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Abstract: Biological toxicity testing plays an essential role in identifying the possible negative effects
induced by substances such as organic pollutants or heavy metals. As an alternative to conventional
methods of toxicity detection, paper-based analytical device (PAD) offers advantages in terms of
convenience, quick results, environmental friendliness, and cost-effectiveness. However, detecting
the toxicity of both organic pollutants and heavy metals is challenging for a PAD. Here, we show
the evaluation of biotoxicity testing for chlorophenols (pentachlorophenol, 2,4-dichlorophenol, and
4-chlorophenol) and heavy metals (Cu2+, Zn2+, and Pb2+) by a resazurin-integrated PAD. The results
were achieved by observing the colourimetric response of bacteria (Enterococcus faecalis and Escherichia
coli) to resazurin reduction on the PAD. The toxicity responses of E. faecalis-PAD and E. coli-PAD to
chlorophenols and heavy metals can be read within 10 min and 40 min, respectively. Compared to
the traditional growth inhibition experiments for toxicity measuring which takes at least 3 h, the
resazurin-integrated PAD can recognize toxicity differences between studied chlorophenols and
between studied heavy metals within 40 min.

Keywords: paper-based PAD; toxicity; chlorophenol; heavy metal

1. Introduction

Persistent organic pollutants (POPs) are chemicals of global concern due to their
unique combination of physical and chemical properties as well as their significant negative
effects on human health and the environment [1]. They exist in a stable state with high
lipid solubility [2,3], leading to their accumulation and the subsequent accumulation of
toxicity [2,4]. Heavy metal in the environment is also of concern due to its non-degradability
and accumulation in water [5]. Exposure to both POPs and heavy metals is considered
serious a health risk [6]. Hence, detecting the toxicity of such substances in the environment
quickly and accurately is critical to assess their risk.

There are various conventional analytical techniques for the detection of organic and
heavy metal pollutants, such as High-performance liquid chromatography (HPLC), Gas
chromatography (GC), atomic absorption spectroscopy (AAS), mass spectrometry (MS),
etc. These analytical techniques are limited by the investment costs, the necessity of skilled
labor during operation, sample pre-processing, and lack of real-time capability [7]. Paper is
a versatile and cost-effective medium that is easy to transport. The advent of microfluidic
paper-based analytical devices (PADs) can simultaneously satisfy on-site detection while
requiring fewer samples, providing ease of operation and requiring no external power,
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making these devices increasingly useful in biomedicine [8], environmental testing [9,10],
and food safety [11]. The integration of colourimetric detection with PAD is one of the most
used detection methods due to its visibility, excellent stability, rapid detection capabilities,
and ease of use in the field. Various colorimetric PAD assays have been reported, with
the change in color of the PAD before and after the test. The Griess reagent was used to
integrate into the PAD, which then combined with nitrite to produce an azo dye, visible
as a magenta hue [10]. To detect heavy metal ions such as Ni (II), Cr (VI), and Cu (II) in
water samples, color alterations before and after the indicator–metal complex system were
utilized [12,13]. The utilization of silver nanoparticles in conjunction with PAD devices
has been demonstrated as a viable method for detecting cyanide (CN) in water samples.
This was achieved by monitoring the color alteration of silver nanoparticles-PAD from
yellow to colorless [14]. In addition, gold nanoparticles were also reported to be used in the
colorimetric PADs in conjunction with digital images to measure color responserepresenting
additional advantage [15].

Resazurin is commonly used as an oxidation−reduction indicator, formulated into
in vitro toxicology assay kits (i.e., AlamarBlue). The reduction in blue resazurin to pink re-
sorufin, then further to colorless dihydroresorufin (resazurin→resorufin
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is the response to intercellular metabolic activity [16]. Therefore, it is widely used as an
indicator of microbial growth and antibacterial properties [17,18], antibiotic susceptibility
testing [16], and cytotoxicity [19–21]. A microfluidic droplet reactor with resazurin reduc-
tion assay has been utilized to detect heavy metals [22,23] and hydrophobic toxicants [24]
that inhibit E. faecalis metabolism. However, the microfluidics system is not portable
and requires exterior force to drive the liquid. As a solution to these limitations, in this
present study, resazurin reduction assay was integrated with PAD devices to differentiate
the biotoxicity of chlorophenols (pentachlorophenol (PCP), 2,4-dichlorophenol (2,4-DCP),
4-chlorophenol (4-CP)) and heavy metals (Pb2+, Zn2+, and Cu2+) on E. coli and E. faecalis.
The kinetics of color change in resazurin on PAD captured by a smartphone was used to
measure the bio-toxicity of studied substances. By comparing these results to the traditional
biotoxicity measures, we proposed that PAD integrating resazurin reduction assay is a
novel and efficient method to study the stress of toxicants on microorganisms.

2. Materials and Methods
2.1. Chemicals and Materials

Brain heart infusion (BHI) broth was obtained from Hopebio, Qingdao, China. Several
of the chemicals used in this work were purchased from Sigma-Aldrich, HK, including
PCP, 2,4-DCP, 4-CP, and Lead (II) nitrate (≥99%). Zinc acetate and copper (II) sulphate
pentahydrate were purchased from VWR Chemicals, Radnor, PA, USA. Resazurin sodium
salt (90%) was obtained from J&K Scientific, Beijing, China. Whatman chromatography
paper (WCP) was selected from Whatman, Hong Kong.

2.2. Fabrication of PADs

WCP used in this experiment was sliced into strips at the size of 3 × 50 mm. The
strips were soaked in 0.2 mM resazurin solution for 10 min and then placed in a glass
petri dish with a lid and allowed to air dry overnight in a fume hood under aphotic
and ambient conditions. The dry WCP strips were stored in a desiccator for later use as
resazurin-integrated PADs.

2.3. Bacterial Culture

E. faecalis (ATCC 6569) and E. coli (ATCC 25922) were stored at −80 ◦C. The vol-
ume of 600 µL of the bacterial stock solution was placed in 10 mL of BHI for subculture
and grown at 37 ◦C and 150 rpm until the optical density (OD600nm) was 1.4, (3.5 h for
E. faecalis, ~9 × 108 CFU/mL; 6 h for E. coli, ~2 × 109 CFU/mL). For subsequent experi-
ments, the culture medium was diluted with BHI broth to OD600nm = 0.85 (for E. faecalis,
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~1 × 108 CFU/mL; for E. coli, ~9× 108 CFU/mL) and 0.45 (for E. faecalis, ~8× 107 CFU/mL;
for E. coli, ~4 × 108 CFU/mL) and measured with a UV–vis spectrophotometer.

2.4. PAD Toxicity Detection Method and Data Analysis

Three types of chlorophenols, PCP, 2,4-DCP, and 4-CP, were spiked in the bacterial
culture prepared in Section 2.3 to yield final concentrations of 10 mg/L, respectively. Thirty
µL chlorophenol-spiked bacterial culture at OD600nm of 1.4, 0.85, and 0.45 was, respectively,
dropped onto PADs prepared in Section 2.2. A smartphone was used to record the color
changes on the PAD. Meanwhile, a positive control group with bacterial culture without
toxicants addition was set up and a blank control only with BHI was also set up. Every
10 min, photos were snapped in the recorded video and then imported into the application
Color Picker to quantify the hue value. The increment of the hue value (∆Hue) was obtained
by subtracting the initial hue value (time = 0 min).

The kinetic reduction equation for resazurin was the basis for this experiment. It is
used as a toxicity indicator when comparing the toxicity of toxic substances with E. coli. The

reduction in resazurin by living cells: Resazurin(blue) + M1
k1→ Resoru f in(pink) + M2

k2⇔
dihydroresoru f in(transparent) (M1 and M2 here represent reducing substances such as
NADH/NADPH in the living cells). The colorimetric based on resazurin used as a toxicity
indicator when comparing the toxicity of toxic substances with E. coli and can be described
by Equation (1) [25,26]:

∆Hue = ∆Hue0
k1

k2 − k1

(
e−k1[M]t − e−k2[M]t

)
. (1)

The value of k1 and k2 can be obtained by fitting chromaticity values to the reaction
reduction Equation (1).

2.5. Applicability for Heavy Metal Toxicity Detection

To verify the feasibility of this PAD technique in the detection of heavy metal toxicity,
copper, zinc, and lead were chosen as proxies, whose concentrations were determined
according to IC50 values published in literatures [27–29]. The copper (II) sulphate pentahy-
drate, zinc (II) acetate, and lead (II) nitrate solutions were spiked in the bacterial culture
with final metal ion concentrations of 7.00, 10.00, and 18.00 mg/L, respectively. Thirty µL
metal-spiked bacterial culture was dropped onto the resazurin-integrated PAD prepared in
Section 2.3. Two groups of control were set up and the same experiment was carried out in
the same way as that mentioned in Section 2.4.

2.6. Traditional Toxicity Detection

To evaluate the biotoxicity test PAD, a traditional growth curve method was conducted
in BHI broth to confirm the toxicity of chlorophenols, and heavy metals used above at the
relevant concentrations, in which another 0.4 mL of subcultured bacteria (E. faecalis and E.
coli, respectively) was mixed with sterile BHI broth in 100 mL serum bottles. Chlorophenols
and heavy metals were then spiked, respectively, to result in the concentrations used above.
Positive controls were also conducted. Serum vials were sealed, and they were incubated
at 37 ◦C. OD600nm was monitored until it reached the stationary phase at regular intervals.

3. Results and Discussion

Both E. faecalis (Gram-positive) and E. coli (Gram-negative) were common facultative
anaerobic bacteria inhabiting the human gastrointestinal tract, and their isolation and
culture were frequently used as indicators of bacterial toxicity [30]. The videos of resazurin
reduced by E. faecalis and E. coli on the PAD were sped up by a factor of 600 (details can be
found in Videos S1–S4). As the bacterial culture solution was dripped onto the paper strip,
the color changed from blue to pink, meaning the bacteria reduced resazurin to resorufin.
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Furthermore, the color changed at different rates under certain conditions, such as different
species of bacteria, bacterial densities, etc.

3.1. The Kinetics of Color Change on PADs

The pictures captured in the recorded video to illustrate the color change in reducing
resazurin by E. faecalis and E. coli (Figure 1). The difference in hue values every ten 10 from
those at 0 min were fitted in conjunction with Equation (1) (Figure 2). Table 1 summarizes
the simulation results (k1 and k2). The majority of E. faecalis fitting results were more than
0.9 (>0.636, critical R2 under p = 0.01). In general, the fitting outcomes for E. coli were
higher than 0.9, which is higher than 0.467 (critical R2 under p = 0.01). These results suggest
that the model (Equation (1)) can reasonably be used to simulate the reduction process of
resazurin on PADs for two different strains of bacteria, E. faecalis and E. coli.

Table 1. The k1 and k2 values of the resazurin reduction model fitted by E. faecalis and E. coli under
different bacterial densities and chlorophenols.

Bacteria Bacterial Density (OD600nm) Group k1
# k2

# R2 *

E. faecalis (n = 9)

1.4

Positive control 0.059 ± 0.002 1.04 × 10−18 ± 6.20 × 10−19 0.998

PCP 0.038 ± 0.005 1.67 × 10−18 ± 1.80 × 10−18 0.994

2,4-DCP 0.046 ± 0.005 6.62 × 10−21 ± 5.32 × 10−18 0.995

4-CP 0.052 ± 0.004 2.41 × 10−21 ± 3.40 × 10−21 0.994

0.85

Positive control 0.050 ± 0.007 6.18 × 10−25 ± 4.12 × 10−25 0.989

PCP 0.029 ± 0.003 −1.41 × 10−5 ± 1.96 × 10−4 0.991

2,4-DCP 0.034 ± 0.005 8.10 × 10−5 ± 1.05 × 10−4 0.987

4-CP 0.044 ± 0.001 6.76 × 10−23 ± 3.15 × 10−23 0.991

0.45

Positive control 0.035 ± 0.003 6.61 × 10−22 ± 9.07 × 10−22 0.982

PCP 0.005 ± 0.001 5.21 × 10−3 ± 1.46 × 10−3 0.962

2,4-DCP 0.009 ± 0.002 5.04 × 10−3 ± 3.91 × 10−3 0.981

4-CP 0.013 ± 0.001 5.52 × 10−3 ± 6.10 × 10−3 0.984

E. coli (n = 13)

1.4

Positive control 0.0041 ± 0.000 −6.15 × 10−3 ± 1.43 × 10−3 0.979

PCP 0.0038 ± 0.001 −1.85 × 10−3 ± 1.33 × 10−3 0.958

2,4-DCP 0.0029 ± 0.000 −1.15 × 10−3 ± 5.77 × 10−4 0.918

4-CP 0.0046 ± 0.001 −1.50 × 10−3 ± 3.95 × 10−4 0.982

0.85

Positive control 0.0040 ± 0.0007 −5.73× 10−3 ± 7.04 × 10−4 0.974

PCP 0.0024 ± 0.0002 −1.74 × 10−2 ± 1.77 × 10−2 0.957

2,4-DCP 0.0027 ± 0.0002 −2.90 × 10−2 ± 2.13 × 10−2 0.930

4-CP 0.0029 ± 0.0001 −1.59 × 10−3 ± 1.02 × 10−4 0.951

0.45

Positive control 0.0037 ± 0.0003 −6.54 × 10−3 ± 1.10 × 10−3 0.980

PCP 0.0015 ± 0.0000 −0.0245 ± 0.0022 0.949

2,4-DCP 0.0017 ± 0.0000 0.00732 ± 0.0055 0.857

4-CP 0.0020 ± 0.0001 1.29 × 10−3 ± 2.68 × 10−3 0.909

# k1 and k2 were the pseudo-first-order rate constants for the conversion of resazurin to resorufin and resorufin to
dihydroresorufin, respectively. This was expressed as the mean ± standard deviation of three parallel data sets.
* The mean coefficients were calculated by fitting three replicates to Equation (1) (n = 9, critical R2 = 0.636, p = 0.01
for E. faecalis; n = 13, critical R2 = 0.467, p = 0.01 for E. coli).
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groups were listed from top to bottom of each dish (For E. faecalis, 0 represents undiluted bacterial 
density, D1 represents bacterial density diluted two times, OD600nm = 0.85, and D2 represents bacte-
rial density diluted four times, OD600nm = 0.45. For the E. coli on the right, the D1 and D2 marks 
represent that E. coli was diluted 2 and 4 times, respectively, and the OD600nm corresponds to 0.85 
and 0.45. In addition, the petri dish labeled with E. coli represents undiluted bacteria). 

Figure 1. Resazurin reaction with PADs of E. faecalis (a) and E. coli (b) under chlorophenols stress. The
block control (BHI), positive control (BHI + bacteria), PCP, 2,4-DCP, and 4-CP experimental groups
were listed from top to bottom of each dish (For E. faecalis, 0 represents undiluted bacterial density, D1
represents bacterial density diluted two times, OD600nm = 0.85, and D2 represents bacterial density
diluted four times, OD600nm = 0.45. For the E. coli on the right, the D1 and D2 marks represent that
E. coli was diluted 2 and 4 times, respectively, and the OD600nm corresponds to 0.85 and 0.45. In
addition, the petri dish labeled with E. coli represents undiluted bacteria).
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E. faecalis with OD600nm = 1.4, (b) E. faecalis with OD600nm = 0.85, and (c) reduction process of resazurin 
by E. faecalis with OD600nm = 0.45 under chlorophenols stress (d) E. coli with OD600nm = 1.4 (the last two 
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Figure 2. Color kinetic changes in three chlorophenols on the growth of E. faecalis and E. coli. The
reduction equation for resazurin fits E. faecalis and E. coli exposed to chlorophenols compounds. (a) E.
faecalis with OD600nm = 1.4, (b) E. faecalis with OD600nm = 0.85, and (c) reduction process of resazurin
by E. faecalis with OD600nm = 0.45 under chlorophenols stress (d) E. coli with OD600nm = 1.4 (the last
two outliers were not involved in the fitting), (e) E. coli with OD600nm = 0.85, and (f) E. coli with
OD600nm = 0.45 during the reduction in resazurin under chlorophenols stress.

3.2. For Bacterial Species

Two strains of bacteria under different densities were tested for their ability to reduce
resazurin on the PAD. It can be seen in Figure 2a–c that the color change in positive control
(E. faecalis with BHI) reaches equilibrium at about 30 min, indicating that resorufin has
reached its maximum concentration in the E. faecalis system. For E. coli, the ∆Hue value
of the positive control showed an increasing trend during the detection time (Figure 2d–f),
indicating that resazurin was still being reduced in E. coli system. The reduction in re-
sazurin requires attachment to bacteria, diffusion through cell walls and membranes, and
intracellular metabolism [31]. It can also be seen in Table 1 that the k1 value of E. faecalis
fitted with different bacterial densities was between 0.35 and 0.59, while that of E. coli was
0.0037–0.041, revealing faster kinetics of resazurin reduction by E. faecalis than by E. coli.

It is believed that Gram-positive bacteria have monolayer cell walls that are composed
primarily of peptidoglycan and acidic polysaccharides, such as teichoic acid. Gram-negative
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bacteria contain multilayered cell walls and lipopolysaccharide (LPS)-containing outer
membrane [32]. The presence of large numbers of LPS makes the cell membrane less
permeable, resulting in slowing down the diffusion of dye into the cells [33]. It was
reported that resazurin was reduced to resazurin within the bacteria [34]. By adsorbing
resazurin to the bacteria, resazurin passes through the cell wall and membrane, then reacts
with intracellular metabolites [26]. According to Equation (1), [M] represents the reducing
substance, such as NADH and NADPH, in living bacteria. The content of resazurin
(meaning of ∆Hue0) that enters the bacteria through the bacterial membrane is relatively
fixed due to the limited absorption sites on the bacterial membrane [26]. Because of the
different bacterial structures of E. faecalis and E. coli, the content of resazurin entering the
bacteria will be different due to the difference in the speed of resazurin passing through
the bacterial cell wall/membrane. The kinetics under the same bacterial density (positive
control fitting curve, the red one, in Figure 2) and the simulated k1 value demonstrate that
E. faecalis reduces resazurin faster than E. coli.

3.3. For Bacterial Density

The simulated k1 values based on Figure 2 are summarized in Table 1. E. faecalis
density at OD600nm 1.4 and 0.85 had the k1 value of 0.059 and 0.050 min−1, respectively.
Although these two densities were different, the amount of bacteria in the culture medium
remained in the same order of magnitude (~108), resulting in nonsignificant resazurin
reduction kinetics difference between them. When the bacterial culture was further diluted
(four times) to achieve density at OD600nm 0.45, the resazurin reduction kinetics significantly
slowed down (k1 at 0.035 min−1). The same phenomenon manifested in both the control
and chlorophenol-treated groups (Figure 2a–c), whose statistical analysis results are shown
in Figure 3a. Although the addition of chlorophenols impacted E. faecalis and its reducing
resazurin on PAD at densities of 1.4 and 0.85, it was unable to identify chlorophenols’
toxicity difference. Meanwhile, when E. faecalis density was at 0.45, according to the
fitted k1 value in Table 1 and statistical analysis in Figure 3a, the toxicity of the three
chlorophenols could be sorted as PCP > 2,4-DCP > 4-CP, which was closely correlated with
the number of substituted chlorine atoms [35] and the same as the toxicity sequence of
various chlorophenols [36]. Hence, OD600nm 0.45 was recommended as E. faecalis density
for further study.
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represents undiluted bacterial density, D1 represents bacterial density diluted twice, OD600nm = 0.85, 
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turkey test was applied to variance analysis (* p < 0.05, ** p < 0.01, *** p < 0.001 compared in groups 
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Compared with E. faecalis, the color changed slowly as different densities of E. coli 
were dripped onto PADs. According to the process of resazurin reduced by E. coli (Figure 
2d-f), the corresponding fitted k1 value in Table 1 and statistical analysis in Figure 3b, E. 
coli density at 1.4 and 0.85 did not make resazurin reduction kinetics significant among 
PCP, 2,4-DCP, and 4-CP. When E. coli density was at 0.45, the same as that of E. faecalis, 
the toxicity of those three chlorophenols was differentiated. However, this process re-
quired at least 80 min, which is longer than that required for E. faecalis system (i.e., 30 

Figure 3. Rate constants of resazurin reduction by E. faecalis and E. coli under chloroform stress.
(a) The k1 values of resazurin reduction on E. faecalis-PADs and their differences were analyzed, and
(b) the k1 values of resazurin reduction on E. coli-PADs and their differences were analyzed. D0
represents undiluted bacterial density, D1 represents bacterial density diluted twice, OD600nm = 0.85,
and D2 represents a 4-fold dilution of bacterial density, OD600nm = 0.45. In addition, the ANOVA’s
turkey test was applied to variance analysis (* p < 0.05, ** p < 0.01, *** p < 0.001 compared in groups
with the same dilution).

Compared with E. faecalis, the color changed slowly as different densities of E. coli were
dripped onto PADs. According to the process of resazurin reduced by E. coli (Figure 2d–f),
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the corresponding fitted k1 value in Table 1 and statistical analysis in Figure 3b, E. coli
density at 1.4 and 0.85 did not make resazurin reduction kinetics significant among PCP,
2,4-DCP, and 4-CP. When E. coli density was at 0.45, the same as that of E. faecalis, the
toxicity of those three chlorophenols was differentiated. However, this process required
at least 80 min, which is longer than that required for E. faecalis system (i.e., 30 min).
Therefore, OD600nm 0.45 was used as the bacterial density for subsequent E. coli detection
of heavy metal toxicity. It showed sensitivity as two different types of bacteria were diluted
four-fold to show a difference in toxicity instead of an order of magnitude dilution in
traditional measurement.

3.4. Comparison with Traditional Toxicity Detection Methods

Incubated with 10 mg/L PCP, the growth of Gram-positive E. faecalis was obviously
affected (Figure 4a), indicating that the bacteria cannot grow. However, 10 mg/L of 2,4-DCP
and 4-CP did not show an effect on the growth of E. faecalis. The traditional absorbance
measurements cannot completely differentiate the toxicity of 10 mg/L PCP, 2,4-DCP, and
4-CP. Meanwhile, by the PADs developed in this present study, the inhibition of 10 mg/L
PCP, 2,4-DCP, and 4-CP can be differentiated in 30 min.
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tional growth inhibition assay); the growth curves were obtained by logistic fitting.

For Gram-negative E. coli, compared with the control group, the growth curve of
10 mg/L PCP showed a certain inhibitory effect (Figure 4b). Unlike what happened
with E. faecalis, PCP partially inhibited the growth of E. coli, revealing E. coli resistance
to potentially toxic substances. In contrast to the conventional method, which requires
4 h to demonstrate chlorophenol impact on E. coli growth, resazurin-integrated PADs can
demonstrate chlorophenol inhibition effect on this Gram-positive strain in 80 min.

3.5. Toxicity Testing for Heavy Metals

The toxic effects of heavy metals on both E. faecalis and E. coli were detected by the
resazurin-integrated PADs developed above at an OD600nm 0.45. According to the color
change on PADs (Figure 5), the obtained data (∆Hue) were fitted to Equation (1). The
simulation results (k1 and k2 values) were summarized in Table 2. The R2 of E. faecalis fitting
results were more than 0.97 (>0.636, critical R2) and the R2 of E. coli fitting results were
around 0.9 (>0.467, critical R2). This suggested that the model (Equation (1) can still well
reflect the resazurin reduction process carried out by E. faecalis and E. coli on PADs in the
presence of heavy metals.
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Figure 5. Color change in resazurin on PADs of E. faecalis (a) and E. coli (b) under heavy metal stress.
(a) For E. faecalis-PAD, from top to bottom, are the experimental groups, the negative control (BHI),
the positive control (BHI + bacteria), and the Pb, Zn, and Cu control groups. (b) For E. coli-PAD, from
top to bottom, are Pb, Zn, and Cu experimental groups, positive control (BHI + bacteria), and blank
control (BHI).
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Table 2. The k1 and k2 values of the resazurin reduction model fitted by E. faecalis and E. coli to
different heavy metals.

Bacteria Group k1
# k2

# R2 *

E. faecalis (n = 9)

Positive control 0.0366 ± 0.0023 a 7.10 × 10−21 ± 2.34 × 10−3 0.977

Pb 0.0084 ± 0.0004 b 8.45 × 10−3 ± 3.97 × 10−3 0.991

Zn 0.0076 ± 0.0001 c 7.62 × 10−3 ± 1.48 × 10−4 0.983

Cu 0.0074 ± 0.0001 c 7.44 × 10−3 ± 1.02 × 10−4 0.982

E. coli (n = 13)

Positive control 0.00397 ± 0.0000 a 4.07 × 10−3 ± 2.59 × 10−5 0.976

Pb 0.00181 ± 0.0003 b −3.00 × 10−2 ± 1.17 × 10−2 0.914

Zn 0.00199 ± 0.0001 b −4.52 × 10−3 ± 8.10 × 10−4 0.813

Cu 0.00250 ± 0.0003 b 7.35 × 10−3 ± 9.23 × 10−3 0.944
# k1 and k2 are the pseudo-first-order rate constants for the conversion of resazurin to resorufin and resorufin to
dihydroresorufin, respectively. This is expressed as the mean ± standard deviation of three parallel data sets.
* The mean coefficients were calculated by fitting three replicates to Equation (1) (n = 9, critical R2 = 0.636, p = 0.01
for E. faecalis; n = 13, critical R2 = 0.467, p = 0.01 for E. coli). a, b, c: Significant difference labels. Turkey test in
Anova (alpha = 0.05) was conducted on k1 of the experimental and control groups.

When using E. faecalis as a model, spiking three heavy metals (Cu2+, Zn2+, and Pb2+)
made the color change slower than the positive control group (Figure 5a). The ∆Hue values
showed that the positive control group reached equilibrium at 30 min, while the heavy
metal-spiked group did not reach it during the entire recording time (Figure 6a), showing
heavy metal toxicity and suggesting that the presence of heavy metals inhibits bacterial
activity and hence retards the resazurin reduction on PADs. Comparing the k1 value in
Table 2, there was no statistical difference in the reduction rate of resazurin on PADs among
Cu2+, Zn2+, and Pb2+ because the concentrations of these three heavy metals were all at
IC50 levels whose order was Cu2+ < Zn2+ < Pb2+. Hence, the toxicities of the three heavy
metals were as reported [28]: Cu2+> Zn2+ > Pb2+. However, the traditional method did not
detect the toxicity of the three heavy metals to E. faecalis (Figure 6c).

With the same concentrations, Cu2+, Zn2+, and Pb2+ were spiked into E. coli culture
to evaluate the stress of heavy metals on such Gram-negative bacteria by growth-based
inhibition method and resazurin-integrated PADs, respectively. The growth-based inhibi-
tion method cannot reveal the toxicity of those three heavy metals to E. coli (Figure 6d),
similar to the finding for E. faecalis. However, the color change on resazurin-integrated
PADs (Figures 5b and 6b) suggests that Cu2+, Zn2+, and Pb2+ at IC50 level show the same
toxicity to E. coli. Comparing the k1 value in Table 2, although there was no statistical
difference among Cu2+, Zn2+, and Pb2+’s k1 values on E. coli, their toxicity can be checked
in 40 min (Figure 6b).
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Figure 6. Color kinetic curve and growth curve of heavy metal ions on the growth of E. faecalis and E.
coli. (a) Color kinetic change of the E. faecalis-PAD, (b) color kinetic change of the E. coli -PAD (data
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4. Conclusions

The toxicity of several toxic substances to two types of bacteria, Gram-positive bacteria
(E. faecalis) and Gram-negative bacteria (E. coli), was investigated by resazurin-integrated
PADs. The color change on PADs and the kinetics of the resazurin reaction were used to
assess the biotoxicity. Bacterial density is a key factor affecting the sensitivity of PADs’
toxicity detection. Results show that OD600nm 0.45 of E. faecalis and E. coli can differentiate
the stress of PCP, 2,4-DCP, and 4-CP within 10 and 40 min, respectively. To further verify
the applicability of this resazurin-integrated PADs, heavy metals, Cu2+, Zn2+, and Pb2+

were used as toxicants for their biotoxicity detection. Similarly, according to the kinetics of
resazurin reaction on PADs based on color change, the toxic effects of heavy metals on E.
faecalis can be observed in only 10 min. All these results show that this resazurin-integrated
PADs technology can detect the stress of toxic substances, including organic pollutants and
heavy metals, in a gross way. The resazurin-based color response is targeted against reduc-
ing substances in living bacteria. The lack of selectivity is a limitation of resazurin-PAD.
Integrating its sensitivity for toxicity differentiation, future work will involve modifying
resazurin to make this resazurin-based assay selective for some important pollutants to
study their synergistic or antagonistic or additive effects.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/bios13050523/s1, Video S1: The PAD colorimetric response of E.
faecalis to chlorophenol stress (pentachlorophenol, 2,4-dichlorophenol, and 4-chlorophenol) was sped
up by a factor of 600 in the video. Video S2: The PAD colorimetric response of E. coli to chlorophenol
stress (pentachlorophenol, 2,4-dichlorophenol, and 4-chlorophenol) was sped up by a factor of 600 in
the video. Video S3: The PAD colorimetric response of E. faecalis to heavy metal stress (Cu2+, Zn2+,
and Pb2+) was sped up by a factor of 600 in the video. Video S4: The PAD colorimetric response of E.
coli to heavy metal stress (Cu2+, Zn2+, and Pb2+) was sped up by a factor of 600 in the video.

https://www.mdpi.com/article/10.3390/bios13050523/s1
https://www.mdpi.com/article/10.3390/bios13050523/s1
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