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Figure S1. Assembly of the proposed device in 3D printing for clinical analysis. 

 

Figure S2. (A) Flexible platinum electrodes fabricated by photolithography on Bio-PET 

substrate (geometric area of 0.03 ± 0.1 cm2); (B) Mechanical stress process applied to an 

electrode. 

 



 

Figure S3. EDS spectra for the semi-quantitative distribution of chemical elements on 

the platinum electrode surface. 

 

 

Figure S4. SEM images of Pt film thickness. 
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Figure S5. (A) Cyclic voltammograms of the flexible platinum electrode in the presence 

(▬) and absence (▬) of an equimolar mixture of 5.0 mmol L−1 [Fe(CN)6]3−/4; (B) Cyclic 

voltammograms obtained varying the scan rate at 10, 20, 30, 50, 70, 90, 110, 130, 160, 

200 and 250 mV s-1; Inset: plot of current response in function of v1/2. 
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Figure S6. Proposed mechanism of the oxidation of L-Cys on the surface of the Pt 

electrode [1]. 

 

 

 



 

Figure S7. Effect of pH for the cyclic voltammetric behavior of the Pl electrode in 

presence of 500 μmol L−1 L-Cys. 

 

 

 

Figure S8. (A) Cyclic voltammograms obtained with the Pt electrode in 0.1 mol L−1 PBS 

(pH 6.0) containing 1000 μmol L−1 L-cysteine at different scan rates, from 0.01 to 0.30 V 

s−1. (B) Linear plot of L-cysteine Ipa versus v1/2 (V s−1)1/2.  



 

Figure S9. (A) Chronoamperogram and (B) current response obtained for successive 

additions of L-Cys and different interfering species (Methionine, Tyrosine, Caffeine, 

Citric acid, Urea, Glucose, and Fructose) at an applied potential of 0.55 V. Supporting 

electrolyte: 0.1 mol L−1 PBS pH 6.0. 

 

 

Figure S10. Fit simulation of the equivalent circuit for the first and last immunosensor 
modification step.   



 

Figure S11. Square wave voltammetry direct (A-C) and reverse (A’-C’) effect of 

experimental conditions as function of peak width at half height (A’’-C’’) for 0.1 μmol 

L−1 Spike protein in PBS 1x in the presence equimolar mixture of 5.0 mmol L−1 

[Fe(CN)6]3−/4; pulse amplitude from 20 to 120 mV (A’’), frequency from 20 to 120 Hz 

(B’’) and step potential from 2 to 10 mV (C’’).  

 

 

  



Table S1 - Analytical performance of the Pt-based sensor for the L-Cys determination 

compared with other sensors in the literature. 

Electrode Technique 
Linear range 

(μmol L−1) 
LOD 

(μmol L−1) 
Ref. 

AuNP/MnP/FTO Chronoamperometry 12.0 to 34.0 2.40 
[2] 

SPE/PB-ammine Chronoamperometry 100 to 500 72.0 
[3] 

GR/CD/Pt/SPE DPV 
0.50 to 40.0 

40.0 to 170 
0.12 

[4] 

Poli (ácido p -
cumárico) / 

MWNT/GCE 
DPV 7.5 to 1000 1.1 

[5] 

CuFe2O4/rGO-
Au 

CV 50.0 to 400 0.383 
[6] 

3D PLA-GDMF-

EC+PB 
Chronoamperometry 3.0 to 230 0.858 

[7] 

FePc–
AuNP/GPE 

DPV 50.0 to 1000 0.27 
[8] 

GC/RGO/cobalt 
(II) porphyrazine 

Chronoamperometry 1000 to 6.6×105 0.79 
[9] 

MoN/N-
MWNTs 

Chronoamperometry 5.0 to 1.26×104 3.64 
[10] 

Cu-CoHCF CV 6.0 to 1000 5.0 
[11] 

InHCF Chronoamperometry 100 to 1000 50 
[12] 

CoTAPc-
MWNTs 

Chronoamperometry 5.0 to 40 0.28 
[13] 

Pt/Bio-PET Chronoamperometry 
3.98 to 39.0 

39.0 to 145 

0.70 

2.36 

This 

work 

Notes: AuNP: gold nanoparticles; MnP: metallated porphyrin; FTO: fluorine tin oxide-coated 

glass; SPE: screen-printed electrodes; PLA-GDMF-EC: activated polylactic acid and graphene 

electrode; PB: Prussian blue; GR: reduced graphene; CD: oxide-β-cyclodextrin; Pt: platinum; 

MWNT: multi-walled carbon nanotubes; GCE: glassy carbon electrode; CuFe2O4: copper ferrite; 



rGO: reduced graphene oxide; MoN/N-MWNTs: Molybdenum nitride/nitrogen-doped multi-

walled carbon nanotubes; Cu-CoHCF: copper–cobalt hexacyanoferrate; InHCF: Indium 

hexacyanoferrate; CoTAPc: cobalt tetraaminophthalocyanine 
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