
Citation: Xie, R.; Li, N.; Li, Z.; Chen,

J.; Li, K.; He, Q.; Liu, L.; Zhang, S.

Liquid Crystal Droplet-Based

Biosensors: Promising for Point-

of-Care Testing. Biosensors 2022, 12,

758. https://doi.org/10.3390/

bios12090758

Received: 1 August 2022

Accepted: 9 September 2022

Published: 15 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

biosensors

Review

Liquid Crystal Droplet-Based Biosensors: Promising for
Point-of-Care Testing
Ruwen Xie 1, Na Li 1, Zunhua Li 2, Jinrong Chen 1, Kaixuan Li 1, Qiang He 1, Lishang Liu 1,*
and Shusheng Zhang 1,*

1 Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, Linyi University,
Linyi 276005, China

2 College of Chemistry and Bioengineering, Hunan University of Science and Engineering,
Yongzhou 425100, China

* Correspondence: liulishang@lyu.edu.cn (L.L.); zhangshusheng@lyu.edu.cn (S.Z.)

Abstract: The development of biosensing platforms has been impressively accelerated by advance-
ments in liquid crystal (LC) technology. High response rate, easy operation, and good stability of
the LC droplet-based biosensors are all benefits of the long-range order of LC molecules. Bioprobes
emerged when LC droplets were combined with biotechnology, and these bioprobes are used exten-
sively for disease diagnosis, food safety, and environmental monitoring. The LC droplet biosensors
have high sensitivity and excellent selectivity, making them an attractive tool for the label-free,
economical, and real-time detection of different targets. Portable devices work well as the accessory
kits for LC droplet-based biosensors to make them easier to use by anyone for on-site monitoring
of targets. Herein, we offer a review of the latest developments in the design of LC droplet-based
biosensors for qualitative target monitoring and quantitative target analysis.

Keywords: LC droplets; biosensing; POC; single-cell monitoring; enzyme sensors; clinical applications

1. Introduction

Liquid crystal (LC) is a kind of substance whose morphology is between crystal and
liquid, which has not only the anisotropy of crystal but also the fluidity of liquid. The
anomalous behavior of cholesterol benzoate during melting was observed by Austrian
biologist Friedrich Reinitzer in 1888, and this substance was called “crystalline liquid” by
Otto Lehman and confirmed as a defined state of matter by French crystallographer Georges
Friedel in 1922 [1]. According to the different physical conditions and components, LCs
are generally divided into thermotropics and lyotropics. Thermotropic LCs are typically
formed by pure organic compounds in a specific temperature range. Usually, with an
increase in temperature, the morphology of the substance changes from a crystal state to
turbid liquid and then from turbid liquid to transparent liquid. The critical temperature
between these three forms is the melting point and the clear point. The state between these
two degrees is thermotropic LC, which has birefringence and dielectric anisotropy [2,3].
Thermotropic LCs can be classified into smectic LCs (SLCs), nematic LCs (NLCs), and
cholesteric LCs (CLCs) according to the arrangement order of LC molecules [4]. Lyotropic
LCs generally form when one or more solute molecules are in a specific concentration range
in the solvent, which is usually water or other polar solvents.

The molecules of SLCs are mostly in the form of rods or strips, arranged in parallel
with each other to form a layer structure, and the intermolecular action of each layer is
weak. The LC molecules can slide inside the layer, but cannot move up and down between
adjacent layers, and there is a definite distance between layers, which makes it easy for a
relative motion to occur [5]. The nematic liquid crystals have molecules that are parallel
to one another and maintain their one-dimensional arrangement without delamination.
Although the nematic phase lacks positional order, it possesses great orientational order.
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Nematic phases can be calamitic or discotic depending on the structure of the molecule. This
directional orientation results in anisotropy, which affects the nematic phase’s birefringence,
magnetic susceptibility, and dynamic behavior [6]. The CLCs have flat molecules. They
exhibit chirality and have a helical shape between the layers and molecules that are parallel
to one another inside the layers [7]. The CLCs can be prepared by doping non-chiral
nematic LCs with chiral dopants or by incorporating chiral centers in the nematic structure.
The pitch length of the helix can be simply changed by using external stimuli, such as
temperature, chiral doping concentration, and the intensity of external electric and magnetic
fields, which is one of the advantages of doped CLC [8].

The construction of a LC droplet sensor is mainly based on LC’s long-range order
and birefringence. The key to a LC droplet sensor is to design a modified sensitive surface
with specific recognition target molecules. Under the action of the modified molecule,
the LC molecules can arrange themselves in an orderly manner. However, this order will
be disrupted when the target analyte is injected. In comparison to the LC molecule and
the modified molecule, the force between the target molecule and the modified molecule is
greater. For instance, through ligand-receptor interaction [9], hydrophobic interaction [10,11],
and so on, which weakens the anchoring effect of the sensitive surface to the droplet,
thus changing the order of the LC molecules. The refraction of light by the LC droplet is
affected, resulting in changes in the brightness and color of the sensor under polarized
optical microscopy (POM), thus realizing the detection of target molecules [12]. When
the non-target material is added to the sensor, the modified sensitive molecules do not
interact with them, the LC molecules maintain the original orientation; that is, it cannot
produce a response signal. The arrangement of LC molecules is closely related to the
existence of the sensitive interface, which can respond rapidly to the changes in the external
environment and has a unique optical amplification effect. The response signal can be
obtained effectively and efficiently with the help of a POM [13]. Today, non-invasive and
point-of-care platforms that give real-time response and low detection limits are important
for healthcare monitoring and clinical application [14–18]. The LCs are an effective sensing
component that gives a convenient, cost-effective, and easy-to-read response platform.

Due to the ease with which stimuli-sensitive director configuration transitions may
be implemented in flat geometries [19,20], in spherical geometries, i.e., droplets [21–23],
and in shells [24,25], using LCs to identify chemical and biological species has become
very common [26]. They can achieve the same or even better results than other sensing
technologies [27–29]. Depending on how the orientation at the LC surface affects the
structure throughout the droplet, the geometric confinements of the LC droplets can take on
various forms. Because of their large specific surface area, various thermodynamic stability
defects, and rich phase morphology texture, many researchers are interested in LC droplets.
It is known that NLC droplets have a bipolar form and a radial form, with two boojums at
the droplet’s opposing poles and a single point-of-defect in the center, respectively [30]. In
contrast to NLC droplets, the helical molecular arrangement is an additional characteristic
of CLC droplets. If CLC droplets are only affected by spherical geometry with tangential
surface anchoring conditions, they show a Frank–Pryce spherulite pattern with concentric
circles [31]. Recent studies have found that short-spaced CLC droplets show central spot
reflection at CLC photonic bandgap (PBG) wavelengths in a planar anchoring environment.
Still, in homeotropic circumstances, they show spots that seem like flashing lights [32]. In a
word, the alignment of LC droplets can be precisely controlled under various conditions,
making them an ideal material for various applications [33,34].

Currently, a significant portion of detector readouts relies on bared-eye examination of
the optical appearance using POM [35,36]. The reaction process is challenging to quantify
and accurately characterize in these sensing modalities, limiting the further development
of the LC sensing device in real-time monitoring. In order to achieve real-time quantitative
monitoring of the analyte reaction process and to overcome these limitations [37–39], many
groups use whispering gallery mode (WGM) lasers in LC droplets [40–42]. When light is
incident from a light-dense medium to a light-sparse medium and the angle of incidence is
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large enough, total reflection can happen at the intersection of the two media, producing
an optical WGM at the surface of the high-refractive index medium. This phenomenon
is analogous to the reflection of sound waves in the walls of a cloister. The light will be
increased and bound in the cavity, generating the so-called WGM resonance [43]. Due
to the flawless spherical structure and incredibly smooth interface, LC droplets make an
excellent optical microcavity for WGM lasing [44–46]. In theory, excitation light from a gain
medium undergoes multiple total internal reflections at the optical microcavity interface
before being amplified by constructive interference [47]. The resonance frequency of the
microcavity depends on the distribution of the refractive index along the optical path. The
change of refractive index, in turn, can be detected by the WGM spectra as a resonance
frequency shift. The use of WGM lasing in LC microdroplets is expected to become a
promising tool in the field of biosensing due to the unique properties of LC materials.

Some advantages of this method include the following: (i) WGM lasing can convert the
biochemical reaction process into a spectral response in real-time, providing more accurate
and quantitative information; (ii) the kind and strength of the local molecules anchoring
at the LC/water surface strongly influence the overall arrangement of LC molecules in
microdroplets, hence the WGM resonance spectra will catch any minute changes in the
anchoring state of LC molecules in real-time; (iii) the LC microdroplets’ high surface-
area-to-volume ratio enables complete molecular reactivity at the LC/water interface and
enhances the detection limit [48].

Compared with other traditional methods [49–53], a complete analysis is offered here,
including a focus on more recent developments in the use of LC droplets in the design of
biosensors for the on-site and real-time monitoring of various targets. Being used as a case
study, a prospective viewpoint for developing innovative LC droplet-based biosensing test
kits for point-of-care diagnosis may be obtained from this review.

2. Preparation of LC Droplets

The LC droplet method is a valuable technique for creating biosensors. The sensing
mechanism is that the adsorption of target molecules on the droplet interface will first
cause changes in the molecules on the LC droplet’s surface and then cause changes in the
molecular arrangement inside the droplet, thus affecting the optical morphology of the LC
droplets. As LC droplets have a large specific surface area, a variety of thermodynamically
stable defects, and a rich phase structure, they have the advantages of requiring a small
number of detection samples, a wide variety of detection samples, and high detection
sensitivity [54].

2.1. Emulsion Method

Researchers have built LC sensing substrates using the emulsion method, one of
the principal methods of creating LC droplets. Using this technique, they studied the
response signals of numerous molecules at the droplet interface. For instance, Gupta’s
group [55] reported a silica template that was disseminated in an aqueous solution coated
with polymers, such as poly-4-benzenesulfonic acid sodium (PSS) and polyallylamine
hydrochloride (PAH), layer by layer. After the polymeric coating had been applied, the
silica core was etched, and the resultant capsule was filled with low molecular weight LC
(Figure 1). For independent control of LC droplet size and interfacial chemistry, the choice
of silica template size and polymeric shell layer served as the foundation.

For early diagnosis and treatment, it is essential to design readout devices that are
straightforward, sensitive, quick, and affordable [56–60]. Other emulsion preparation meth-
ods created thus far included photopolymerization, ultrasonication, shearing of droplets
and subsequent crystallization fractionation, droplet breakoff in a coflowing stream, and
dispersion polymerization, in addition to the conventional methods [61–64]. The prepa-
ration of emulsion droplets using these techniques is booming, but precise droplet size
control is difficult. Additionally, because of the mobility of the droplets, it is challenging to
gauge the response time of LCs as a sensing platform, which limits their use in real-time
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monitoring, analytical chemistry, and biomolecular applications. The preparation of emul-
sion droplets has been enhanced by several groups in an effort to address the issues. To
obtain monodisperse LC droplets of uniform size, Sivakumar et al. [65] used silica as a
template dispersed in solution assembled layers of hydrogen-bonded poly(methacrylic
acid) (PMA) and poly(vinylpyrrollidone) (PVPON). Then silica was selectively etched off
the template by hydrofluoric acid (HF) to fill the LC molecules into the cavity formed by the
polyelectrolyte multilayer (PEM) film. The polyelectrolyte membrane dictated the chemical
characteristics at the interface, and the size of the LC droplets generated by this approach
may be adjusted by changing the size of the silica template.
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Figure 1. Schematic illustration of the procedure used to prepare LC droplets of predetermined
sizes within polymeric multilayer shells. Reprinted with permission from ref. [55] Copyright 2009
American Chemical Society.

In recent years, microfluidic technology [66] has also been applied to prepare LC
droplets, providing a new method for obtaining uniform LC droplets. For example, Park’s
group [67] used a microfluidic device to prepare monodisperse LC droplets modified by
amphiphilic block copolymer and obtained droplets of various sizes by controlling flow
rate (Figure 2). To break through the limitations of droplet mobility in real-time monitoring,
analytical chemistry, and biomolecular applications, Fang et al. [68] used the principle
that chitosan can form a gel rapidly after adding silver ions to embed LC droplets into
chitosan-surfactant gel films to detect biomolecules. By this method, the advantage of the
sensitive response of LC droplets is retained, and the real-time monitoring of the target
detection substance can be realized, which provides a broad application prospect for the
development of LC droplet sensors.
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of Chemistry.

Many different types of biomolecules can be detected by LC droplets created using
the emulsion approach, such as lipids, charged macromolecules, bacteria, viruses, and
proteins [69–71]. The molecular arrangement in LC droplets is susceptible to the change
in droplet size, so the optical morphology of LC can be changed by adjusting the droplet
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size. Then the target analyte can be detected, which provides a new detection method for
LC sensors.

2.2. LC Droplet Pattern Method

The LC droplet-based sensors have been developed using emulsion methods, although
these technologies have certain drawbacks. For instance, droplets have a low degree
of stability and a propensity to aggregate. These restrictions are thought to be solved
by LC droplet pattern-based sensors. Two distinct LC droplet patterns spontaneously
formed at the micrometer scale on solid surfaces offered the substantial potential for
sensing applications. By adding LC dispersed organic solvents to the slides, researchers
could essentially identify one-dimensional and two-dimensional LC droplet patterns with
two unique optical textures. With large surface area, the surface anchored LC droplet
may be used as a wide range of chemical and biosensors with higher sensitivity in water
and gas environments. Jang’s group [72,73] developed the LC droplet pattern method for
LC droplet preparation. Anhydrous ethanol and n-heptane were used to dissolve the LC
4-cyano-4′-pentylbiphenyl (5CB), mixed evenly by ultrasonic technique, and then added
to Piraha washing solution and octyltrichlorosilane (OTS) treated glass substrate. After
the organic solvent was evaporated, two different polarizing morphology (fan-shaped and
cross-shaped) were obtained (Figure 3).
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Han et al. [74] reported the method of a unique monodisperse LC droplet-based poly-
dimethylsiloxane (PDMS) microchip with flow focusing components and hydrodynamics-
based microstructures for the production and capture of monodisperse LC droplets, respec-
tively. This LC droplet-based microchip had a set number of monodisperse LC droplets
within, and by keeping an eye on how they collapse under POM, it could do real-time
measurement with little sample consumption. Inkjet printing was employed by Yang’s
group [75] to create consistent LC droplets that ranged in diameter from 35 to 136 µm and
could be created by printing many times in the same location.

The findings mentioned above demonstrate that the LC droplet pattern method has
considerable potential for the creation of straightforward, reliable, and adaptable sensors
for the quick, accurate, and real-time detection of biomarkers.

3. Overview of LC Droplet-Based Biosensors for POC Diagnosis of Diverse Targets
3.1. Bile Acid

Bile acids (BA) are significant metabolites that are essential for the emulsification and
digestion of fats and lipolytic vitamins. Excessive BA production is connected to liver
and intestinal disorders, however. As a result, diagnosing liver and intestine illnesses has
traditionally relied on the study of BAs in various bodily fluids, including blood, liver,
gallbladder fluid, and urine [76–78]. Cholic acid (CA) is a primary BA which comprises
31% of the total BAs produced in the liver. Secondary BAs include deoxycholic acid (DCA)
and lithocholic acid (LCA). The correlation of liver and intestinal diseases with CA is much
stronger than that of other BAs [79].

Host-guest recognition was used to design LC droplet-based sensors. Deng et al. [80]
have reported the selective detection of CA by β-cyclodextrin (β-CD)/tetradecyl trimethylam-
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monium bromide (C14TAB) complex coated with 5CB droplets. The β-CD was a naturally
existing host molecule with a hydrophobic cavity that selectively recognized CA and formed
an inclusion complex with a high equilibrium binding constant of 1:1. The CA displaced
C14TAB from the cavity of β-CD, resulted in a conformational shift of the LC droplets.

Detection by competitive adsorption was also a common method [81–83]. To detect
LCA, Fang’s group [84] changed the interface of 5CB droplets distributed in an aqueous
solution by adsorbing surfactants on the 5CB/aqueous interface. The detection limit of
LCA is at the micromolar level. The lower limit of detection of surfactant stabilized 5CB
droplets may be changed in the range of 10~70 µM by altering the chain length of the
surfactant. A sensitive CA biosensor based on 5CB droplets in phosphate-buffered saline
(PBS) was described by Niu et al. [85]. The radial-bipolar transition of the 5CB droplet
was triggered when CA competed with sodium dodecyl sulfate (SDS) which loaded on
the droplet’s surface. Their LC droplet sensor was quick, easy, and inexpensive. The
detection limit of this method was 5 mM. Han et al. [74] reported a novel PDMS microchip
based on the monodisperse droplet, wherein a single microfluidic device was used to
create an in situ monodisperse droplets and capture them (Figure 4a–d). They could
detect BAs quantitatively and quickly (<4 min) in real-time with little sample consumption
(~1.5 µL) by observing the form of the LC droplets under a POM (Figure 4e,f). The detection
limits for CA and DCA were 10 µM and 1 µM. A novel and highly sensitive biosensor
for BAs (CA and DCA) based on polyvinyl alcohol (PVA)/SC12S stabilized CLC droplets
was reported by Gollapelli et al. [86]. Through competitive adsorption, BAs were able to
displace other surface-active molecules from the LC/water interfacial adsorption. The
competitive adsorption of bile acids and S12S on the surface of CLC droplets resulted in a
change in droplet configuration from homeotropic to planar (Figure 4g). This innovative
technique allowed for detecting BAs with general optical microscopes. This method had a
detection limit of 1 µM.
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Reprinted with permission from ref. [86]. Copyright 2021 Royal Society of Chemistry.
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3.2. Nucleic Acid

Nucleic acids, such as deoxyribonucleic acid (DNA) and ribonucleic acid (RNA),
maintain genetic information for the next generation of organisms by storing it in nu-
cleotides [87,88]. Therefore, DNA detecting is of great importance [89–93]. Recently, in
DNA detection, LC droplet platforms have been extensively investigated by functionalized
LC interfaces.

Verma et al. [94] developed a sensor based on LC droplets to detect DNA. Positively
charged poly(L-lysine) (PLL) coated droplets could significantly absorb negatively charged
DNA, which caused the molecules’ orientation of the droplets to change. They have also
effectively shown that these DNA and PLL-decorated droplets exhibited the gradual release
of propidium iodide (PI) dye from the DNA molecule during physiological circumstances
(Figure 5).
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Recently, DNA was used as a model biomarker to achieve excellent detection of
biological molecules [95–101]. For continuous detection, Ma et al. [102] revealed a unique,
simple, and ultra-low sample consumption assay method using WGM. To create a fiber
optic probe, the sensor combines LC droplets and a hollow capillary tube (HCT). The test
solution maintained a stable suspension of the LC droplets. The DNA detection was then
accomplished by measuring the LC droplet orientation change and WGM spectroscopy.
When used to identify the target salmon sperm DNA, it produced a measurement range
that could be adjusted from 3.75 to 11.25 g/mL with a sensitivity of 0.33 nm/g/mL. The
test solution only needed 3 nl of the sample, and the limit of detection was 1.32 g/mL, or
as little as 3.96 pg of DNA could be effectively detected.

3.3. Protein and Peptides

All vital cellular and organismal functions, including immunological responses and
cell communication, depend on proteins [103–105]. Numerous studies have been done
on abnormal protein production in the early stages of illness [106,107]. Additionally, LC
droplet-based biosensors for the detection of proteins and peptides have been created.

Bao et al. [108] described a novel biosensor based on phospholipid-coated NLC
droplets and demonstrated the detection of Smp43, a model antimicrobial peptide (AMP)
derived from scorpion venom. Monodisperse lipid-coated LC droplets of 16.7 ± 0.2 µm in
diameter were generated using a PDMS microfluidic device and were targeted by AMP.
Droplets were confined in a microfluidic trap and treated simultaneously with gradient
concentrations of Smp43 in six different chambers. A significant change in the droplet
appearance that corresponded with the transition demonstrated that the Smp43 (<6 µM)
disrupts the lipid monolayer, at concentrations well within its physiologically active range.
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It had the potential to be developed into a trustworthy, affordable, and disposable point-of-
care testing kit.

To learn more about molecular interactions at the droplet interface, Pani et al. [109]
employed aqueous LC dispersions to investigate the interaction between mitochondrial
cardiolipin (CL) and membrane-associated cytochrome c (Cyt c) (the latter of which is
essential for the apoptotic signaling cascade). The CL wrapped around the surface of
5CB droplets and bound to Cyt c at the droplet surface in an aqueous phase environment
(Figure 6). The lipid-protein interactions causing the reorientation of the LC droplet inter-
face are shown for the first time by integrated atomic calculations, microscopic readings,
and spectroscopic observations.
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The addition of proteins and peptides disrupts the arrangement of the self-
assembled monolayer at the water/LC interface, leading to an orientation shift of LC
molecules. On the surface of 5CB droplets, Bera et al. [110] adsorbed positively charged
poly(diallyldimethylammonium chloride) (PDADMAC) and poly(ethylenimine) (PEI) of
various molecular weights. The droplets treated with PDADMAC and PEI exhibited radial
structure in aqueous solutions with salt contents greater than 150 mM. Electrostatic interac-
tions caused the positively charged PDADMAC- and PEI-modified 5CB droplets to adsorb
negatively charged bovine serum albumin (BSA), which then caused the droplets to change
from radial to bipolar conformation. As PDAMAC and PEI molecular weights decreased,
the BSA concentration necessary to cause the conformational change rises linearly.

By decorating PLL on LC droplets, Verma et al. [111] have described a simple but
effective approach that permits label-free imaging of fibronectin (FibN) (major component
of an extracellular matrix) adsorption at the LC/water surface. The PLL could induce
vertical alignment of the LC at the LC/water interface so that PLL-adsorbed LC droplets
displayed a radial configuration. Subsequent non-specific electrostatic adsorption on
anionic proteins could trigger a rapid shift of the PLL-LC droplet director configuration
to pre-radial or bipolar. This research developed an easy method based on LC droplets
that may be useful in biological and interfacial systems. They [112] used the same method
for real-time detection of the other proteins, such as BSA, concanavalin A (ConA), and
cathepsin D (CathD). These proteins may be quantified with detection limits of 0.1, 50, and
250 g/mL for BSA, ConA, and CathD.

The antibody–protein recognition reaction [113–116] at the LC droplet interface
is also a detection method. Rabbit IgG antigen sensing LC droplets were created by
Huan et al. [117]. Interfacial modifiers were poly(styrene-b-acrylic acid) copolymer (PS-
b-PA) and SDS. Immobilized AIgG coupled LC droplets on glass slides were sensitive to
optical signals interacting with IgG antigens in PBS and other media such as 10 wt% fetal
bovine serum (FBS) and plasma (Figure 7a). Using slide cover slides, the detection limit of
IgG antigen was reduced to 25ng mL−1 after contact with IgG antigen in PBS for 30 min
at room temperature, which increased the possibility of effective interaction between IgG
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antigen and immobilized AIgG coupled LC droplets. The slide-coverglass-immobilized LC
microdroplets have also demonstrated good archival durability and reusability in sensitive
IgG detection.
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Recently, Nguyen and Jang [118] developed a LC droplet biosensor for the detection of
carboxylesterase (CES). They showed the sensor’s structure diagram and working principle
(Figure 7b). After evaporating the heptane, a 1.5 µL heptane solution containing 2%
(v/v) 5CB was coated on the OTS-modified glass slide to obtain the LC droplet pattern.
The hydrophobic tail of the 5CB molecule was isotropic at the glass/LC interface. Using
myristocholine (Myr) as a cationic surfactant, anterograde anchoring occurs at the LC/water
interface, related to the dark cross morphology of LC droplets under POM. In addition, the
effect of inhibitors on the activity of CES was observed. With good selectivity, the biosensor
provided rapid and simple detection of CES and its inhibitors.

Block copolymers are widely used to design LC droplet biosensors to detect different
targets. Polyelectrolytes (PEs) were functionalized on the surface of the already oppositely
charged surfactant-coated 5CB droplets by Yang et al. [119], and the difference in their
configurational orientations was aimed at detecting protein. The 5CB droplets coated
with SDS and DTAB (5CBSDS and 5CBDTAB) were functionalized by quaternized poly
(4-vinylpyridine) (QP4VP) and polystyrene sulfonate (PSS). Hemoglobin and BSA were
used as model proteins, and QP4VP-functionalized 5CBSDS droplets were used for protein
assays, then resulted in a radial-bipolar configurational shift and a decrease in charge
density at LC/water interface. The demonstration of non-specific protein detection using
the PE-functionalized 5CB droplets was then accomplished effectively.

According to Khan et al. [120], protein detection was investigated using poly(acrylic
acid-b-4-cynobiphenyl-4′-undecyl acrylate) (PAA-b-LCP) coated LC droplets (LCPAA droplets),
in which the PAA chain attached the proteins at LC/water surface, and the LCP chain
anchored LCs in the droplet. Using a POM and UV/Vis spectroscopy, they examined
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the binding of protein to the LCPAA droplet. The unique radial-to-bipolar configuration
shift caused by protein adsorption in the LCPAA droplets was compared to the number
of proteins adsorbed as determined by UV/Vis spectroscopy. After that, they [121] also
used the PAA-b-LCP functionalized 5CB droplets by the microfluidic approach (Figure 8a).
To identify avidin-biotin binding exclusively at the LC/water interface, the PAA blocks
on 5CB droplets were biotinylated. As seen by POM, the shift in the structure of the
5CB droplet acted as a signal for the avidin-biotin binding (Figure 8b). With a detec-
tion limit of 0.5 µg/mL antibiotic protein, maximum biotinylation was accomplished by
injecting >100 µg/mL of biotin aqueous solution.

Lasers are the backbone of modern photonics and sensing [122,123]. Micro lasers
from biointegrated systems show clear advantages in biochemical analysis with improved
sensitivity [124]. It has been recently applied to LC droplets. Wang et al. [125] described a
LC droplet-based electrostatic responsive microlaser and examined its use for sensitively
detecting negatively charged biomolecules. Four orders of magnitude improvements in
sensitivity and dynamic range were made compared to a traditional POM method. The
future uses of microlasers with a detection limit of 1 pM were lastly demonstrated us-
ing BSA and particular biosensing, providing new options for ultrasensitive label-free
biosensing and monitoring of molecular interactions. Vector beams may be used to ob-
serve dynamic molecular interactions by following molecules’ topological properties, as
Gong et al. studied [126]. The idea of amplified structured light molecular interactions was
presented to track minute biological structural changes in microcavities. In a Fabry–Pérot
cavity sandwiched between two biomimetic LC droplets, a modest protein-lipid membrane
interaction caused the output vector beam to undergo a topological transition. It was
discovered that varying molecule concentrations and sizes might cause the vector beam
topology to change in real-time at various intervals (Figure 8c–f).
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Figure 8. (a) An optical image (left) and a schematic (right) of the microfluidic channel with dimen-
sions. (b) Schematic illustration of radial to bipolar transition of the 5CBPAA-biotin in an avidin
aqueous solution. Reprinted with permission from ref. [121]. Copyright 2015 Elsevier. (c) Schematic
illustration of generating a vector beam driven by molecular interaction. (d) Comparison of laser
mode with conventional spectra interrogation. (e) Schematic illustration of topological transformation
in laser mode pattern. (f) Illustration of the developed encoding rule. Reprinted with permission
from ref. [126]. Copyright 2021 John Wiley and Sons.
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3.4. Cell and Microorganism

The targets of biosensors also include the pathogens that cause diseases in humans,
such as cancerous cells, harmful bacteria, and viruses [127–131]. The main method of
detecting cells and bacteria was achieved by the interaction between cell membranes and
compounds that have a strong affinity for cells and bacteria [132,133]. Moreover, monitoring
the role of substances in living cells is important for understanding the behavior and
heterogeneity of tumor cells [134]. This section will discuss them in detail.

3.4.1. Single-Cell Monitoring

Sidiq et al. [135] described a straightforward way to generate LC droplets via PLL-LC
interactions in situ, which might be used to report the existence of cells and to track how
those cells interacted with their environs in real-time via topological flaws in those droplets.
Additionally, it has been shown that responsive PLL droplets might be used as a template
for reporting Annexin V-phosphatidylserine interactions.

The creation of LC droplet-based sensors that might be fixed directly on the surfaces
of cells was described by Manna et al. [136]. The E7 was injected into covalently cross-
linked microcapsules made of reactive layers of polyethyleneimine (PEI) and poly(4,4-
dimethyl lactone) (PVDMA) to create LC droplets. The sensors might report the presence
of dangerous compounds in the immediate environment at the level of individual cells and
single droplets (Figure 9a). The thermotropic LC droplets, as tiny as a micron in size, might
be inserted inside living human cells and employed as chemical sensors to find poisons in
extracellular situations, according to their further research [137].
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Figure 9. (a) Schematic illustration of LC droplet-based chemical sensors. Reprinted with permission
from ref. [136]. Copyright 2013 John Wiley and Sons. (b) Schematic illustration of immobilized
P-E7PBA droplets on cells cultured in a microfluidic channel. NH3 released from the cell results
in a radial-to-bipolar change of the E7PBA encapsulated in the polymeric microcapsule. Reprinted
with permission from ref. [138]. Copyright 2019 John Wiley and Sons. (c) Schematic illustration of
LCEM-HRP immobilized on the cell membrane and its reversible transfiguration. Reprinted with
permission from ref. [139]. Copyright 2020 John Wiley and Sons.

According to Khan et al. [138], the LC E7 was filled with polymeric microcapsules
after being decorated with 4-pentylbipenyl-4-carboxylic acid (PBA) (P-E7PBA). The P-E7PBA
droplets were immobilized on cells grown in a microfluidic channel. Live imaging of NH3
produced from the cells or a single cell was made possible by changing the orientation of
P-E7PBA from radial to bipolar during cross-polarization (Figure 9b). The P-E7PBA offered
the benefits of a regulated size to avoid endocytosis, simple cell membrane immobilization,
selective NH3 release detection, high sensitivity, and simple POM detection.

Recently, Li et al. [139] initially created chemically responsive LC elastomer micro-
spheres (LCEM), which were functionalized by horseradish peroxidase (LCEM-HRP), to
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observe the release of H2O2 from a single live cell in real-time (Figure 9c). They looked at
the release of H2O2 from normal human umbilical vein endothelial cells (HUVEC), human
primary glioblastoma (U87), lung cancer cells (A549), and hepatocellular liver carcinoma
cells (HepG-2). It was shown that each LCEM-HRP could transmit H2O2 in real-time with
single-cell resolution using a concentric-to-radial (C-R) transfiguration. The system’s inter-
or intra-chain hydrogen bonding was broken, causing the C-R transfiguration caused by
the system’s decrease of H2O2 by HRP.

3.4.2. Different Cells and Microorganisms’ Detection

Tumor cells are an important biomarker, and their detection has important clinical
significance [140–144]. Yoon et al. [145] demonstrated a cell-selective LC droplet emulsion
using folic acid-conjugated block copolymers(PS-b-PAA-FA) and sodium dodecyl sulfate
(SDS) as a mediator. The created LC droplet emulsion showed a configurational shift from
radial to bipolar when engaged with KB cancer cells. Still, no such change was seen when
the emulsion was permitted to touch normal cells, for instance, fibroblast and osteoblast.
After that, the same group [146] presented β-galactose-conjugated poly(styrene-b-acrylic
acid) block copolymer (PS-b-PA-G) for an LC microdroplet-based sensing system utilized
5CB. Interaction of HepG2 cells with PS-b-PA-G induced a radial to bipolar orientation shift
of liquid crystal microdroplets.

With the rapid development of biosensing technology, many methods for detecting
bacteria have emerged [147–151]. Traditional approaches are time- and money-consuming,
despite effectively detecting different cancer cells with high sensitivity and accuracy. Sivaku-
mar et al. [70] reported monodisperse LC droplets as a versatile sensing method that could
distinguish various bacterial and viral strains (Gram +ve and −ve). Filling the PEM capsules
formed from PMA/PVPON with 5CB-generated LC droplets. When in contact with Gram
−ve bacteria (E. coli) and lipid enveloped viruses (A/NWS/Tokyo/67), the transition of LC
droplets from bipolar to radial occurred. Small amounts (1–5) of E. coli bacteria and low
concentrations (104 pfu/mL) of A/NWS/Tokyo/67 viruses can be detected using the sensor.

Recently, Concellón et al. [152] described how to create a novel optical sensor sys-
tem using complicated N* LC emulsions (Figure 10). The emulsions had two immiscible
compartments made of an N* LC and a fluorocarbon oil, and they might be dynamically
reconfigured. The N* pitch dynamically changed in response to the presence of microor-
ganisms. This pitch modulation was accomplished by utilizing chiral polymer surfactants
with boronic acid capabilities. As a result of the manipulation of the chiral polymer at
the LC/water interface predicted that the antibody’s interaction with the target bacterium
would result in optical changes. They showed that these alterations result in optically
readable and triggered reflectance alterations that might be employed as a reliable optical
read-out for identifying the foodborne pathogen Salmonella.
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American Chemical Society.
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3.5. Drug

Although drugs can be used to treat illnesses, they can also damage living
things if taken in excess [153,154]. Detecting the content of drugs is crucial [155–159].
Streptomyces kanamyceticus produces the aminoglycoside antibiotic known as kanamycin,
which is prescribed to animals to treat infections. Kanamycin may build up excessively
in the human body, causing antibiotic resistance as well as adverse consequences such
as ototoxicity and nephrotoxicity that might ultimately result in catastrophic harm to the
body [160]. Therefore, it is essential to find kanamycin residues. The need for straightfor-
ward, practical, affordable methods for quick and label-free identification is growing. Yin
et al. [161] reported a novel idea for the surface-anchored LC droplet-based detection of
kanamycin. With a rise in surfactant concentration, the optical pictures of the LC droplets
progressively transition from a four-leaf clover appearance to a uniformly dark cross ap-
pearance. A kanamycin aptamer and the cationic surfactant cetyltrimethylammonium
bromide (CTAB) were used to detect kanamycin. The addition of the aqueous solutions
of CTAB and CTAB/aptamer complex caused the LC droplets to look uniformly black
and four-clover-shaped, respectively. However, the CTAB could be released by the precise
binding of kanamycin to its aptamer, leading to the uniformly black appearance of the
LC droplets. A portable instrument was created to test the optical brightness of the LC
droplets. This technique enabled the detection of kanamycin in actual samples like milk
and honey as well as at concentrations as low as 0.1 ng/mL (or 0.17 nM). A portable optical
device helped the development of novel LC-based sensor types using surface-anchored
LC droplets.

Myricetin (MY) is effective in scavenging free radicals. Myricetin may serve as an
anti-tumor agent by promoting the breakdown of double-stranded DNA when it interacts
with DNA [162]. The rapid dosage configuration of MY is crucial for its application
in a variety of therapeutic therapies for different malignancies [163,164]. Detection of
MY has been suggested and demonstrated using a 5CB droplet-based sensing technique
by Xiong et al. [165]. It was created using a syringe pump attached to a tapered capillary
microtube, and it was functionalized in the aqueous phase using DTAB and DNA. When the
MY concentration increased, the 5CB microdroplet showed a structural shift. Additionally,
they created typical WGM lasing spectra by employing the 5CB microdroplet as an optical
microcavity of the WGM. The WGM spectrum showed a spectral blue shift with an increase
in MY addition. The sensitivity was 0.04 nm/µM when used within the detection limit.

3.6. Toxic Chemical
3.6.1. Toxin

Endotoxin, a component of the cell wall of Gram -ve bacteria, consisted of two polysac-
charide domains and a glycosphingolipid (lipid A) [166,167]. Jiang et al. [168]. reported
that using experimental measurements based on NLC droplets and machine learning tech-
niques, bacterial sources can be classified, and the concentration of endotoxin derived from
three bacteria presented in an aqueous solution could be quantified. They showed how
EndoNet was used to detect subtle changes in the scattering field. This allowed them to
classify bacterial sources and measure endotoxin levels in an eight-order magnitude range
from 0.01 pg mL−1 to 1 g mL−1.

Aflatoxin is the most toxic and carcinogenic mycotoxin. Consumption of Aflatoxin
B1 (AFB1)-contaminated food, even in small amounts, might lead to cumulative effects
and pose a risk to human health [169]. Therefore, to ensure food safety against mycotoxins,
highly sensitive and reliable detection methods are needed to investigate the causes of food
poisoning [170,171]. Recently, Cheng et al. [172] showed how to employ surface-anchored
5CB droplets (5CBSADrop) on a N, N-dimethyl-N-octadecyl(3-aminopropyl)trimethoxysilyl
chloride (DMOAP)-coated glass to provide a straightforward and practical method for
detecting AFB1 in food samples. The evaporation of a solvent was used to create the
surface-anchored 5CB droplets (5CBSADrop). Figure 11a–c depicted the experimental de-
sign’s basic principles. A black cross appearance matching a radial orientation of the LC
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droplets was seen under the POM (Figure 11a) when the surfactant CTAB was put onto the
5CBSADrop. The escape-radial shape of the LC droplets in a combination of CTAB and AFB1
aptamer resembled a four-leaf clover in the look of the 5CBSADrop, in contrast (Figure 11b).
In addition, when a combination of CTAB, AFB1, and its aptamer was dropped on the
5CBSADrop, a radial structure of the particle was seen (Figure 11c). Through the appearance
of 5CBSADrop under the POM, the various AFB1 concentrations were identified. Addi-
tionally, peanut oil and rice samples were used to demonstrated AFB1 could be detected
practically. The 5CBSADrop technique was particularly promising for use in the food and
agricultural industries since it possessed the advantages of simple analysis, minimal sample
consumption (1 µL), significant sensitivity, excellent stability, quick on-field detection, and
removal of the need for tags and pricey apparatus, and low cost.

3.6.2. Pesticide and Pollutant

The environmental problems of the earth are becoming more and more serious. It
is very important to detect the content of environmental pollutants [173–177]. Based on
enzymatic reactions, LC molecules can be employed to detect pesticides, as was stated for
enzyme detection. The responsiveness of microdroplets floating in aqueous environments
made the creation of new types of LC droplet environmental sensors. Zhou et al. [178]
built straightforward yet reliable 5CB droplet sensors for accurate and practical dichlorvos
(DDVP) detection based on its hydrolysis by alkaline phosphatase (ALP). Using sodium
monododecyl phosphate (SMP), an ALP cleavable surfactant, to change the orientations
of 5CB, LCs were able to regulate their optical responses (Figure 11d). Because of the
development of the SMP monolayer at the water/LC droplet interface, a dark crossed
optical image of 5CB was obtained. After adding the combination of ALP and SMP, the
optical appearance of 5CB becomes a dazzling fan-shaped appearance. Interestingly, the
combination of pre-incubated DDVP and ALP LCs retained dark optical images under
POM. The detection limit of DDVP was 0.1 ng/mL.
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Figure 11. Schematic diagram of the experimental principle. The POM images of the 5CBSADrop

and their corresponding configurations in the aqueous solutions of (a) CTAB, (b) CTAB and
AFB1 aptamer, and (c) CTAB, AFB1 aptamer, and AFB1, respectively. The dark cross appearance
and the four-leaf clover appearance correspond to the radial and escape-radial configurations of
LC droplets, respectively. Reprinted with permission from ref. [172]. Copyright 2022 Elsevier.
(d) Schematic illustration of orientation states for LCs: the absence and presence of DDVP in ALP so-
lution on the SMP doped-5CB droplet patterns. Reprinted with permission from ref. [178]. Copyright
2018 Elsevier.
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Volatile organic chemicals (VOCs) are often utilized in chemical synthesis as precursors.
The majority of VOCs are toxic and combustible, which raises serious questions about their
safety for both people and the environment [179]. Numerous illnesses, such as lung cancer
and chronic respiratory inflammation, could be brought on by prolonged exposure to these
vapors [180–183]. The LC droplets could be a promising platform to detect various VOCs.
For instance, An et al. [184] developed a sensing method based on the LC droplet pattern
method to detect and monitor small amounts of organic aldehyde fumes. Exposure of LC
droplet pattern coated in glycine solution to aldehyde fumes causes the light signal to shift
from a bright sector to a dark cross appearance, as demonstrated by a POM. The results
revealed the glycine/LC droplet pattern technology’s excellent sensitivity and selectivity.
The signal change was completed in a couple of minutes when the sensor was exposed to
the aldehyde in a realistic environment (2–7 min).

Recently, deep convolutional neural networks (CNN) were investigated by
Frazo et al. [185] for using as pattern recognition systems to examine the dynamics of
optical textures in LC droplets subjected to various VOCs. A single droplet was shown
to discriminate among 11 types of VOCs with slight structural and functional differences.
Regression modeling led to the hypothesis that fluctuations in a droplet’s optical texture
pattern also represented changes in VOC content. As a result, the CNN-based methodology
offered a possible means of detecting VOCs from the reactions of individual LC-droplets.

3.7. Other Molecules

Aside from the biomolecules just listed, some other molecules are also used as targets
for biosensors [186–190]. Liquid crystal biosensors have also been created to identify
additional substances including urea, glucose, and so on. These LC sensors for detecting
more biological molecules are discussed in this section.

Urea serves as a crucial biomarker for the detection and clinical evaluation of urolog-
ical illnesses [191,192]. Human urine typically has urea concentrations between 155 and
390 mM. The urea content in urine, however, can go over this range when renal function
is compromised or when the glomerulus’s effective filtration area is diminished [193].
To detect urea, Duan et al. [41] employed stearic acid as a functional material and used
urease’s highly effective urea enzymolysis. In the reaction with urea and urease, the pH
of the surrounding environment increases, and the stearic acid undergoes deprotonation
at the aqueous/LC interface, which caused the formation of 5CB molecules to change
(Figure 12a). In the interim, the LC microdroplet’s director configuration changed appro-
priately from bipolar to radial. In this work, the lasing mechanism was unmistakably
established by thorough spectroscopic research and assigned to WGMs. The sensor could
detect urea molecules at a concentration of only 0.1 mM. A strategy for creating complete
solid-state CLC balls (CLCsolid) with a semi interpenetrating polymer network (IPN) struc-
ture (CLCsolid-IPN) has been reported by Lim et al. [194]. The suggested technique entailed
the creation of pH-sensitive CLCsolid-IPN microspheres, their subsequent functionalization,
which included the immobilization of receptors for the biosensor platform, and the fabrica-
tion with perfect spherical symmetry and uniformed concentric layer thickness (Figure 12b).
The generated photonic CLCsolid-IPN microspheres were functionalized and analytically
tested in the chamber of a specially designed PDMS chip. After immobilizing urease as a
biosensor and applying KOH treatment, the effectiveness of the urea and heavy metal ion
detection tests was demonstrated using the PDMS sensor chip with photonic CLCsolid-IPN
microspheres (Figure 12b).

Glucose is essential to the health of the body because it serves as the primary energy
source for cells and other living things [195]. The oxidation of glucose in the presence of
glucose oxidase (GOx) is the most common mechanism for glucose detection [196–198]. Using
a microfluidic device, Lee et al. [199] generated CLC microspheres of uniform size and
decorated them with PAA-b-LCP (called CLCPAA microspheres). Then, the GOx enzyme was
immobilized on CLCPAA microspheres with high or low chiral dopant contents and alterations
in their helical shapes and coloring patterns took place in the presence of glucose. The
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CLCPAA microspheres immobilized with GOx (CLCPAA-GOx) demonstrated great sensitivity
in detecting glucose (0.5 µM) and quick reaction (≤4 s). Liquid crystal droplet-based non-
enzymatic glucose sensing has also been reported. Munir and Park [200] described 5CB
microdroplets coated with 3-aminophenyl boronic acid (APBA), which had an excellent
sensitivity and specificity for the detection of glucose. The LC droplet biosensor for glucose
detection showed excellent stability over 30d, robust selectivity against cholesterol, uric
acid, and acetaminophen, and exceptional sensitivity even in complex blood samples
(detection limit of 0.05 mM). This glucose LC biosensor had the potential to take place of
enzyme-based ones since it was more reasonably priced and reliable. In conclusion, LC
droplet-based sensors will continue to dominate the area of glucose sensing.
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Figure 12. (a) Schematic illustration of the structural transition of stearic acid-doped 5CB microdroplet
from planar anchoring to homeotropic anchoring. Reprinted with permission from ref. [41]. Copyright
2019 Elsevier. (b) Several tens of micrometer-sized photonic solid-state cholesteric LC (CLCsolid)
balls have been functionalized with a weak anionic polyelectrolyte of poly(acrylic acid) in the form of
an interpenetrating polymer network (IPN). Reprinted with permission from ref. [194]. Copyright
2020 Elsevier.

Additionally, in a novel approach, Dan et al. [201] reported that LC droplets adorned
with microgels (MGs) exhibited extraordinary stability (Figure 13a). This technology made
it easier to analyze LC droplets that underwent a conformational shift caused by analytes
(such as SDS), which improved the quantitation of aqueous analytes.

The interaction between biomolecules and CLC was recently studied by
Norouzi et al. [202]. They looked at how the structure of CLC molecules in droplets
was affected by the phospholipid 1,2-diauroyl-sn-glycero3phosphatidylcholine (DLPC).
The influence of droplet size and DLPC concentration on the structural remodeling of
the CLC molecules was seen (Figure 13b). Their results showed that the CLC droplets
transition from planar to homeotropic ordering due to a multistage molecular reorientation
in the presence of DLPC (Figure 13c,d). However, this reconstruction process was carried
out three times faster in low chiral droplets than in high chiral droplets.
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(ii) formation of an aqueous dispersion of MG stabilized LC droplets, (iii) response of LC droplets
to SDS, and (iv) on-demand emulsion breaking. Reconfiguration of high-chirality LC droplets in
the presence of DLPC amphiphiles. Reprinted with permission from ref. [201]. Copyright 2019
Royal Society of Chemistry. (b) Reflection mode POM images of reconfiguration dynamics in 30 µm
high-chirality droplets in the presence of 0.5 mM DLPC. (c) Schematic of the planar to homeotropic
ordering transition. (d) Bright-field and fluorescent image of adsorbed labeled DLPC amphiphiles on
the chiral droplet’s interface. Reprinted with permission from ref. [202]. Copyright 2022 MDPI. The
scale bar is 20 µm.

4. Conclusions and Future Directions

In this review, we summarized the advancement in LC droplet-based biosensing
techniques for biomolecular detection. Liquid crystal has become one of the best materials
for biosensing technology. The LC droplet sensors are used in the field of bioanalysis
and have gained popularity due to their advantages such as easy availability, low sample
consumption, simple operation of detection instruments, and low cost. Additionally, the
LC droplet biosensors with the optical signal response compete in terms of sensitivity with
other detection techniques [203,204].

Due to their excellent mobility and endurance, LC droplet-based biosensors can
potentially be used for the POC diagnosis of various diseases. It is ideal to build user-
friendly LC droplet-based sensors using integrated devices. For example, microfluidic
devices and capillary-based devices can be designed in combination with LC droplet as
POC devices. The development of a new generation of high-performance and portable
LC droplet sensors has become popular due to the continued advancement of science and
technology as well as the interpenetration and intersection of disciplines. These sensors
can achieve more accurate and quick detection and analysis of biomolecules and are also
suited for widespread application. Therefore, these easy-to-use methods have the potential
to replace complicated, specialized detection techniques. Recently, the application of LC
droplet sensors to single cell analysis has gradually become a novel research direction.
Liquid crystal droplets immobilized on cell membranes can image the metabolite release
from living cells. The LC droplet-based sensing devices have the potential to be designed
as efficient and ultra-sensitive imaging systems.

Although LC droplet biosensors have many advantages, it should be recognized
that they also have shortcomings. Typically, LC droplet biosensors detect only one target,
so designing them for simultaneous detection of multiple targets remains limited. And
the performance of these sensors can be damaged at high temperatures because LCs
lose contrast under such conditions. Usually, most of the LC droplet-based biosensors
are designed for visualization using POMs. We believe that other better signal readout
methods can be developed, leading to the development of superior and more sensitive
LC biosensors.

In the future, we expect that researchers will overcome the difficulties and develop
LC droplet-based biosensors that are simpler to operate, more responsive, and more stable.
Furthermore, we hope that these sensors can be used for trace biomarker detection for
home and field diagnostics by general users far from central laboratories.
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To fulfill the present demands for trace detection of biomolecules, further research of
LC droplet sensors is being pursued from the following perspectives:

1. Spherical LC microstructures with one or more stable cores and multiple nesting
may be created because of the rapid advancement of microfluidic technology. The
designability and diversity of complex “core-shell microstructures,” as opposed to
simple LC droplets and shells, will offer them new features, and raise new scientific
challenges that call for more in-depth investigation.

2. The pointing vector configuration and defects in solvated LC droplets and shells
and the related photonics applications are also fascinating research areas that need
further exploration.
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