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Abstract: To rapidly detect whether apples are infected by fungi, a portable electronic nose was
used in this study to collect the gas information from apples, and the collected information was
processed by smoothing filtering, data dimensionality reduction, and outlier removal. Following
this, we utilized K-nearest neighbors (KNN), random forest (RF), support vector machine (SVM),
a convolutional neural network (CNN), a back-propagation neural network (BPNN), a particle
swarm optimization–back-propagation neural network (PSO-BPNN), a gray wolf optimization–
backward propagation neural network (GWO-BPNN), and a sparrow search algorithm–backward
propagation neural network (SSA-BPNN) model to discriminate apple samples, and adopted the
10-fold cross-validation method to evaluate the performance of each model. The results show that
SSA can effectively optimize the performance of the BPNN, such that the recognition accuracy of the
optimized SSA-BPNN model reaches 98.40%. This study provides an important reference value for
the application of an electronic nose in the non-destructive and rapid detection of fungal infection
in apples.

Keywords: electronic nose; fungal infection; sparrow search algorithm; apples

1. Introduction

Apples are one of the most popular fruits, rich in vitamins and various minerals,
and widely grown all over the world. Preliminary studies have shown that eating apples
regularly can reduce the risk of colon cancer, prostate cancer, and lung cancer, while
apple peel also contains a plethora of indeterminate phytochemicals that have antioxidant
properties [1]. In 2021, the global production of apples was about 76.1 million tons, and
normal apples can usually be stored for about a year after picking. However, apples
are susceptible to some fungal infections during storage and transportation, including
Aspergillus niger [2], Penicillium expansum [3] and Penicillium crustosum [4]. These fungi
can cause widespread corruption of apples if not detected and handled in time, which
will bring about huge direct economic losses for farmers. To reduce the economic loss
caused by fungal infection, it is necessary to design a fast, convenient, and safe method
to detect whether apples are infected by fungi, so as to improve the overall status of the
apple industry.

When the volatile gas of apples encounters gas sensors, specific reactions occur, and
the characteristic response spectra of gas information are given. Gas chromatography–mass
spectrometry (GC-MS) is a widely used analytical method, which has the advantages of
high selectivity, small sample requirement, and high resolution. GC-MS has developed
rapidly in the applications of food safety, industrial detection, environmental protection,
and other fields, while showing advantages, such as high resolution and high sensitivity.
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Berrada et al. measured patulin in apple juice using GC-MS and investigated the effect
of patulin on the stability of apples during storage [5]. Thin-layer chromatography (TLC)
is a chemical analysis method that is widely used in qualitative analysis in the fields of
food, medicine, and environment. TLC has a high detection efficiency and can complete an
analysis in 10–20 min. High-performance liquid chromatography (HPLC) uses liquid as
the mobile phase and uses a high-pressure system to effectively separate analytes. HPLC
has the advantages of high sensitivity and a fast analysis speed and plays an important
role in the field of food safety. It is also a globally recognized authoritative method for the
qualitative detection of fungi [6]. However, although the above traditional methods can
determine whether apples are infected by fungi, these processes need to be carried out in
the laboratory, the detection process is complicated, operation by professionals is required,
the cost of experiment is expensive, and real-time detection is not possible. Therefore, there
is an urgent need for a fast and simple technique to determine whether the experimental
sample is infected by fungi via the analysis of the volatile gas from the sample. The
portable electronic nose is a fast, non-destructive, efficient, and chemical-free technology
for analyzing volatile gas on-site [7]. In recent years, it has been used prominently, and is
receiving increasing attention in the field of food safety and evaluation.

The convenient and fast operation of the electronic nose means it plays an important
role in the quality inspection of fruits. Guo et al. collected the characteristic information of
apples infected by different fungi through an electronic nose and used the BPNN pattern
recognition model to classify and identify the information of apples; the results achieved
were good [8]. Nouri et al. used an electronic nose combined with the BPNN pattern
recognition model to detect the fungal infection of pomegranates, and the recognition rate
of pomegranate samples infected with mycoplasma was as high as 100% [9]. This study
shows that the electronic nose is a reliable and high-precision instrument for detecting the
quality of pomegranate. Voss et al. used an electronic nose to capture the volatile gas of
peaches to predict growth and maturity [10]. The results prove that the method of using an
electronic nose combined with random forest (RF) can effectively predict the maturity date
of peaches in orchards, thereby reducing farmers’ economic losses caused by neglect and
late harvest. Yang et al. analyzed the volatile gas in yellow peaches through an electronic
nose, accomplished non-destructive prediction of the compression damage degree of the
fruit, discriminated the damaged fruit, and predicted the compression time, while the
accuracy of identifying the damaged fruit was as high as 93.33% [11]. Guo et al. used
an electronic nose combined with PCA-DA to predict the corruption area and corruption
degree of apples and achieved a good result. The prediction accuracy of the corruption
degree was 97.2%; this study proves that the electronic nose has a certain application value
in the classification of corrupt apples and the quantitative detection of corrupt areas [12].
To date, several studies have reported the application of the electronic nose technology in
fruit quality detection. Furthermore, regarding the optimization of the recognition model,
Wu et al. used a sparrow search algorithm (SSA) to propose an evaluation model for
predicting the economic losses suffered by subway stations after rainstorms and floods,
which effectively solves the problems of the low efficiency and low prediction accuracy
of traditional evaluation models [13]. This study proves that the support vector machine
(SVM) and BPNN evaluation models optimized by SSA have higher accuracy and stability
than other optimization algorithms and can effectively predict the economic losses of
subway stations caused by rainstorms and floods. Jiang et al. proposed a method for
detecting aflatoxin B1 content in wheat based on colorimetric sensor array technology and
used the firefly algorithm to optimize sensor features with SSA to optimize the BPNN
recognition model [14]. The result proves that the prediction accuracy and stability of
the optimized BPNN recognition model have been improved, and the complexity of the
model has been reduced. Some studies have shown that the electronic nose can detect fruit
quality according to volatile gas components under different conditions, which has great
potential applicability for fruit damage and spoilage detection. Electronic nose technology
can strengthen the early rot inspection of fruits and reduce the economic losses of growers.
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However, few studies have used electronic noses combined with classification models to
evaluate the effects of different fungi on apple spoilage. In addition, an electronic nose
combined with the BPNN recognition model can often achieve better results; however, in
the BPNN recognition model, the hidden layers are mainly responsible for modeling the
complex functions of the network, and the number of nodes in the hidden layer has a great
impact on the performance of the model, which may directly lead to the model falling into
overfitting or underfitting. In the previous model building process, rich experience and
continuous debugging were always required to find the appropriate number of nodes in
the hidden layer. SSA is a new type of intelligent optimization algorithm that has been
proposed in recent years; using SSA to optimize the number of nodes in the hidden layers of
BPNN can help to quickly determine the appropriate number of nodes in each hidden layer,
which precludes spending a lot of time and effort to debug the model manually while the
performance of the optimized model is improved. We sought to detect conveniently, rapidly,
and effectively fungal infection in apples, simplify the training process of the recognition
model, and improve the performance of the recognition model. Therefore, this paper
includes the following: (a) the use of the electronic nose to collect the volatile information
of fresh apples, apples inoculated with Aspergillus niger, apples inoculated with Penicillium
expansum, and apples inoculated with Penicillium crustosum; (b) the preprocessing of the
collected data by filtering and removing outliers; (c) the dimensionality reduction of the
preprocessed data; (d) finally, using the SSA-optimized BPNN model to classify apples
infected with different fungi, comparing it with traditional pattern recognition methods.

2. Materials and Methods
2.1. Materials

The “Fuji” apples selected in this experiment came from apple plantations in Gansu
Province, China. In total, 160 ripe apples were selected and randomly divided into 4
groups, 40 apples in each group, namely, Group A, Group B, Group C, and Group D. The
fungi inoculated into the middle apples were Aspergillus niger, Penicillium expansum, and
Penicillium crustosum. The apple samples were pretreated with 75% alcohol on a sterile
bench and dried at room temperature. Then, four holes were punched in four directions in
each apple in the three groups containing the inoculator (A, B, and C). Sample apples were
inoculated with 7-day-old molds through drilled loops, and the holes were covered with
sterile film. The mold-inoculated apples were then placed in a 1000 mL beaker, sealed with
plastic wrap, and then placed in a 25 ◦C constant-temperature incubator for 5 days. Before
the test, the apple samples were taken out of the incubator and left to rest for 30 min. To
eliminate the influence of residual gas on the experimental results, the electronic nose was
cleaned with inert gas before using. Electronic nose parameters were as follows: cleaning
time 500 s, collection time 350 s, sampling interval 1 s, injection flow 150 mL/min.

The sensor array of the portable electronic nose in this experiment was composed of
electrochemical sensors. The portable electronic nose was primarily composed of three
parts: the control unit, the sensor room, and the data acquisition and transmission unit. The
portable electronic nose used in the experiment is shown in Figure 1a, and the schematic
diagram of the portable electronic nose is shown in Figure 1b. The sampling valve controls
the gas entry into the sealed bottle, the injection valve controls the entry of gas into the
air chamber and the flow of the gas, and the injection valve and the vacuum valve work
together to prevent outside gas from entering the air chamber. The response curve of the No.
1 sensor C2H4-20 during the sampling process is shown in Figure 2. In addition, Fameview
(V7.6.12.4) configuration software (Beijing Jiekong, Beijing, China) was used to collect and
save the electronic nose data, while the Modbus protocol was used for data transmission
and communication with the hardware, so as to permit human–computer interaction. In
this experiment, two identical sensors (numbered 1 and 5) were selected as indicators
to identify whether the collected data were abnormal. If the difference between the two
150–300 s sensors was greater than 1.2 mg/L, the specimen was considered anomalous and
removed. Table 1 lists the sensor names and performance specifications, and Table 2 lists
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the specifications of the metal oxide sensors commonly used for PEN3 electronic noses.
From the comparison between Tables 1 and 2, it can be seen that the recognition accuracy
of the electrochemical sensor is higher than that of the metal oxide sensor. In addition,
the electronic nose system proposed in this paper has a lower cost and a higher detection
accuracy than the electronic nose of the same price. It is also very convenient to carry; the
volume of the electronic nose system is about 0.04 m3 and its weight is about 15 kg, which
makes it convenient for inspection personnel as they carry out inspection and analysis on
site. The operating platforms used in this experiment were PyCharm 2021.3 (JetBrains,
Prague, Czech Republic), Tensorflow2 (Google, Menlo Park, CA, USA), and Matlab2018b
(MathWorks, Portola Valley, CA, USA).

Table 1. Types of gas-sensitive sensors in the portable electronic nose sensor array, and their sensitive
gas and detection accuracies.

Sensor Number Sensor Model Sensitive Gas Detection Precision (ppm)

1 7NE/C2H4-20 C2H4 0.4
2 7NE/H2S-50 H2S 1
3 7NE/H2S-1000 H2S 20
4 7NE/C2H4-200 C2H4 4
5 7NE/C2H4-20 C2H4 0.4
6 7NE/ETO-20 C2H4O 0.4
7 7NE/PID-300 VOC 6
8 7NE/CH2O-2000 CH2O 40

Table 2. Names of sensors in the PEN3 electronic nose sensor array, their sensitive gas and
detection accuracies.

Sensor Name Sensitive Features Representative Gas and
Detection Precision (ppm)

W1C Sensitive to aromatic compounds Methylbenzene, 10

W3C Aromatic compounds,
particularly sensitive to ammonia Benzene, 10

W5C
Aromatic compounds such as
alkanes and compounds with

relatively small polarity
Propane, 1

W1S Particularly sensitive to methane
contained in specimens Methane, 100

W2S Particularly sensitive to ethanol
contained in specimens Carbon monoxide, 100

W3S
Sensitive to high-concentration

alkanes, especially methane,
in specimens

Methane, 100

W5S
Sensitive to nitrogen oxides,

extremely sensitive to negatively
charged nitrogen oxides

Nitrogen dioxide, 1

W6S Only detects hydrogen Hydrogen, 100

W1W Mainly sensitive to sulfides, also
sensitive to organic sulfides Hydrogen sulfide, 1

W2W Mainly sensitive to aromatic
compounds and organic sulfides Hydrogen sulfide, 1
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2.2. Methods
2.2.1. Data Preprocessing

The portable electronic nose selected in this experiment is equipped with 8 sensors,
and each sensor can detect different gas components. Since the sensor array of the portable
electronic nose in this experiment used an electrochemical sensor, it has the characteristics
of high sensitivity, but low response compared with metal oxide sensors, while the sensor
has a certain cross-sensitivity (it can detect multiple gases). Based on this characteristic,
we took the integral value, variance value, average differential value, maximum gradient
value, relatively stable average value and energy value of the response curve of each sensor
over 30–300 s as the characteristic information of the electronic nose, so the characteristic
parameter of each sample is 48.

Smooth Filter

In this experiment, 3-point linear smoothing, 5-point linear smoothing, 7-point linear
smoothing, 9-point linear smoothing, and 11-point linear smoothing algorithms were
selected to remove noise from the data, and their results were compared. The response
curves of each sensor after smoothing are shown in Figure 3. As can be seen from Figure 3,
the response curve after 7-point smoothing is relatively smooth, and can maintain the basic
characteristic information of the data, so the 7-point linear smoothing method was selected
for the preprocessing operation in this experiment. In addition, the response curves of
the 7NE/H2S-1000 and PID-300 sensors are always 0, because fresh apples and apples
infected with fungi release less H2S gas. From Table 1, it can be seen that H2S-50 and
H2S-1000 are both effective sensors for detecting H2S gas; the difference between them
is that the detection precision of H2S-50 is much higher than that of H2S-1000. It can be
seen from Figure 3a that the response curve of the H2S-50 sensor is less than 1, which
means that the sample releases less H2S gas, and has not reached the minimum detection
range of H2S-1000. Therefore, the response curve of H2S-1000 is always 0. Similarly, the
concentration of VOC gas released by the sample in the sealed bottle did not reach the
minimum detection range of the PID-300 sensor, so the response curve of the PID-300
sensor is always 0. As such, in this study, we only analyzed the data measured by 6 sensors,
excluding 7NE/H2S-1000 and VOC-300, so the characteristic parameter of each sample
is 36.

Eliminate Outliers

Due to the performances of the sensors and the effects of the external environment, the
collected sample data may contain abnormal values, and abnormal data will directly
affect the accuracy and stability of the recognition model. In order to eliminate this
effect, Mahalanobis distance was used to remove abnormal data from the original data.
Mahalanobis distance is a method used for calculating the distance between points and
distribution and was proposed by Indian statistician P. C. Mahalanobis. The inconsistency
and correlation between the scales of each dimension can be used to effectively evaluate
the similarity within the data. Sun et al. used Mahalanobis distance combined with Monte
Carlo cross-validation to effectively remove outliers from the hyperspectral data of tobacco
leaf water content [15].

In this experiment, Mahalanobis distance and the method of difference judgment for
the No. 1 and No. 5 sensors mentioned above were used to eliminate 30 abnormal sample
data: 8 apples inoculated with Penicillium crustosum, 6 apples inoculated with Aspergillus
niger, 5 apples inoculated with Penicillium expansum, and 11 fresh apples. Then, the KNN,
SVM, and BPNN models were trained with the original data and the data after removing
outliers, respectively, and the 10-fold cross-validation method was used to evaluate the
performance of each model; the results are shown in Table 3. It can be seen that the accuracy
and stability of each pattern recognition model were improved after removing outliers
from Table 3. The results show that removing outliers from the raw data can effectively
improve the performance of the recognition model.
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Table 3. Average accuracy and standard deviation of KNN, BPNN, and SVM pattern recognition
models before and after removing outliers.

Model Sample Set Validation Set Accuracy Standard Deviation
of Accuracy

KNN
before removing 62.37% 0.326
after removing 68.29% 0.163

BPNN
before removing 56.38% 0.452
after removing 69.21% 0.263

SVM
before removing 57.32% 0.318
after removing 64.65% 0.227
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Data Dimensionality Reduction

Principal component analysis (PCA), factor analysis (FA), and linear discriminant
analysis (LDA) are common data dimensionality reduction methods. The purpose of data
dimensionality reduction is to reduce the dimension of the original data, remove useless
information from the original data, and increase the recognition accuracy of the recognition
model on the premise of retaining as much as possible of the feature information of the
original data. PCA, FA, and LDA were performed on the sample data after removing
outliers, and the results are shown in Figure 4. The 10-fold cross-validation method was
used to evaluate the performances of the SVM, BPNN, and KNN recognition models
with different dimensionality reduction methods. The results are shown in Table 4. The
results show that the recognition accuracies of the models after PCA, FA, and LDA were
improved, and the dimensionality reduction performance of LDA was the best among the
three methods.
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Table 4. Average accuracy of KNN, BPNN, and SVM pattern recognition models after different
dimensionality reduction methods; the LDA dimensionality reduction method is the best among the
three dimensionality reduction methods.

Dimensionality
Reduction Method Model Average Accuracy Standard Deviation

of Accuracy

SVM 64.65% 0.227
None BPNN 69.21% 0.263

KNN 68.29% 0.163
SVM 66.29% 0.138

PCA BPNN 75.38% 0.149
KNN 73.85% 0.104
SVM 65.50% 0.136

FA BPNN 72.14% 0.147
KNN 63.53% 0.119
SVM 91.07% 0.046

LDA BPNN 93.17% 0.072
KNN 89.23% 0.058
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2.2.2. Pattern Recognition Model

In recent years, with the rapid development of machine learning, the combination of
electronic noses and pattern recognition models such as KNN, RF, SVM, CNN, and BPNN
in machine learning has increased the prominence of the electronic nose in many fields.
Virtanen et al. successfully identified five common pathogenic bacteria of acute sinusitis
by combining the electronic nose and KNN while providing a pathological basis for the
treatment of acute sinusitis [16]. Tian et al. made full use of the advantages of high RF
stability, short time consumption, and high precision, and proposed an electronic nose and
RF model based on the rapid detection of yogurt flavor acceptability. The research proved
that the combination of an electronic nose and RF can be used to effectively evaluate the
acceptability of yogurt flavor [17,18]. Jiang et al. used a combination of the electronic nose
and SVM to classify five common odors [19]. Kang et al. uses CNN to process electronic
nose data based on metal oxide sensor arrays to achieve the real-time detection of CO, NH3,
NO2, CH4, and C3H6O gases [20]. Gu et al. used a combination of the electronic nose and
BPNN to detect early Aspergillus in rice, and the recognition accuracy reached 96.40% [21].

To improve the performance of the pattern recognition model, an optimization al-
gorithm can be used. Currently, the most commonly used optimization algorithms are
particle swarm optimization (PSO) [22], gray wolf optimization (GWO) [23], and sparrow
search algorithm (SSA) [24]. These are inspired by the feeding behaviors of animals in
nature. SSA is a recently proposed swarm intelligence optimization algorithm. The sparrow
population in SSA is divided into two parts: producers and scroungers. Producers have a
high fitness value and energy reserve, and their main task is to provide scroungers with
directions and areas for foraging. The search range of producers is larger than that of
scroungers. Scroungers follow producers to find food and obtain their own energy reserve,
and thus increase their fitness value, and some scroungers continuously increase their own
energy reserves through predation, thus turning themselves into producers. In addition,
some sparrows in the sparrow population will act as forewarners. Forewarners will issue
a warning signal when danger is coming, and at the same time spread into the safe area
to obtain a better position. When the alarm value is greater than the set threshold, the
producers will lead all scroungers out of the danger zone. A schematic diagram of SSA is
shown in Figure 5. SSA has better global search and local development capabilities and
can consider all the variable factors of the population, so that the population can quickly
move into the optimal position. SSA also has the advantages of fewer iterations and higher
prediction model accuracy.
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Figure 5. Schematic diagram of the sparrow search algorithm.

3. Results

In order to verify the abilities of the above eight recognition models to recognize
fungus-infected apples, a multi-algorithm pattern recognition platform was developed
using the PyQt5 tool in this experiment. The user interface enables human–computer inter-
action through the mouse and keyboard to adjust the parameters of different recognition
models. As shown in Figure 6a, users can select different pattern recognition models on
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the main interface of the platform and enter the corresponding recognition model interface
by clicking the button. Then, as shown in Figure 6b–i, the user can adjust the parameters
of the current recognition model according to the label prompts, select training sample
data to train the model, and assess the performance of the model. When the training of the
recognition model is completed, the inspectors can begin to inspect the apple samples. First,
one must put the apple sample into a sealed bottle to collect its electronic nose data, select
the recognition model that has been trained in the multi-algorithm pattern recognition
platform, and finally select the collected electronic nose data for this model to use to detect
the apple sample. The result will soon appear in the recognition result display area below,
as shown in Figure 6j. The whole process does not require the use of any chemical reagents,
nor will it cause damage to the apple samples, and the testing process will not affect the
edibility and sales of the apple samples.
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3.1. The Recognition Accuracy of the Model Optimized by SSA-BPNN Is Higher

The characteristic information of apples inoculated with three different fungi and fresh
apples was collected by the electronic nose, and the collected characteristic information was
preprocessed. Then, we used the above-mentioned multi-algorithm pattern recognition
platform to train each recognition model while using the 10-fold cross-validation method
to evaluate the performance of each model; the results are shown in Figure 6b–i, and
the summarized results are shown in Table 5. It can be seen from Table 5 that CNN, RF,
KNN, SVM, and BPNN were used for identifying the apples inoculated with Aspergillus
niger, Penicillium expansum, and Penicillium officinale, as well as fresh apples. The average
accuracy values of each recognition model are 57.80%, 86.92%, 89.23%, 91.07%, and 93.17%,
and the standard deviation of the accuracy is less than 0.08. In terms of training time,
although the training times of the RF, KNN, and SVM recognition models are shorter, they
are not as good as the BPNN model in terms of recognition accuracy. Following this, three
optimization algorithms, PSO, GWO, and SSA, were used to optimize the BPNN model.
The number of iterations was set to 100 and the number of populations was 15; the accuracy
of the BPNN model was used as the fitness function, and the 10-fold cross-validation
method was also used to evaluate the performance of the model after optimization. Then,
the average recognition accuracy values of the PSO-BPNN, GWO-BPNN, and SSA-BPNN
models are 94.62%, 96.16% and 98.40%, respectively, and the standard deviations of the
accuracy are 0.091, 0.064 and 0.032, respectively. The training times are 8936.21 s, 8723.43 s
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and 9193.02 s, respectively. In addition, as regards the evaluation score of the true positive
rate (TPR) and the F1 score of each recognition model, the scores of SSA-BPNN are higher
than those of other recognition models. In summary, the experimental results show that the
SSA-BPNN recognition model proposed in this paper achieves outstanding performance in
detecting fungal infection in apples.

Table 5. TPR, F1 score, average accuracy, standard deviation of accuracy, and training time of different
pattern recognition models by 10-fold cross-validation.

Preprocessing Model TPR F1 Score Average Accuracy Standard Deviation
of Accuracy Training Time (s)

\ CNN 61.03% 0.564 57.80% 0.071 270.16
LDA RF 84.36% 0.836 86.92% 0.077 0.17
LDA KNN 88.12% 0.878 89.23% 0.058 0.09
LDA SVM 90.69% 0.903 91.07% 0.046 0.22
LDA BPNN 92.75% 0.929 93.17% 0.072 63.12
LDA PSO-BPNN 93.82% 0.937 94.62% 0.091 8936.21
LDA GWO-BPNN 95.83% 0.951 96.16% 0.064 8723.43
LDA SSA-BPNN 97.31% 0.976 98.40% 0.032 9193.02

3.2. SSA-BPNN Has Faster Convergence

The variations in the fitness functions of SSA, GWO, and PSO with the number of
iterations in the optimization process are shown in Figure 7. Although SSA-BPNN has no
obvious beneficial effect on the optimization time required for 100 iterations, it can be seen
from Figure 7 that PSO-BPNN, GWO-BPNN, and SSA-BPNN enable the model to reach the
optimal state after 81, 70, and 36 iterations, respectively, which shows that the convergence
speed of SSA is higher than those of PSO and GWO, and it has a better optimization
capacity. Compared with the GWO-BPNN and PSO-BPNN models, the SSA-BPNN model
proposed in this study has obvious advantages in terms of recognition accuracy, stability,
and convergence speed.
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SSA is an intelligent optimization algorithm that has been proposed in recent years.
Using SSA to optimize the BPNN recognition model can help the BPNN model to quickly
find the optimal parameters thus avoiding the need to spend a lot of time and energy to
debug the recognition model manually. With regard to the huge economic losses caused by
fungal infection in the process of storage and transportation, the portable electronic nose
combined with the SSA-BPNN method proposed in this study can effectively detect and
identify common fungi and take preventive measures in time. The measures can effectively
reduce the economic losses caused by fungal infection in apples.
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4. Discussion

Apples are loved because of their delicious taste and rich nutrition. The annual global
demand and supply of apples are huge, but some apples will inevitably be infected by fungi
during the storage process, which will introduce huge economic losses to apple merchants.
Electronic noses can be used to detect volatile substances in contact with the sensor array,
which facilitates the quality detection of fruits. With the continuous development and
progress of machine learning, the combination of electronic noses and machine learning
provides a fast, non-destructive and easy-to-operate method for fruit quality detection and
has gradually attracted people’s attention. Compared with machine learning algorithms
such as KNN, RF, CNN, and SVM, BPNN has the best performance. However, BPNN
has many parameters of note; in particular, a small change in the number of nodes in the
hidden layers can easily affect the overall performance of the BPNN network model. The
selection of optimal parameters for BPNN has always been the most important task in the
process of model building. On this basis, this paper proposed to use SSA to optimize the
BPNN network model by finding the optimal parameters of the hidden layers of BPNN
through continuous iteration, such that the model can quickly reach the optimal state. The
TPR, F1 score, and accuracy of the model’s recognition results after optimization achieved
97.31%, 0.976%, and 98.40%, respectively—4.56%, 0.047%, and 5.23% higher than those
before optimization. The reason for this is the lower number of iterations compared to PSO
and GWO. However, when the electronic nose is used to detect the quality of apples, its
performance will be affected by external factors. Interference outside the normal range
will give rise to abnormalities in the characteristic information of the samples collected
by the electronic nose, which will eventually lead to unreliable test results. In order to
improve the reliability of the detection results, in our follow-up research, we will combine
the electronic nose with other detection equipment and collect characteristic information
from the samples at the same time, using the method of data fusion to detect and identify
the samples.
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