose tolerance test (red solid
line). (b) The correlation between the average photoacoustic signals and the corresponding blood
glucose values obtained during an oral glucose tolerance test [60]. Reprinted with permission from
Ref. [60]. 2005, Elsevier.

Later, this new technique was further developed and improved. The same research
group that introduced the combination of the MIR and PAS delved deeper into the detection
target in the ISF of human skin. Figure 6 displays the upgraded experimental arrangement,
wherein a tunable external cavity QCL is directed towards a PAC and focused on the
sample. The external cavity laser has the ability to tune within a range of 1000 to 1220 cm−1

and can produce a maximum pulse output power of 160 mW at 1170 cm−1.
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Figure 6. Schematic depicting the configuration of the experimental arrangement for the measurement
of glucose in a non-invasive manner using MIR-based PAS [35]. Reprinted with permission from
Ref. [35]. 2013, American Chemical Society.

The off-axis paraboloidal mirror is used to direct the laser beam toward the skin
and focus it onto the contact surface. This creates a small spot on the skin where the
laser is targeted. When the modulated laser hits the skin, the acoustic signal is generated
and amplified by the T-shaped resonance cell; then it can be detected by the ultrasound
microphone. After obtaining the PA signal, the data were analyzed and predicted by
principal component analysis (PCA). Finally, the prediction data and the enzymatic test
were compared, which is shown in Figure 7. The average estimation error determined from
the correlation is approximately 11 mg/dL.
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Figure 7. (A) The time variation of blood glucose levels was monitored through two methods:
enzymatic test strips and non-invasive PAS. (B) The relationship between the measured blood glucose
and the predicted glucose was evaluated using Clarke’s error grid [35]. Reprinted with permission
from Ref. [35]. 2013, American Chemical Society.

A different team of researchers also created a similar technique for in vivo applica-
tions [46]. The experimental arrangement for this setup is illustrated in Figure 8, where a
dual-laser system has been utilized. The initial continuous wave external cavity quantum
cascade laser (EC-QCL) used in the experiment can be tuned within a wavelength range of
1005 to 1080 cm−1, which includes two distinctive glucose absorption peaks at 1034 cm−1

and 1080 cm−1. Subsequently, a second pulsed EC-QCL was employed, with a tuning
range of 1130 to 1310 cm−1. As a result, the first EC-QCL covered a range with strong
glucose absorption, while the second EC-QCL contained a range where glucose absorption
was either weak or negligible. Additionally, two QCLs with fixed wavelengths were se-
lected, and their beams were directed alternately to the PAC by the flipping mirror (FM).
Before reaching the PAC, both lasers were modulated by a mechanical chopper. Finally, the
microphone attached to the setup was used to detect the photoacoustic signal.
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Figure 8. Experimental setup with two fixed-wavelength QCLs and the N2-ventilated PAC with free
laser beam access [46]. Reprinted with permission from Ref. [46]. 2016, MDPI.

This experiment has two main improvements when compared to the previous studies.
The first improvement is that the PAC was applied by a constant N2 flow during the
experiment, which helped to reduce the relative humidity level to a stable level. The second
improvement is that they utilized two fixed wavelength lasers selected for maximum and
minimum glucose absorption, which can generate more reliable results. Figure 9 shows the
experimental results, where a good correlation was observed. The new method of using
two lasers can significantly enhance the stability of the measurement process, and a level
of uncertainty of ±30 mg/dL in blood glucose concentration can be achieved with 90%
confidence. However, this study did not use any data processing method, such as principal
component analysis, and the outcomes were still inadequate for detecting glucose in the
physiological range. To obtain a more accurate and stable result, more detection data and
data manipulation techniques are needed.
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Figure 9. (a) Continuous PA signals at 1180 cm−1 (PAS1: blue) and 1080 cm−1 (PAS2: black) recorded
at the fingertip. Correlation between the PA ratio signal (green) and simultaneous invasive blood
glucose measurement (dashed red). (b) Correlation between invasive blood glucose data and non-
invasive PA signals obtained from (a). The red solid line shows a linear fit (with R2 = 0.8) and the
red dashed line represents the confidence bounds at a 90% confidence level [46]. Reprinted with
permission from Ref. [46]. 2016, MDPI.

In 2022, Aloraynan et al. used a single wavelength fixed at 1080 cm−1, which is the
strongest absorption peak of glucose, and developed this technique by modulating the
frequencies instead of the wavelength of the lasers. The usage of a single QCL was based
on combining improvements from previous studies; the function generator was used to
modulate the laser with square waves of 10 to 30 kHz and a duty cycle of 40%. Subsequently,
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the microphone, which had a maximum sensitivity between 15 and 30 kHz, was used to
collect the PA signal.

The original raw data were collected and analyzed by integrating the area around the
peak. A good correlation between the integral value and the glucose concentration was
obtained, which is shown in Figure 10a. This result is satisfactory, but to be able to apply
this technique in practice, a more accurate model is needed. However, it is very hard to
improve the result from the perspective of the experimental setup. Hence, the data analysis
technique is vital for improvement. Furthermore, a machine learning (ML) technique was
employed in the data manipulation to obtain a more reliable and stable result, which is
shown in Figure 10b.
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ML is widely used in data analysis due to its satisfactory performance. A detailed
review of the machine-learning techniques in glucose detection is introduced and discussed
in the following section.

4. Machine Learning in Non-Invasive Glucose Detection

ML has recently been utilized in non-invasive glucose detection because of its out-
standing performance in predicting the actual glucose level, which can help to improve
detection sensitivity by using a complex mathematical model to correlate the collected data
and the actual glucose level to meet FDA requirements. An ML model could be extremely
helpful in accurately forecasting glucose levels both in vivo and in vitro, especially when
dealing with various disrupting blood components (e.g., protein, urea, and cholesterol) and
changes in environmental factors (such as temperature or humidity).

In general, non-invasive glucose detection can utilize both classification and regression
techniques. The classification technique in ML predicts the class with a given input data [64].
The class, sometimes called labels or categories, is used to distinguish the different types of
objects. In practical situations, the classification is used to predict the defined class, such as
tumor detection and target marking. The predicted result is a definite and distinct label that
represents a certain object. When it comes to glucose detection, the classification technique is
frequently used to anticipate the discrete glucose concentration in vitro because the number
of glucose samples is always finite and well-defined. Alternatively, the regression technique
in ML is used to find the relationship between the independent input variables and the
outcome. This technique can extract quantitative information, which has a continuous
prediction value [63]. Furthermore, the regression technique can be utilized to forecast the
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continuous glucose concentration level in vivo, which has the capability to detect a wide
range of glucose levels. In comparison, the classification technique can predict the glucose
level more accurately, but lose some information in the intervals of the adjacent glucose
level. Using the regression technique, it is possible to predict the glucose level across the
entire range of desired glucose values. However, it cannot be used when the number of
outcomes is finite.

As described earlier, there are different non-invasive methods in the literature to detect
or quantify blood glucose levels. The capabilities of the ML model worked for basically
every non-invasive glucose detection technique. In a word, the measurement result based
on the different glucose levels was obtained many times, and each result had many features,
depending on the chosen non-invasive method, which can correlate to the glucose level.
The processing of the collected data set is summarized in Table 3.

Table 3. Machine-learning model used for non-invasive glucose detection in recent literature.
PCR: principal component regression; PLSR: partial least square regression; MLR: multiple lin-
ear regression; KNN: k-nearest neighbor; DT: decision trees, SVM: support vector machine;
FFNN: feedforward neural networks.

Date Reference Selected Features Model Used Results

2013 Pleitez et al. [57] 1000 cm−1 to 1220 cm−1

MIR-PA signal
PCR, PLSR

The mean prediction error was
found to be approximately

11 mg/dL.

2017 Kasahara et al. [65] MIR absorption spectroscopy MLR, PLSR The maximum correlation
coefficient of 0.49 was achieved.

2018 Sim et al. [62] PA signal in the
wavelength spectrum PLSR, PCR

PCR and PLSR resulted in a Mean
Absolute Relative Deviation of

8.95 and 8.67, respectively.

2018 Bauer et al. [61] PA signal in the
wavelength spectrum PLSR

RMSE was cross-validated and
standard deviations were

obtained in the four different
skin locations.

2021 Shokrekhodaei et al. [64] Four wavelengths in the
optical sensor

KNN, DT, SVM;
MLR, FFNN

The FFNN model exhibits the
smallest RMSE value of

11.1 mg/dL, whereas the SVM
model demonstrates the highest

F1 score of 0.99.

2022 Aloraynan et al. [63] MIR-PA signal in 10–30 kHz Ensemble
Classification Model

Unprocessed and processed
datasets achieved 86.7% and

90.4% prediction
accuracy, respectively.

According to Table 3, the features were mainly selected from the spectrum of the MIR
light. Firstly, due to the extensive usage of prediction, regression was used as the major
technique to predict the level of glucose at the early stage. To simplify the model and
enhance computational efficiency, most researchers utilize principal component regression
(PCR) to decrease the data’s dimensions. Moreover, partial least square regression (PLSR)
was a stable, accurate, and robust model which is widely used in regression analysis.
In recent times, classification techniques have been introduced to improve the model’s
sensitivity and accuracy. Shokrekhodaei et al. employed various classification models,
including support vector machine (SVM), decision trees (DT), and k-nearest neighbor
(KNN), and found that the SVM model produced the highest accuracy with an F1 score
of 0.99. Later on, an ensemble classification model (ECM) was used to further enhance
the traditional classification model’s performance, and the specifics of this technique are
explained in the following section.
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ML is widely used today; the general process is described as follows. The whole
dataset was first placed into training and testing set. Then, the reference value of the
glucose level and the different features of the training set were added to the model and
trained. Furthermore, after applying the model to the testing set, the prediction result was
obtained. Accuracy is defined as how close the predicted value is to the reference value. If
the selected features are highly correlated with the reference glucose value, the model’s
performance is consistently satisfactory, as indicated by the Clarke error grid method.

As the purpose of this review is to give a comprehensive analysis of non-invasive
blood glucose detection by MIR-based PAS, we confined the machine learning part to
those topics. In general, in non-invasive glucose detection using optical methods, many
researchers use the MIR absorption spectrum or the PA signal in different wave numbers
as the features [66]. To improve the sensitivity of the PA signal, a resonance cell was
used where the feature was extracted from a whole range of modulation frequencies [63].
Furthermore, other features (such as temperature, moisture, and personal characteristics)
can be used to enhance the accuracy of the model.

4.1. Classification Methods

Classification techniques are capable of correlating with the entire range of glucose
measurements of interest and can accurately predict hyperglycemia, normal, and hypo-
glycemia ranges of blood glucose levels [64]. Classification techniques handle each discrete
glucose value separately without being affected by other glucose levels, which results in
high prediction sensitivity. Some examples of the classification methods can be briefly
described as K-nearest neighbor (KNN), decision tree (DT), and support vector machine
(SVM). In the following section, an ensemble classification model is discussed and reviewed.

The ensemble classification model employs several learning algorithms to achieve
superior predictive performance compared to the individual learning algorithms. This
algorithm uses a random subspace sampling method for dividing the subgroups, which can
extract random features and improve accuracy [67]. Then, every subspace will be trained
independently with the validation dataset and perform the prediction. The classifier is one
of the single classification models described above. In the end, this algorithm will choose
the result that has the most votes among all the predicted results.

4.2. Regression Methods

Regression techniques can predict the continuous value of the glucose concentration.
Then it can predict specific blood sugar levels more accurately than classification models.
Furthermore, in real-time glucose monitoring systems, a regression can reflect the trends of
the glucose in the time series, which is very useful for in vivo applications.

Some examples of regression models can be described as multiple linear regression
(MLP), neural network (NN), partial least squares regression (PLSR), and principal compo-
nent analysis (PCA). The regression methods are used in the in vivo environment. Then
the reference data come from the oral glucose tolerance test (OGTT). We can use them to
train the model with different methods to see the result and use RMSE to evaluate it.

Although ML algorithms have the potential to improve the clinical performance
and accuracy of the conventional MIR-based PAS method, it requires many observations.
The problem of overfitting [68–70] should also be carefully considered when building an
ML-based calibration model using the above-mentioned methods.

5. Prospects of MIR-Based PAS

The proposed MIR-based PAS has the possibility to detect blood glucose non-invasively.
However, the environmental parameters and interfering blood components should be
considered and removed to attain a glucose monitoring system with good sensitivity, selec-
tivity, and stability. The improvement for achieving such a system can be divided into two
parts: (i) improvements of experimental methods for less interfering and stable signal, and
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(ii) analysis of the experimental data for a good correlation. In the following sections, we
briefly discuss the future potential research directions for these two sections.

As stated, the absorption of water and other interfering components in the human
blood are the main sources of noise for obtaining photoacoustic signals from glucose. First,
the wavelength of the laser at the MIR wavelength region should be chosen in such a
way that it is only sensitive to glucose to obtain a comparably good acoustic signal. To
remove the background interfering components, another laser could be incorporated into
the system to have a background (i.e., baseline) signal where it has a lower sensitivity to
glucose. In our previous work [63], we used a 9.25 µm laser, which corresponds to the
second absorption peak of glucose in the MIR region, as shown in Figure 3, to obtain the
glucose signature from dummy samples. We achieved the detection limit of ± 25 mg/dL
considering a single wavelength excitation source. Recently, we incorporated a second laser
of 10.3 µm to improve the detection limit to ± 12.5 mg/dL with the other blood-interfering
components [71]. Thus, a multiple wavelength-based MIR-PAS could be an ideal platform
as it potentially removes the background and improves the signal-to-noise ratio, which in
turn improves the overall sensitivity of the system.

Another strategy to remove the background signal is to use differential
spectroscopy [23,58], where two laser wavelengths are chosen in such a way that the back-
ground signal from water and other components can be effectively removed. This technique
was implemented in NIR-based PAS for non-invasive blood glucose detection [58]; however,
the same strategies could also be implemented in the MIR region, which could lead to a more
sensitive PAS system.

As discussed in the previous section, ML will play a significant role in analyzing and
correlating the actual glucose level to the experimental results. In addition, due to the
influence of the environment (temperature, pressure, humidity), the data obtained by the
system will always have some outliers and fluctuations which affect the accuracy of the
model. Then, the preprocessing of the data is needed to eliminate the impact. One way
to achieve this is by removing the outliers [64]. Usually, the system will always give us
a whole range of data. If we use all the original data as training features, we may lose
some information that contributes more to the result. One way is to select the features
that contribute most to the result. Then, we can use the Pearson correlation coefficient to
extract the features which have the most relationship with the glucose concentration; this
can greatly shorten the training time and attain a more reliable result.

There are different ML algorithms used for non-invasive glucose detection which
could potentially improve the detection accuracy. However, this method particularly
depends on the given dataset which may vary for different personnel. Thus, the prob-
lem of overfitting [68,69] should be considered when building a general ML model for
MIR-based PAS.

Recently, Klonoff et al. identified seven analytical metrics for the evaluation of any
non-invasive glucose monitoring system: bias, precision, effects of interfering substances,
effects of physiologic states, effects of environmental or external conditions, sensor stability,
and sources of variability (physiology, instrument, or environment) [70]. These factors
must be considered and reported by any research group/company that wishes to claim
any non-invasive glucose-sensing technology. Although MIR-based PAS has significantly
improved over the last 10 years, to realize this technology as a potential non-invasive
method with clinically approved accuracy, both experimental and data strategy techniques
should be further improved.

6. Conclusions

In this review, we focused on the recent developments and progress of photoacoustic
spectroscopy in the mid-infrared region for the detection of non-invasive blood glucose
monitoring. This method is extremely promising for realizing future non-invasive tech-
niques. Both the experimental procedures in MIR-based PAS and data analysis strategies
were discussed that are published in the literature. Since photoacoustic signals can include
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various unwanted elements, it is essential to investigate them thoroughly to ensure that
they are acquired correctly and produce precise outcomes. Therefore, it is imperative that
the results obtained are precise. Although the published results in the literature have
some limitations, several research prospects in this area could lead to the precise and
non-invasive collection of the photoacoustic signal. The area of non-invasive blood glu-
cose detection through MIR-based PAS is full of promise, but also presents challenges. In
forthcoming research, deeper comprehension of photoacoustic signal generation, diverse
biological samples’ data, and machine learning should enable scientists to tackle the afore-
mentioned problems and guarantee the prosperous advancement of non-invasive blood
glucose estimation technologies.
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