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Abstract: Bacteria are similar to social organisms that engage in critical interactions with one another,
forming spatially structured communities. Despite extensive research on the composition, structure,
and communication of bacteria, the mechanisms behind their interactions and biofilm formation
are not yet fully understood. To address this issue, scanning probe techniques such as atomic
force microscopy (AFM), scanning electrochemical microscopy (SECM), scanning electrochemical
cell microscopy (SECCM), and scanning ion-conductance microscopy (SICM) have been utilized to
analyze bacteria. This review article focuses on summarizing the use of electrochemical scanning
probes for investigating bacteria, including analysis of electroactive metabolites, enzymes, oxygen
consumption, ion concentrations, pH values, biofilms, and quorum sensing molecules to provide a
better understanding of bacterial interactions and communication. SECM has been combined with
other techniques, such as AFM, inverted optical microscopy, SICM, and fluorescence microscopy. This
allows a comprehensive study of the surfaces of bacteria while also providing more information on
their metabolic activity. In general, the use of scanning probes for the detection of bacteria has shown
great promise and has the potential to provide a powerful tool for the study of bacterial physiology
and the detection of bacterial infections.

Keywords: scanning electrochemical microscopy; quorum sensing; metabolic activity; oxygen
respiration; electrochemical active metabolites; oxygen consumption; pH value; biofilms; bacteria

1. Introduction

The world faces a perilous global epidemic of antibiotic resistance that could under-
mine the very foundation of the healthcare system. The World Health Organization (WHO)
has emphasized the crisis if antibiotics lose their effectiveness. Therefore, gaining a funda-
mental understanding of bacterial cell behavior is vital for medicine, the pharmaceutical
industry, and alternative energy production. Bacterial colonies are highly structured and
social communities that exist in complex and interdependent biofilms, which are tightly
attached to living or non-living surfaces and embedded in a self-generated extracellular
polymeric substance (EPS). Biofilms can adhere to living and non-living surfaces and
display up to 1000 times greater resistance to antimicrobial agents than planktonic cell
cultures [1].

The biofilm growth cycle starts with attachment to a surface and ends with the forma-
tion of mature, high-density bacterial communities. The colony releases free-swimming
bacteria to the surrounding surface for attachment and growth [2]. They cooperate with
each other and exchange beneficial compounds, ranging from cell-to-cell signals to iron-
scavenging siderophores and digestive enzymes. However, it is important to note that not
all biofilms are harmful. In fact, biofilms are widely used in microbial fuel cell (MFC) tech-
nology to convert the chemical energy of carbohydrates into electricity. Although biofilm
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research has gained increasing attention, our understanding of the spatial parameters that
regulate their distribution and interactions between aggregates remains poor.

In recent decades, interest in utilizing scanning probe microscopies (SPMs) to study
bacteria has grown. These techniques allow the creation of spatially resolved images of
surfaces using a physical probe to scan the sample [3–5]. When image-related information
is extracted, SPMs can reveal important physical structures or map specific biomolecules,
providing deeper insight into prokaryotes and eukaryotes. Various SPM setups are avail-
able for investigating electrochemical systems, including many types such as scanning
electrochemical microscopy (SECM), scanning ion-conductance microscopy (SICM), scan-
ning electrochemical cell microscopy (SECCM), and atomic force microscopy (AFM) [6–14].
The scanning mechanism of SPMs is based on a probe that is scanned across a sample
surface, and the probe–sample interaction is monitored by sensing changes in the local
environment. Different SPMs utilize different types of electrodes or tips as probes and
detect different types of probe–sample interactions as signals. This article summarizes
the use of SPMs to study electrochemical reactions related to bacteria, with a particular
focus on the advances in SECM and related technology. Continuing improvements in
SECM and relevant techniques have led to many numerous innovative applications in
the in situ and operando characterization of bio-surfaces, enzymes, catalysts screening,
corrosion sites, biofilms, chemical kinetics, topographic changes, and instantaneous prod-
uct analysis [13,15,16]. The adoption of biologically friendly scanning environments and
versatile scanning probes (e.g., soft probes) has increased the popularity of SECM in the
biological field (e.g., 1 atm, controllable temperature, and measurement in buffered solu-
tions) [12,17–23]. Recent developments in soft SECM probes also expand the applications
of traditional SECM, allowing the scanning of soft animal tissues, contact lenses, and fragile
self-assembling layers [17,20,21,24–30].

2. The Basic Instrumentation of SECM

A typical SECM uses a working electrode as a probe that scans in the vicinity of a
substrate interface, offering a map or line scan of the localized reactivity based on the
sample–probe interaction under different operating modes. The SECM probe is usually
a micro-electrode or nano-electrode connected to a motor positioning system that can
precisely control the probe to move in the x-, y-, and z-directions [31]. A potentiostat is
used to control the working potential at the probe (often also denoted as the tip “T”) acting
as the working electrode (WE) versus a reference electrode. In addition, bipontentiostats
can also be used to bias the substrate immersed in the electrolytes and redox mediators.
In recent years, nano-electrodes have attracted much attention since they enhance the
imaging resolution but require a smaller probe sample distance and hence more advanced
instrumentation. In general, the resolution of the SECM is mainly determined by the size
of the electrode, the working distance, and the sensitivity of the chosen operation mode
(vide supra).

3. The Recent Development of Using Scanning Probes for Bacteria Analysis

Table 1 presents a recent compilation of studies that employ SECM-based tools to
analyze bacteria or biofilms. The information in Table 1 encompasses the research goals,
representative parameters, redox mediators, or solutions used in the experiments; more
importantly, the information that could be ‘read’ by relevant scanning probe microscopy
techniques. As shown in Table 1, SECM enables the quantitative detection and mapping of
redox-active or charged molecules produced by bacteria in three dimensions with a microm-
eter or nanometer spatial resolution. Therefore, relevant SECM-based studies associated
with bacteria, electroactive metabolites, enzymes, oxygen consumption, ion concentration,
pH value, biofilms, and quorum sensing (QS) molecules could be investigated and will
be introduced in the following sections. Scanning probe microscopy such as SECM offers
advantages over optical measurements, as it is exclusively dependent on electrochemical
signals, thus avoiding optical interference (e.g., sample color background). Furthermore,
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the chemical reaction between the probe and the substrate can be used to modify the surface
of the sample and create nanostructures or microstructures by depositing or etching [32,33].

Table 1. The latest studies that used SECM-based tools for the analysis of bacteria and biofilms in
recent years.

Research Goals Redox Mediators or Solutions Added Ref.

O2 consumption of
Pseudomonas aeruginosa

(ferrocenylmethyl)trimethylammonium
ion (FcMTMA+) [34]

Fe, Mn, and O2 consumption of
Shewanella oneidensis Tris-acetate buffer, Ru(NH3)6Cl3 [35]

O2 consumption, antimicrobial
mechanism of Ag+ in Escherichia coli Electrolytes with NaNO3 and glucose [36]

H2 consumption of
Shewanella oneidensis M1 solution prepared by the authors [37]

pH and release of Ca2+ against
Streptococcus mutans

Artificial saliva [38]

Metabolic interactions of Streptococcus
gordonii and pathogenic

Streptococcus mutans
Artificial saliva and sugar [39]

Calcification process of
Sporosarcina pasteurii Brine solution containing urea [40]

Copper concentration near
Escherichia coli biofilm Hydroxymethyl ferrocene [41]

Metallosphaera cuprina associated with
Fe2+ consumption FcMeOH or FeCl2 [42]

Adhesion of Pseudomonas fluorescens KCl solution [43]
Antimicrobial efficiency of

silver-fluoropolymer (Ag-CFX) films
against Pseudomonas fluorescens

Phosphate-buffered saline (PBS) [44]

Hydrogen peroxide production of
Streptococcus gordonii and interaction

with Aggregatibacter
actinomycetemcomitans

Chemically defined medium (CDM)
culture solution with glucose [45]

Hydrogen peroxide produced by
Streptococcus gordonii Glucose and artificial saliva solution [46]

Glucose consumption of
Streptococcus mutans

Artificial saliva solution and
ferrocyanide [47]

pH, ROS measurement, and bacteria
attachment and poration of

Pseudomonas aeruginosa
PBS, Fe(CN)6

3–/4– and Ru(NH3)6
3+/2+ [48]

pH changes in dental-plaque-derived
multi-species biofilm Artificial saliva and FcMeOH [49]

Characterization of a 3D-printed
hydrogel with Streptococcus mutans and

Escherichia coli

FcMeOH, phosphate-buffered saline
(PBS) [50]

Electron transfer train of
ampicillin-resistant Escherichia coli

on the tape
FcMeOH [25]

Toll-like receptor array and its
interaction with Escherichia coli Ferrocene derivatives and electrolytes [51]

Interaction of toll-like receptor 5 and
Salmonella typhimurium and

Bacillus subtilis
K4Fe(CN)6 [52]

Catalase activity of
γ-Protebacteria-Vibrionaceae biofilms Artificial seawater [53]
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Table 1. Cont.

Research Goals Redox Mediators or Solutions Added Ref.

Pseudomonas aeruginosa quantifies
pyocyanin of QS FcMeOH [54]

Production of tellurium metal
nanoprecipitates by

Rhodobacter capsulatus

Phosphate-buffered saline (PBS)
and lawsone [55]

AgNPs biosynthesized by a
Klebsiella oxytoca K3IrCl6 [56]

Redox properties of
Shewanella oneidensis FcMeOH [57]

Corynebacterium matruchotii fitness
enhancement in adjacent

streptococci mitis
FcMeOH [58]

The pH of biocementation induced by
Sporosarcina pasteurii Brine solution and urea [59]

Biofilm formation of
Shewanella oneidensis Ru(NH3)6Cl3 [60]

Bacteria contamination in contact
lenses, including Escherichia coli,

Diphtheroid, Pseudomonas aeruginosa,
Staphylococcus aureus, Fusobacterium

nucleatum, Unidentified Gram(+) Bacilli

Phosphate-buffered saline (PBS),
FcMeOH [18]

In addition to basic SECM, SECM combined with other techniques, such as AFM,
inverted optical microscope, automatic motion control system, constant temperature cham-
ber, SICM, or even fluorescence microscopy, has been developed. These advances will be
discussed in the final part of this article. Finally, the contemporary and future perspectives
of the SECM analysis of bacteria will be described.

Figure 1 illustrates the research objectives associated with the in situ and operando
electrochemical analysis of bacteria using scanning probes. Much of the research focused
on physiological characterizations, such as quorum sensing molecules (QS), electroactive
metabolites, enzymes, oxygen consumption, ion concentrations, and pH values [54,61,62].
Mapping the oxygen consumption of bacteria or a single cell is an important issue for
estimating bacteria activity. The detection of a pH value is also important because the pH
value around the biofilm will change with biofilm metabolism. Understanding these physi-
ological characteristics of bacteria can aid in the more efficient development of antibiotics
or biofilm inhibitors.
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3.1. SECM Probes and Complementary Techniques

As high−resolution imaging techniques have advanced, researchers have devised
combined probes that allow the simultaneous collection of multiple signals with SECM.
These probes include SECM–scanning SICM [63], SECM–fluorescence microscopy [64,65],
and SECM–AFM [9,43]. In particular, the use of advanced SECM–AFM (shown in Figure 2)
has provided significant insights into the structures of bacteria.
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Figure 2. Scheme of the basic principles of topography and electrochemical measurement with AFM
and SECM, respectively.

Bacteria cells, which typically have a diameter of 1 µm, are suitable for AFM because
of their resolution comparable to that of AFM−SECM. Unlike animal cells, bacterial cells
have stiff surfaces due to their cell walls, which make AFM studies much simpler. The
rigid cell wall is a crucial characteristic of bacterial cells that aids in their survival under
various environmental conditions. The antigenic determinants of the cell surface are
species−specific and play a vital role in the interaction between bacteria and hosts [66].
Several studies have used AFM to investigate the morphology, adhesive properties, and
elasticity of bacterial cells [67,68]. Additionally, AFM can perform imaging in a liquid
solution without drying the sample, enabling direct observation of molecular processes [69–71].
In situ imaging applications can allow for direct observation of biospecific interactions
with the biopolymers of the bacterial cell, drug−induced bacteria destruction, as well as
bacterial growth and division.

AFM exhibits exceptional capabilities, including high spatial and energy resolution,
pico−Newton scale force sensitivity, and nanometer−scale localization accuracy. Moreover,
it can detect the adhesion force of individual intact living cells. AFM can directly observe
structural changes in individual biomolecules, with a resolution of about 1 nm, and can
work in solutions and observe biological structures in real−world settings [72,73].

In a study by Kranz and co-workers [43], an AFM−SECM setup was utilized to
explore the adhesion forces of polydopamine (PDA) applications. They investigated the
bacterial adhesion force of Pseudomonas fluorescens on the PDA film and demonstrated
the effect of surface charge on bacterial adhesion. As part of their research, they also
developed a PDA-modified colloidal AFM−SECM probe with redox switchable surface
properties, as shown in Figure 3. In Figure 3a, the investigation of a plasma-treated gold
surface of electrochemical force spectroscopy using an AFM−SECM probe. This technique
involves studying the forces between the tip of an AFM probe and the gold surface while
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varying the applied electrochemical potential. Figure 3b shows recorded force curves
obtained using PDA-modified colloidal probes. Additionally, an AFM topography image
acquired in ambient conditions is displayed in Figure 3c. This image provides a visual
representation of the bacterial surface features and morphology of the sample using a
silicon nitride AFM probe. Finally, a deflection bacterial image obtained in the air using a
PDA-modified colloidal AFM−SECM probe is shown in Figure 3d. The deflection image
allows for the characterization of the redox switchable surface properties of the sample
surface. The adhesion pattern exhibits a series of adhesion peaks and ruptures, with some
curves reaching up to 1.5 µm for both negatively and positively biased samples. This
observation aligns with previous studies on Pseudomonas fluorescens, indicating possible
long-range interactions attributed to the presence of flagella and fimbriae on the surface of
bacterial cells.
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Figure 3. (a) Schematic representation of AFM−SECM probe with the function of electrochemical
force spectroscopy performed on a plasma-treated gold surface in a 0.1 M KCl solution. The red
and blue arrow represent the force and interaction between the probe and the sample surface.
(b) Recorded force curves using PDA-modified colloidal probes, with biases of −0.3 V vs. Ag/AgCl
and 0.5 V vs. Ag/AgCl in a 0.1 M KCl solution. (c) AFM topography bacterial image obtained in
ambient conditions using an AFM-SECM probe. (d) Deflection bacterial image acquired in air using
an AFM−SECM probe [43]. Copyright © 2020, American Chemical Society.

In addition to the measurement of the adhesion force of bacteria, AFM−SECM may
have significant potential in the future for the electrochemical measurement of bacteria and
biofilm metabolic activity with an improved lateral resolution to topographical changes,
such as adhesive coatings for cell immobilization and functional platforms for biosensors.

SICM is a non-contact topographical analysis method that shows great potential. This
technique involves injecting specific electrolytes into a glass/quartz nanopipette and then
insulating and exposing the ring electrode at the capillary end [74]. SICM−SECM probes
typically feature double barrels, with one barrel filled to control the SICM distance and
the other containing an SECM carbon electrode to measure the uptake of the molecules of
interest (see Figure 4a). Due to its precise distance control and high spatial and temporal
resolutions, the combined SICM−SECM imaging method has received a lot of attention
for studying dynamic biological processes. However, several challenges still exist in



Biosensors 2023, 13, 695 7 of 17

creating appropriate SICM−SECM probes, including achieving controlled geometry and
reproducibility [75].
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Figure 4. (a) The principle of combined SECM−SICM measurement with a double-barrel carbon
nanoprobe. (b) Schematic illustration of the fabrication method of the double-barrel carbon nanoprobe.
(c) Simultaneous topographic and electrochemical images of the dendritic structures of living sensory
neurons [76]. Copyright © John Wiley & Sons, Inc.

A simplified fabrication method for a double-barrel SICM−SECM probe with a high
success rate and a rapid fabrication time (<2 min) was recently presented by
Takahashi et al. [76]. Figure 4a,b illustrate the combined SECM−SICM measurement
concept using double-barrel carbon nanoprobes, with effective radii of the two barrels
measuring less than 50 nm and the probe’s full radius measuring less than 100 nm. SICM
and SECM images showed the dendritic structures of living sensory neurons, as illus-
trated in Figure 4c. During this method, the SICM channel scans the target region for
topographical information while the SECM electrode records the electrochemical signal
of the redox mediator. In another report, the same group confirmed the capability of the
probe to study the spatial distribution of neurotransmitter release and related variations in
cell topography [76,77].

Unwin et al. used SICM to investigate the ionic environment of live Gram-positive and
Gram-negative bacteria [63]. They employed SICM to map the ionic properties and charge
environment of two live bacterial strains, namely the Gram-negative Escherichia coli and the
Gram-positive Bacillus subtilis. SICM results revealed heterogeneities across the bacterial
surface and significant differences between the Gram-positive and Gram-negative bacteria.

In addition, SECM can be employed in conjunction with microscopy techniques such
as fluorescence microscopy. Koley et al. demonstrated the generation of a quantitative map
of microbial metabolic exchange between two bacterial species, commensal Streptococcus
gordonii and pathogenic Streptococcus mutans, using SECM [39]. In their study, they utilized
a carbon-based potentiometric pH microsensor as an SECM chemical probe. The team
also conducted fluorescence confocal imaging on Sm–Sg–Sm alginate gel biofilm with
a pH molecular probe (LysoSensor yellow/blue dextran pH probe) to corroborate their
SECM findings.

In the following parts, different research aims achieved by SECM and relevant tech-
nologies will be introduced in detail.
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3.2. Measurements of O2 Consumption in Bacteria

Numerous studies have investigated the respiration activity of living cells to assess
their metabolic vitality [78]. In these studies, probes for detecting electrochemical signals
were placed near the living organism, allowing for monitoring of local oxygen concentration
through oxygen reduction reactions. The microelectrode was biased, with the potential
to reduce the amount of oxygen present in the buffered solution. In aerobic bacteria (i.e.,
microbes capable of tolerating O2), oxygen plays a crucial role in events such as respiration
and human infection, with oxygen levels varying considerably depending on the infection
site and host response [79].

Figure 5a depicts a scheme of a Soft-Probe SECM experiment in redox competition
mode, demonstrating a typical oxygen reduction process. Due to the consumption of
oxygen by bacteria present in dirty contact lenses, the measured current value in chronoam-
perometry was lower, owing to the decrease in oxygen concentration in the PBS solution
(Figure 5b) [18]. This study shows operando studies of bacterial respirations while the
microbes were attached to the contact lenses. Currently, techniques for measuring living
bacteria on contact lenses have been very rare and limited. Therefore, Soft-Probe SECM is a
new platform for studying the microbiology of contact lens hygiene.
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Figure 5. (a) The figure depicts a schematic diagram of a soft gold microelectrode used for measuring
the currents associated with the oxygen reduction reaction. Additionally, it allows for the investigation
of oxygen consumption by microbes. (b) Chronoamperometry was conducted to record the oxygen
reduction current at a soft gold microelectrode. The measurements were taken on both clean contact
lenses and contact lenses contaminated with E. coli. Experimental conditions: contact lenses were
immersed in 0.1 x PBS solution, WE = soft gold microelectrode, QRE = Ag wire, CE = Pt wire.
E = −0.8 V, delay in ADC time = 0.1 s [18]. With permission from Elsevier.

Furthermore, several studies have reported on the oxygen consumption by bacteria
under different conditions. It is interesting to note that facultative anaerobic organisms
utilize aerobic respiration, but their physiology and behavior are heavily influenced by the
presence of oxygen [79]. For example, the behavior of Pseudomonas aeruginosa, a facultative
anaerobe, has been investigated by SECM [34]. The results of the experiment indicate that
the biofilm surface of Pseudomonas aeruginosa consumes oxygen, leading to the generation
of an anoxic area. To further examine and assess the impact of oxygen consumption on
biofilms, the researchers introduced an antibiotic, ciprofloxacin, into the system. Although
the number of viable bacteria had decreased by a factor of 100 after the first addition of
antibiotics, the hypoxic zone still existed. This is attributed to the continued bulk respiratory
activity and carbon consumption despite exposure to antibiotics [80].

3.3. Measurements of the Interactions of Metal Ions with Bacteria

Exploring metal respiration by anaerobic bacteria is an important issue in various
environmental processes, such as metal biogeochemical cycling, clay weathering, corrosion
science, biomineralization, and production of microbial fuel cell electricity [81,82]. SECM
has gained attention as a useful technique for in situ studies of the concentration profile of
metal ions, including Fe, Mn, Ca, and Ag ions [42]. Additionally, SECM has been utilized
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to investigate suspended silver ions, silver metals, or nanoparticles embedded in Nafion
or polymeric film [80]. Controlled release of silver from the film can cause the production
of reactive oxygen species (ROS), resulting in cell apoptosis. Figure 6 demonstrates that
SECM can effectively define the research on the kinetics of Ag release from the antibacterial
film [44]. The silver is incorporated within the silver-fluoropolymer (Ag-CFX) thin films,
which are designed as promising antimicrobial coatings. SECM experiments in combination
with anodic stripping voltammetry (ASV) were carried out to study the release mechanism
of silver(I) from the embedded silver nanoparticles (AgNPs). The antimicrobial properties
of Ag-CFX are confirmed against Pseudomonas fluorescens, with differences observed in
biofilm density and bacterial morphology for pristine and swollen films.
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3.4. Detection of Hydrogen Peroxide

The detection of hydrogen peroxide can be associated with significant biological
phenomena, such as catalase enzyme function, the interplay between co-cultured bacteria,
metabolic activity, and the defense response against other microbial threats.

All host animals instinctively protect themselves against bacterial colonization from
inappropriate or pathogenic microorganisms by activating the immune system or gener-
ating bactericides (e.g., hydrogen peroxides). Therefore, it is essential to study catalase
activity to determine if bacteria can successfully colonize host tissues. Figure 7 depicts
how SECM can be used to determine in real-time the catalase activity of the Protebacteria
Vibrionaceae biofilms [53]. The decomposition of 1 mM hydrogen peroxide on the surface of
Biofilms of Protebacteria Vibrionaceae, associated with catalase activity on the biofilm, can be
easily observed in SECM without the addition of excess dyes or perturbations.

Compared to the conventional SECM probe, the dual-scanning electrochemical mi-
croscopy probe has advantages in multi-target detection while mapping the 3D microenvi-
ronment of analytes (Figure 8A,C). In Figure 8, the dual-tip glucose-sensing SECM probe
was used to measure the local glucose consumption of Streptococcus mutans biofilms by
covalently immobilizing the glucose oxidase (GOD) enzyme (Figure 8D) [47]. A negative
feedback approach curve was obtained with the new dual-tip SECM probe in ferrocene
methanol solution fitted with the theoretical approach curve of the electrode with the
same dimensions. This result shows the reliability of the probe (Figure 8B). The GOD was
immobilized in a matrix of functionalized multi-walled carbon nanotubes (f-MWCNTs)
and 1-butyl-4-methyl pyridinium hexafluorophosphate (ionic liquid) packed in the etched
Pt ultramicroelectrode (Figure 8D). When GOD oxidized glucose, H2O2 was produced
as one of the detectable products by the dual SECM probe, allowing the calculation of
glucose concentration.



Biosensors 2023, 13, 695 10 of 17

Biosensors 2023, 13, x FOR PEER REVIEW 10 of 17 
 

activity to determine if bacteria can successfully colonize host tissues. Figure 7 depicts 
how SECM can be used to determine in real-time the catalase activity of the Protebacteria 
Vibrionaceae biofilms [53]. The decomposition of 1 mM hydrogen peroxide on the surface 
of Biofilms of Protebacteria Vibrionaceae, associated with catalase activity on the biofilm, can 
be easily observed in SECM without the addition of excess dyes or perturbations.  

 
Figure 7. The figure illustrates a schematic representation of a real-time measurement using SECM 
to observe the decomposition of hydrogen peroxide by a bacterial biofilm (represented as orange 
color) on a substrate (represented as dark blue color) [53]. 

Compared to the conventional SECM probe, the dual-scanning electrochemical mi-
croscopy probe has advantages in multi-target detection while mapping the 3D microen-
vironment of analytes (Figure 8A,C). In Figure 8, the dual-tip glucose-sensing SECM 
probe was used to measure the local glucose consumption of Streptococcus mutans biofilms 
by covalently immobilizing the glucose oxidase (GOD) enzyme (Figure 8D) [47]. A nega-
tive feedback approach curve was obtained with the new dual-tip SECM probe in ferro-
cene methanol solution fitted with the theoretical approach curve of the electrode with the 
same dimensions. This result shows the reliability of the probe (Figure 8B). The GOD was 
immobilized in a matrix of functionalized multi-walled carbon nanotubes (f-MWCNTs) 
and 1-butyl-4-methyl pyridinium hexafluorophosphate (ionic liquid) packed in the etched 
Pt ultramicroelectrode (Figure 8D). When GOD oxidized glucose, H2O2 was produced as 
one of the detectable products by the dual SECM probe, allowing the calculation of glu-
cose concentration. 

 

Figure 7. The figure illustrates a schematic representation of a real-time measurement using SECM to
observe the decomposition of hydrogen peroxide by a bacterial biofilm (represented as orange color)
on a substrate (represented as dark blue color) [53].

Biosensors 2023, 13, x FOR PEER REVIEW 10 of 17 
 

activity to determine if bacteria can successfully colonize host tissues. Figure 7 depicts 
how SECM can be used to determine in real-time the catalase activity of the Protebacteria 
Vibrionaceae biofilms [53]. The decomposition of 1 mM hydrogen peroxide on the surface 
of Biofilms of Protebacteria Vibrionaceae, associated with catalase activity on the biofilm, can 
be easily observed in SECM without the addition of excess dyes or perturbations.  

 
Figure 7. The figure illustrates a schematic representation of a real-time measurement using SECM 
to observe the decomposition of hydrogen peroxide by a bacterial biofilm (represented as orange 
color) on a substrate (represented as dark blue color) [53]. 

Compared to the conventional SECM probe, the dual-scanning electrochemical mi-
croscopy probe has advantages in multi-target detection while mapping the 3D microen-
vironment of analytes (Figure 8A,C). In Figure 8, the dual-tip glucose-sensing SECM 
probe was used to measure the local glucose consumption of Streptococcus mutans biofilms 
by covalently immobilizing the glucose oxidase (GOD) enzyme (Figure 8D) [47]. A nega-
tive feedback approach curve was obtained with the new dual-tip SECM probe in ferro-
cene methanol solution fitted with the theoretical approach curve of the electrode with the 
same dimensions. This result shows the reliability of the probe (Figure 8B). The GOD was 
immobilized in a matrix of functionalized multi-walled carbon nanotubes (f-MWCNTs) 
and 1-butyl-4-methyl pyridinium hexafluorophosphate (ionic liquid) packed in the etched 
Pt ultramicroelectrode (Figure 8D). When GOD oxidized glucose, H2O2 was produced as 
one of the detectable products by the dual SECM probe, allowing the calculation of glu-
cose concentration. 

 
Figure 8. (A) An optical microscopic image displaying the new dual-tip SECM probe showing the
Pt ultramicroelectrode (UME) and the glucose sensor. (B) A negative feedback approach curve was
obtained with the new dual-tip SECM probe in a 1.0 mM ferrocene methanol solution fitted with the
theoretical approach curve of the electrode with the same dimensions. (C) Schematics showcasing
the configuration of the new SECM probe, including the unmodified Pt UME and the glucose UME.
(D) A schematic representation (not drawn to scale) depicting the covalently attached glucose oxidase
enzyme onto the f-MWCNT (functionalized multi-walled carbon nanotubes), which is exposed to the
surface of the IL–f-MWCNT matrix packed into the etched cavity of the Pt UME [47]. Copyright ©
2020, American Chemical Society.

3.5. pH and ROS Measurement

The growth and attachment of bacteria are strongly influenced by the pH of their
microenvironment [83]. To investigate the impact of local pH changes mediated by bacteria
on the integrity of dental resin composite materials in the oral cavity, an SECM-based
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potentiometric pH microsensor was developed by Koley and co-workers [49]. The pH
fluctuations of the biofilm formed by multiple strains of bacteria were monitored, revealing
a decrease in pH at different stages of biofilm formation. This allowed the simulation of the
dental decay process in vitro.

In another study conducted by Chaplin and co-workers, SECM was used to monitor
the pH value and ROS formation near the surface of the Pseudomonas aeruginosa biofilm
grown on a conductive surface under cathodic conditions [48]. At low applied potentials
on the conductive surface, the effect of the oxidant produced on the bacterial perforation
is insignificant. However, when the conductive surface was biased with 1 V, hydrogen
peroxide and ROS could form on it and were detected by SECM. This enabled the authors
to observe the association between bacteria viability on a conductive surface and how it
was affected by H2O2 and ROS, providing a theoretical explanation for their findings [48].

3.6. The Research on Quorum Sensing

Bacterial biofilms can support the coexistence of numerous bacterial species, which
communicate with each other via short-range chemical signals [84]. To comprehensively
grasp this communication, it is crucial to explore the mechanisms underlying short-range
signaling between bacteria. Quorum sensing (QS) is one of the most essential mechanisms
that facilitate biofilm formation, wherein communication occurs through a population
density-dependent stimulus and response system between bacterial aggregates [85]. The
QS molecular formula varies depending on the bacterial type. For example, Pseudomonas
aeruginosa produces pyocyanin (PYO), an important metabolite that not only inhibits other
microorganisms but also maintains oxidative homeostasis and regulates biofilms [86]. The
suppression of QS molecule secretion can hinder biofilm formation. Consequently, real-time
mapping of PYO concentration using SECM in the SG/TC mode has been conducted in the
previous literature [54].

3.7. Direct Biofilm Imaging Using a Soft-Probe SECM

The applications of conventional SECM to biological samples can be complicated
by the intricate structure and morphology of such samples, resulting in difficulties with
experimental procedures and data interpretation. To address these issues, Soft-Probe SECM
employs a contact mode scanning approach that simplifies experimental procedures and
maintains a constant working distance without requiring any additional hardware or
software implementation [20,27].

Darvishi et al. reported the complementary readout of SECM images with fluorescence
imaging [25]. They studied micrometric electrochemical imaging of Escherichia coli biofilms
using Soft-Probe SECM, as shown in Figure 9. Figure 9a demonstrates the diffusion of
FcMeOH to the microelectrode in three different scenarios: unhindered diffusion in the bulk
solution when the soft probe is away from any insulator, hindered diffusion when the soft
probe is close or in contact with a smooth insulator such as glass, and hindered diffusion
with mediator regeneration when the soft probe contacts the biofilm. Since the FeMeOH
could be regenerated from the biofilm, the authors also performed SECM feedback mode
approach curves on E. coli biofilm, glass adhesive tape, and tape-stripped biofilm surface
layer to observe the regenerated currents (Figure 9b-e). They found out the biofilm could be
detected through SECM because of the FcMeOH reaeration currents observed. Additionally,
they used SECM imaging and crystal violet staining of the surface layers of Escherichia
coli biofilms and entire biofilms, respectively. They reported fluorescence images of whole
crystal violet-stained biofilms on the glass as a complementary detection, showing biofilm
biomass in different stages of biofilm maturation.
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demonstrating the diffusion of FcMeOH (ferrocene methanol, represented as blue color) to the
microelectrode in different scenarios: unhindered diffusion in the bulk solution when the soft probe is
away from any insulator (INorm, bulk), hindered diffusion when the soft probe is close or in contact with
a smooth insulator such as glass (INorm,insulator =→0), hindered diffusion with mediator regeneration
when the soft probe contacts the biofilm (INorm,insulator < INorm,biofilm/insulator < INorm,bulk). FcMeOH
was regenerated by the E. coli biofilm, forming FcMeOH+, represented as red color. (b) Approach
curves obtained over glass and the biofilm/glass interface. (c) Two locally separated approach
curves obtained over each of the three identical biofilms grown on glass (NSample = 3). (d) Approach
curves over the adhesive tape and tape-stripped biofilm surface layer on adhesive tape. (e) Two
locally separated approach curves obtained over each of the three identical tape-stripped biofilm
surface layers on adhesive tapes (NSample = 3). Experimental details: ET = 0.5 V, probe translation
speed = 5 µm/s, step size = 2 µm, 2.5 mM FcMeOH in 100 mM PBS (pH = 7.4) [25]. Copyright © 2023,
American Chemical Society.

3.8. Characterization of the Growth of Bacteriogenic Metal Nanoparticles

The chemical method of nanoparticle production has been extensively researched, but
its use of toxic reactants and organic solvents is detrimental to the environment. On the
contrary, the use of microorganisms for nanoparticle synthesis is considered safer and more
environmentally friendly [87]. Several microorganisms have been explored as potential cell
factories for both intracellular and extracellular synthesis of various nanoparticles. SECM is
an ideal tool for characterizing biosynthesized nanoparticles, as it allows for measurements
in a biologically friendly environment.

In the SECM study depicted in Figure 10, the release of biosynthesized metallic
nanoparticles was examined [56]. The researchers biosynthesized AgNPs using Klebsiella
oxytoca, which produces a branched EPS during growth. Under aerobic and anaerobic
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conditions, AgNO3 was added to the bacteria culture, resulting in the formation of AgNPs
embedded in EPS (AgNPs–EPS). Anodic stripping voltammetry with SECM was employed
to assess the release of silver(I) species from the various AgNPs–EPS types. Consequently,
SECM measurements facilitated the acquisition of information on the kinetics of silver ion
release from AgNPs–EPS and their concentration profiles at the substrate/water interface.
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4. Conclusions and Future Perspectives

In conclusion, in situ and operando electrochemical analysis performed by scanning
probes in hydrophilic redox mediators or electrolytes facilitates the study of bacteria. Var-
ious types of information can be uncovered using scanning electrochemical microscopy,
such as biological or electrochemical activity, respiration burst, pH levels, hydrogen concen-
tration, electron transfer pathways, and nanoparticle biosynthesis. Several supplementary
techniques have been created to address limitations in SECM and other scanning probe
microscopy. These techniques aim to improve factors such as the distance between the
sample and the probe, resolution, image processing, and scanning stability. These devel-
opments have expanded the capabilities of SECM and improved its performance, making
it a valuable tool for studying electrochemical processes at surfaces. Specifically, the use
of SECM for bacteria detection has shown great promise and has the potential to provide
a powerful tool for the study of bacterial physiology and the detection of bacterial infec-
tions. With the emergence of new technologies such as artificial intelligence (AI) and the
Internet of things (IoT), SECM is expected to continue to evolve and gain popularity in
the future. A potential approach to improve image quality in SECM is the utilization of
AI-assisted image fusion techniques, as suggested by T.-E. Lin and colleagues. This method
involves combining optical microscopic images with SECM images, which holds promise
for enhancing the overall quality of the resulting images [17].
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