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Abstract: Many emerging technologies have the potential to improve health care by providing more
personalized approaches or early diagnostic methods. In this review, we cover smartphone-based
multiplexed sensors as affordable and portable sensing platforms for point-of-care devices. Multi-
plexing has been gaining attention recently for clinical diagnosis considering certain diseases require
analysis of complex biological networks instead of single-marker analysis. Smartphones offer tremen-
dous possibilities for on-site detection analysis due to their portability, high accessibility, fast sample
processing, and robust imaging capabilities. Straightforward digital analysis and convenient user
interfaces support networked health care systems and individualized health monitoring. Detailed
biomarker profiling provides fast and accurate analysis for disease diagnosis for limited sample
volume collection. Here, multiplexed smartphone-based assays with optical and electrochemical
components are covered. Possible wireless or wired communication actuators and portable and
wearable sensing integration for various sensing applications are discussed. The crucial features and
the weaknesses of these devices are critically evaluated.

Keywords: smartphone-based detection; multiplexed detection; electrochemical sensor; clinical
diagnosis; biomarkers; biosensors; point-of-care (PoC) testing

1. Introduction

Laboratory health diagnostic systems have advanced over time, utilizing a range of
transducing processes such as optical, magnetic, and electric field effects. Many of these
technologies are difficult to utilize at the point of service because they need specialized
laboratory equipment and laboratory specialists [1]. The collected patient samples fre-
quently require pre-processing, such as isolating serums from whole blood samples, before
analysis [2]. Therefore, it is necessary to develop relatively practical methods for detec-
tion of biomarkers associated with diseases in resource-limited conditions or non-clinical
settings [3]. Biosensors are analytical tools that are useful for detecting specific targets by
recognizing the chemical or biological process of potential disease biomarkers. A biosen-
sor consists of a molecule (either natural, synthetic, or bioinspired) that is a bioreceptor
with a high binding affinity toward a specific substance, a target/analyte, enabling its
biorecognition, a transducer for converting this biorecognition event into a measurable
signal, and an electronic circuit for signal processing, data evaluation, and transfer [4]. The
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signal generated through a biological event is transmitted in the form of electrochemical,
electrochemiluminescent, magnetic, or optical signals. Biosensors play an essential role in
personalized health monitoring, especially when combined with smartphones. Disease
biomarkers include a variety of micromolecules, proteins, nucleic acids, whole cells, and
pathogens, as well as metabolites, ions, and volatile chemical compounds. In the case
of certain diseases, detecting a single marker may not be efficient enough for accurate
diagnosis. The importance of multiplexed detection and point-of-care personalized health
monitoring is discussed below.

1.1. Importance of Multiplexed Biosensing

Multiplexing is the practice of detecting or recognizing numerous biomarkers in one
diagnostic test, which can be useful for a variety of illnesses. Previous studies proved that
biosensors are powerful tools for the purpose of health monitoring [5]. However, focusing
on single-biomarker detection is frequently insufficient to give the required information
for clinical diagnosis or disease tracking [6]. In some cases, the existence or severity of
certain diseases may only be identified by monitoring the concentration of multiple biosen-
sors. Multiplexed sensors can detect a panel of discriminative biomarkers simultaneously,
which can enhance detection accuracy and enable early disease diagnostics. Thus, the
development of next-generation sensors has centered on multi-detection approaches [3].

The quantities of discriminative biomarkers often fluctuate at different stages for a
particular illness. The diagnostic procedure for cardiovascular diseases is a common exam-
ple. In particular, the response to various drugs collected from patients with cardiovascular
diseases is often affected due to polymorphisms [7]. Similarly, cancer types and benign
tumors may share biomarkers. Detecting several biomarkers is required for a precise cancer
type identification. Particularly, breast cancer patients have considerably higher levels of
many biomarkers than patients with a benign breast tumor illness [8]. Despite the fact that
medical treatments have advanced significantly, there is still a great demand for advanced
and practical medical services. Delayed diagnosis and treatment, especially in locations
with inadequate medical resources, often result in the worsening of conditions. Moreover,
performing diagnosis to detect as much information as possible from a limited sample
volume is essential. In this context, multiplexed bio-(chemical) sensors are an obvious and
attractive approach, specifically for limited sample volumes.

1.2. Point-of-Care (PoC) Personalized Health Monitoring

As an alternative to rather expensive and bulky, traditional, laboratory-based tech-
nologies, such as chromatography and spectrophotometry, biosensors based on optical or
electrochemical analysis techniques have been used widely in the past decade [9,10]. The
possibility of operation without professionally trained users and also the short turnaround
time of these devices accelerated the use of biosensors for health monitoring. The integra-
tion of biosensors into point-of-care (PoC) testing platforms enhances the conveniency and
practicality of the diagnosis. PoC assays can be based on various physical/chemical trans-
ducer types, such as enzyme, antibody, or DNA types, converting the biological signals into
a response of multiple bioreceptors. The difference in the physical or chemical signal in the
presence and absence of biomarkers is then converted to an electrical output on a display.

Compared to laboratory-based diagnostic methods, optical or electrochemical biosen-
sors with a smartphone attachment are more suitable for PoC use for on-site disease
diagnosis and personal health monitoring [11–13]. Figure 1 shows the process of diagnosis
using smartphone-based biosensors. They are an effective alternative, offering tremen-
dous potential for improving diagnosis and treatment. The present decade has seen the
development of biochemical sensors integrated into smartphones and Internet of Things
(IoT) platforms, which are often utilized for human health PoC testing [14]. These are often
portable and cost effective, and they do not require any specific training to use [15].
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2. Smartphone-Based Sensing Methods

In the 2000s, the data transfer capabilities of mobile phones began to be utilized in
point-of-care diagnostics. Smartphones gained the ability to provide biosensing technolo-
gies through smartphone applications and tools, such as the camera, wired peripherals
(USB interface and audio port), and wireless peripherals (Wi-Fi, Bluetooth, and NFC) [16].
In the last two decades, researchers started integrating analytical tools into smartphone
systems for data processing and communication based on colorimetric and electrochemical
detection techniques. Colorimetric detection was made possible by mobile phone cam-
eras [17]. Other technical capabilities of smartphones in the biosensing field include data
displaying and processing, depending on the detection method, to meet different points of
need [5,18,19]. Due to their quality and resolution, imaging capabilities were adapted to
molecular sensing [20]. Smartphone integration for biosensing makes portable and afford-
able real-time monitoring possible, helping to reduce the cost and complexity of sensing
systems [21]. These platforms are utilized for health care applications such as surgical diag-
nosis and self-diagnosis [22]. Patient care has evolved into a self-monitoring platform for
various physiological conditions, such as blood pressure, pulse rate, and body weight. In
addition, monitoring various biomarkers, antibodies, enzymes, pathogens, and metabolites
is becoming accessible for patients without the need for a health professional [23,24].

Wide data accessibility is a key factor for smart diagnostic devices. Possible integration
of artificial intelligence, machine learning, and other promising technologies into the
sensing platforms enhances the accessibility of smartphone-based multiplex devices [25,26].
A focus on the design and development of mobile diagnostic devices provides not only
versatility, but also measurable benefits in terms of the cost of diagnosis and medical
treatment. The latest smartphone-based sensor studies focused on multi-analyte sensing
in various biological media to diagnose diseases in real time and monitor biomarkers
simultaneously [27]. The smartphone-based detection techniques and tools with high
potential for implementation in multiplexed systems are covered in this section.

Camera and smartphone applications: Colorimetric-detection-based smartphone sensors
are commonly used as the built-in cameras play a detector role to identify the signal output.
For instance, a colorimetric capillary chip was designed by Machado et al. for multiplexed
immunodetection of mycotoxins. The smartphone camera was used for signal acquisition,
and a simple grayscale quantification procedure was applied for the data analysis [28].
Another sensor was proposed by Khoshfetrat et al. for the simultaneous visual detection of
thyroid cancer suppressor genes. Electrochemiluminescence signals were recorded on a
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smartphone camera with 90% sensitivity [29]. In another study, simultaneous identification
of multiple bacteria was demonstrated based on a signal readout from a smartphone camera
and a lateral flow assay (LFA) [30]. Overall, there is a wide range of smartphone options
and attachments offering easy imaging-type diagnostics that can be implemented into a
commercial product in the near future. The main actuation components of smartphones
often used in biosensing applications are discussed below.

Wired peripherals: USB interface and audio port: Data transfer or signal transmission can
be performed through a USB interface and audio port. Many studies reported that it is
still a very practical way to convert a smartphone into a practical diagnostic system [31].
Sun et al. developed a module which can be directly plugged into a smartphone through
the audio jack [32]. Another system was designed by Jiang et al. with a microfluidic chip
and embedded circuit for communicating with the sensor through a USB port [33]. Such
handheld systems provide rapid and real-time measurements, data transfer, and storage in
secured cloud servers. Though these systems provide practical solutions for electrochemical
systems, the presence of wires during measurements may not be completely convenient for
every biosensing application.

Wireless peripherals: Wi-Fi, Bluetooth, and NFC: Sensor implementation has evolved
around wireless technology to enhance the practicality of diagnosis. Biosensors with a
wireless connection eliminate the need for cables for communication and/or power. Wi-Fi,
Bluetooth, and near-field communication (NFC) are the different wireless communication
protocols of current smartphones. A Bluetooth connection is employed in the biosensing
field due to its high compatibility with practically all kinds of cellphone, independent
of model or brand. Recently, a laser-scribed, graphene-based biosensing platform was
wirelessly combined with a custom-made electrochemical analyzer (KAUSTat) through
Bluetooth for the management of the pandemic. Due to its applicability to multiple ampero-
metric and voltametric measurements and direct connection to mobile application software,
it could be implemented in multiplexed platforms for continuous health monitoring [34].
Among the communication modules, NFC-based peripherals are promising for contactless
biosensing technology in terms of low-power data transfer. New sensing opportunities
previously considered to be conceptually and financially impossible are made possible by
the coupling of NFC-based wireless power and data transfer with affordable electronics
and sensors [35]. Wi-Fi is another wireless peripheral that has a bigger service area, better
bandwidth, and a high prevalence in buildings and cities. Wi-Fi connection allows portable
devices to communicate with any other internet-connected device. Several multiplexed di-
agnostic platforms were reported recently for in situ wound monitoring [36] and COVID-19
diagnosis [37], which is discussed in later sections.

2.1. Optical Sensors

Optical sensing is a technology that enables the real-time, label-free detection of a
wide range of biological and chemical compounds. The operating principle of optical
sensing is the detection of color changes in tubes, capillaries, microfluidic chips, filter
paper, and nitrocellulose strips, depending on the analyte concentration. High sensitivity,
biocompatibility, and easy integration into flexible platforms can be listed as some of its
advantages [38]. Integrating optical sensors into smartphones has become popular in recent
years due to the practical image analysis provided by smartphones [38–41]. Smartphone
applications, such as FLASK station and ImageJ, are often used for data analysis [42,43].
In 2021, Zhang et al. designed a portable, optical, smartphone-based quantum barcode
imaging platform that can diagnose in real time the severe acute respiratory syndrome
virus (SARS-CoV-2) at different levels of infectious severity with 90% sensitivity and 100%
specificity [44].

Optical sensing on smartphones is mainly classified into three categories: fluorescent,
colorimetric, and chemiluminescence-based detection [24]. In order to determine the an-
alyte concentration, a colorimeter examines the amount of light transmitted through a
sample at a certain wavelength [45]. The color intensity is measured using the naked eye
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or a colorimeter in traditional colorimetric analyses. However, naked-eye detection has
low reliability and selectivity. Commercial colorimeters are inconvenient to use daily and
come with high costs. Consequently, smartphone-based colorimetric sensors are promising
for rapid sensing and quantifying substances [46,47]. Color identification can be achieved
by a smartphone camera and high-performance processer without the use of additional
equipment (Figure 2) [48]. Recently, target analytes, such as pathogens, the SARS-CoV-2
virus, Zika virus, metal ions, organic pollutants, and hormones, were detected by colori-
metric sensors [24]. For instance, Fabiani et al. developed a smartphone-based colorimetric
immunoassay for SARS-CoV-2 detection in saliva which used a 96-well, wax-printed paper
plate for color visualization [49]. Moreover, differentiating multiple biomarkers simultane-
ously with optical tools can provide fast information about diseases. Yin et al. reported a
multiplexed optical sensor smartphone application for detecting SARS-CoV-2 along with
other pathogens [50]. Similarly, Alawsi et al. proposed a colorimetric sensing platform
Android application for on-site testing of glucose, triglycerides, and urea [51]. Fluorescence-
based methods also have great potential when combined with a smartphone. The camera
records the emitted light, and the light emission of a target sample is evaluated, leading to
a high selectivity [52,53]. Tetracycline, a widely used antibiotic, was detected by a smart,
ratiometric fluorescent sensor created by Wang et al. [54]. Chemiluminescence analysis
is another optical sensing technique that uses light to determine the concentration of a
chemical element or chemical compound in a solution without a light source and spectro-
scopic system [48]. Recently, a chemiluminescence smartphone sensor was developed by
Kholafazad-Kordasht et al. for simultaneous clinical diagnosis of salivary cortisol, valproic
acid, and coronavirus [24]. Another example of chemiluminescence imaging was reported
by Li et al. for simultaneous cancer diagnostics using a smartphone combined with a
microfluidic chip [55]. The findings confirmed that optical sensors are useful for disease
identification and quantification when combined with smartphones. Without complicated
instrumentation, multiplexed optical sensors combined with smart detection and screening
tools save time and money as practical diagnostic tools [56,57]. However, there are several
drawbacks to smartphone-based optical sensors, such as the required optimization of
lighting conditions [58]. Measurements in diverse lightning conditions may be challenging
considering the dependance of high-resolution cameras on specific lighting conditions.
The image processing algorithm from the color space of smartphones may be affected by
ambient light. Adding photo auxiliary devices placed in front of camera, such as light
diffusers, prisms, etc., may eliminate the error from differences in illumination. [38]. Bergua
et al. designed a smartphone-based optical sensing systems device with a portable external
microplate reader that supports colorimetric, fluorescence, and luminescence techniques
to detect the intensity of commercial fluorescent organic dyes when using the ImageJ
application [59].

2.2. Electrochemical Sensors

Electrochemical reactions caused by the chemical or biological interaction between the
sensing surface and the analytes are measured by electrochemical sensors. The response
is converted to qualitative and quantitative electric signals which can be based on amper-
ometry, potentiometry, and conductometry measurements (Figure 2) [40,60]. They are a
well-known group of sensing methods because the techniques and equipment needed are
straightforward. To date, various electrochemical systems for a wide range of analytes,
including hormones, viruses, disease indicator biomarkers, and metabolites, have been
reported [61,62]. With the help of smartphones, electrochemical sensors are becoming
practical biomedical testing tools. The first application of a smartphone-based electro-
chemical sensor system for biochemical detection systems was described as amperometric
sensing [63]. During amperometric sensing, constant voltage is applied to the working
electrode, followed by the measurement of the current provided by the oxidation/reduction
of an electroactive analyte [64]. Amperometric sensing can be chosen for use in the study
of microscopic domains, detection in microflow systems, single-cell processes, and in vivo
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monitoring of neurochemical events. For instance, Liu et al. reported an amperometric
platform combined with a portable biochip, a Bluetooth transmission system for simultane-
ous insulin, and glucose monitoring in saliva for practical diagnosis of diabetes and other
insulin-resistance-associated diseases [65]. Another electrochemical technique, voltamme-
try, was also used in smartphone electrochemical sensor measurements [64,66]. The current
response of a biological or chemical process was measured under an applied potential
difference. Different voltametric measurement types, such as differential pulse voltamme-
try (DPV), cyclic voltammetry (CV), square wave voltammetry (SWV), and linear sweep
voltammetry (LSV), are used by smart electrochemical sensors for various applications [67].
Along with amperometry and voltammetry, impedimetric measurements are also widely
used by electrochemical sensors. Impedimetric detection, also known as electrochemical
impedance spectroscopy (EIS), determines the impedance of the system as a function of
frequency [66]. EIS-based electrochemical sensors were combined with smartphones in
previous studies [68]. Talukder et al. reported a smartphone-based microfluidic impedance
cytometer for personalized monitoring of blood cell count [69]. Another impedimetric
printed electrochemical sensor was combined with a smartphone interface by Rosati et al.
for rapid detection of neutrophil gelatinase-associated lipocalin in urine [70]. The overall
response obtained from the electrochemical sensor was transferred via Bluetooth to a mo-
bile application. Electrochemical sensing systems are promising for smartphone integration
as they have high simplicity of fabrication [70–72]. Thus, it is expected that multiplexing
smartphone-based electrochemical systems can accelerate accurate diagnostics, allowing
the detection of various biomarkers simultaneously by using amperometric, voltametric, or
impedimetric detection techniques.
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In the case of voltametric sensors, the current is measured over a controlled poten-
tial variation. The voltammetry technique includes highly sensitive signal-generating or
-amplifying composites for the immunoaffinity layer; therefore, it might be useful for signal
identification in multiplexed systems. Impedimetric sensors provide a small amount of
magnitude voltage while the frequency varies. This methodology is mainly used for char-
acterizations of electrode surfaces and applications focusing on microorganism monitoring,
pathogen detection, corrosion monitoring, and heavy metal ion detection [73]. Overall, the
impedimetry method is less destructive for the electroactive area of a sensor in biological
applications compared to CV and DPV [74].
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The excellent detectability, high sensitivity, ease of use during experiments, and low
cost of electrochemical POC devices make their integration with smartphones a very
appealing method. Additionally, it is practical to develop smart electrochemical sensors
that can detect biomarkers in whole blood, serum, urine, saliva, or sweat in order to
prevent the unnecessary transportation of patients to hospitals. Connecting electrochemical
sensors to smartphone devices enables protection from infectious diseases and remote
control of chronic diseases by doctors. Despite all these advantages of smartphone-based
electrochemical sensors, some challenges need to be considered. One of the constraints of
electrochemical sensor–smartphone integration is the compatibility between the port type
of the phone and the potentiometric device, which relies on the model and brand of the
phone. Moreover, the smartphone should have certain camera features, such as reduced
pixel size and improved pixel intensity, and a more powerful processor and high-speed
wireless connection to be able to give accurate results.

3. Smartphone-Based Biosensing Technologies

Smart health diagnostic tools integrated into electronics in wearable/portable ways
hold great potential in empowering patients with real-time measurements. Biomarker
concentration tracking at trace levels in various body fluids such as blood, sweat, tears,
and saliva is made possible using smartphone integration. A wide range of applications,
from disease diagnosis and management to health monitoring, proved the widespread
applicability of smart PoC testing [75]. The main smartphone-based biosensor applications
are covered in this section in terms of user practicality (Figure 3); they are portable and
wearable. Moreover, the importance of implementing these technologies in multiplexing
platforms is emphasized.
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3.1. Portable Biosensors

Biosensors were first designed for in vitro testing in laboratory settings. Knowing
that various new technologies are generated in the biosensing field every year, there is
also a need for the development of more compact and portable biosensors. The ability to
use the PoC devices outside of the laboratory is essential, especially for patients living
in areas that have no direct access to early and rapid disease diagnostics. Moreover, in
the case of contagious diseases, the availability of portable biosensors has a high impact
on the prevention of the spread of disease by reducing the travel need of infected indi-
viduals. The combination of portable biosensors with smartphones has led to various
non-invasive testing applications, namely, those that use saliva, urine, and exhaled gas as
target analytes [76].
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Lateral flow assay (LFA): These paper-based platforms are useful for the detection and
quantification of analytes in complex mixtures. After placing a collected sample on a
LFA platform, results are displayed within 5–30 min [77]. The detection often depends
on a smartphone application without any further energy sources or equipment. LFAs are
developed on a strip with a nitrocellulose membrane and require biological or chemical
components depending on the application. The nitrocellulose membrane consists of test
lines and control lines for qualitative analysis of a disease. As the sample liquid flows
through the membrane strip, pre-immobilized reagents in specific sections of the strip
become active [78]. Kim et al. constructed a portable LFA using chemiluminescence for
stress hormone (cortisol) detection in human serum [79]. In this work, the LFA membrane
consisted of gold nanoparticles conjugated by antibodies against cortisol. Another study
reported a LFA platform made of ligand-coated quantum beads and specific nanobodies for
early-stage diagnosis of malaria and cardiovascular diseases [80]. Both examples included
smartphone integration for data visualization and analysis. Overall, use of LFA-based
devices can easily by expanded to detect simultaneous disease markers by conjugating
several antibodies in one platform. This shows that the LFAs are a promising candidate
for portable multiplexed applications [81]. Overall, LFAs are rapid, cheap, portable, and
simple tests with a long shelf life and no need for refrigeration during storage. They can
be easily adapted to daily use as point-of-care tests and can detect simultaneous disease
markers by conjugating several antibodies in one platform. This shows that the LFA is a
promising candidate for portable multiplexed applications. However, the fundamental
disadvantage of LFAs is the lack of quantitative results. Integrating LFAs into smartphones
using scanners or cameras requires specialized software to operate. Moreover, smartphone
camera and flash limitations and the paper platform may affect the reliability of results
while converting data to digital form.

Lab on drone (LOD): Drones can make health care more accessible to patients who
would otherwise be unable to obtain it because of their location, a lack of resources, or
both. Similarly, they can provide fast and practical monitoring of diseases. Hardy et al.
developed a technique for mapping water bodies in Africa for mosquito vector-borne dis-
ease elimination [82]. Another lab-on-drone example was reported by Apprill et al. for the
non-invasive exhaled breath collection of whales used to perform microbiome analysis [83].
Although, they are not widely used today, lab-on-drone applications provide an innovative
approach and a fast and practical solution for nonassessable areas when interfaced with
smartphones camera and digital computing power [84,85]. Priye et al. developed an
in-flight PCR model for Ebola virus detection for remote area applications. This nucleic
acid analysis system built on a drone enabled conventional laboratory protocols to be
followed with little or no modification [86]. Thus, rapid in-flight tests with a smartphone
connection can reduce the delays between sample collection and processing, allowing test
results to be given in minutes. This raises the possibility of integrating biosensors into
drone-based systems for simultaneous marker detection. However, drone technology still
requires further development to ensure that it can prevent future incidents that threaten
human lives and security of data. Another disadvantage is that the lifespan of drones is
less than conventional cameras since the powering methods are limited for drones.

3.2. Wearable Biosensors

To date, various physical sensors have been developed as wearable or lab-on-body
systems interfacing directly with the skin for the monitoring of vitals, movement, steps,
calories burned, or heart rate. However, recent advancement and breakthroughs in the non-
invasive monitoring of biomarkers, such as metabolites, microorganisms, and hormones,
proved that biosensors can be integrated into wearable systems [87,88]. The ability to
monitor various non-invasive body fluids in real time is the key advantage of wearable
biosensors [89,90]. Combined with skin-mounted systems, smartphone integration is
essential for real-time monitoring. However, continuous or remote monitoring, dependence
on laboratory environment, and multistep procedures for sample preparation remain as
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challenges for smart, wearable biosensors [91]. Since biological, non-invasive fluids contain
a wide range of markers, ions, macromolecules, and microorganisms that may be direct or
indirect indicators of diseases, these personalized devices can be integrated into multiplexed
platforms for simultaneous health monitoring [92].

Mouthguard: Saliva is complex media containing various micro- or macromolecules
such as ions, proteins, microorganism, sugar, etc. Mouthguard sensors were investi-
gated for real-time measurement of salivary chemicals [93]. These wearable devices are
commonly used by players in both competitive and leisure sports because they provide
protection against sports-related oral injuries. Researchers studied the possible applications
of a mouthguard, such as the continuous wireless monitoring of pH, glucose, lactate in
saliva, and salivary uric acid in oral cavity, with a smartphone operation system [94,95].
Mannoor et al. demonstrated a graphene nanosensor for continuous microorganism growth
monitoring in tooth enamel [96]. As expected, achieving remote powering and wireless
readout was essential for sensors implemented into mouthguards [97]. Though existing
smart mouthguard sensors focus on single-biomarker detection, monitoring multiple sali-
vary markers can lead to practical and personalized health monitoring without a need for
health professionals every time. Despite its limitations, such as being prone to interference
from contaminants, including charged ions, enzymes, and microorganisms, difficulties with
potential toxicity and biocompatibility, and the need for real-time clinical mouth testing on
humans, the smart mouthguard sensor is a useful device for simultaneous non-invasive
monitoring of salivary metabolites for daily health care applications. Miniaturization and
integration of circuits and power supply is the most challenging issue that needs to be
solved for smartphone integration and reliable results.

Contact lens device (LOC): The monitoring of physiological chemicals related to health
conditions and disease situations is possible by directly using the surface of the cornea
where there is access to possible markers in tears, such as ions, proteins, etc. Tear fluid is
commonly collected by either filter paper or glass capillary pipettes [98]. Soft bioelectronics
have recently received a lot of attention for its potential use in intrinsic polymer charac-
teristics and organic electronics for wearable and implantable health care systems. Smart
contact lenses, among other wearable health care technologies, have gained significant
interest. The corneal surface provides a non-invasive interface, providing connection to
physiological conditions in the human body such as those in the brain, liver, heart, lung,
and kidney. Recently, remote diabetes monitoring was achieved by smart wearable sensor
systems integrated into soft contact lenses to evaluate the resistance change of graphene
sensors upon glucose binding. In conjunction with Novartis, Google created the Google
Lens for diabetes diagnostics [99]. Keum et al. constructed a non-invasive/wireless smart
contact lens for diabetes diagnosis as well as the therapy of diabetic retinopathy [100]. Con-
tact lens sensors are simple-to-use point-of-care sensing devices with a short readout time.
However, there are several difficulties to overcome since the contact lenses are in constant
contact with the cornea of the eye. Another important point is that the fabrication of the
electrochemical sensors connected to contact lenses is quite complicated. The lens is made
of a biocompatible, transparent, and conductive polymer consisting of flexible and ultrathin
electrical circuits and a microcontroller allowing efficient control of drug delivery and wire-
less management and data communication through smartphones. Though multiplexing
smartphone-based contact lens systems can provide information through simultaneous
detection of ions or proteins existing in tears, the integration of electrochemical or optical
sensing systems into contact lenses still requires further optimizations to achieve reliability.

Sweat analysis patch: Sweat is known to be a biofluid with a rich composition including
ions, proteins, amino acids, metabolites, and a trace amount of cancer indicators. Due to
its rich nature, researchers have tended to build multiplexed sweat monitoring devices
for accurate analysis. Combined with pH and ionic strength monitoring, simultaneous
measurements of certain biomarkers in sweat provide accurate information for disease
diagnostics. Patches often have hydrophilic fillers for sweat collection to be transferred
to the microfluidic channels for sensing measurements [101]. He et al. developed a
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silk-based multiplexed patch for simultaneous electrochemical detection of ascorbic acid,
uric acid, glucose, and lactate, as well as potassium and sodium ions in sweat [102].
Another patch sensor was reported based on MXene/Prussian blue for simultaneous
glucose and lactate detection [87]. Both examples provided real-time analysis of data
wirelessly transmitted to a remote mobile device and displayed in a custom-developed
smartphone application. Optical detection is another possibility for the construction of a
smart sweat patch. A stretchable sensing patch for epidermal sweat analysis was developed
by a superhydrophilic assay for sample collection; reference colors and colorimetric assay
were decorated with silica nanoparticles (NPs) [103]. Hence, the use of in situ wireless sweat
patches was successfully demonstrated for sweat analysis after physical exercise and resting
sweat analysis. Various biosensing techniques are effectively in use for personified health
monitoring and clinical diagnostics. Overall, a sweat patch is a practical, wearable sensor
for a single use and can be considered as disposable due to the low cost of the materials.
Fabrication processes may include challenges such as the complexity of sweat composition
and measurement errors due to changing ambient conditions. The complexity of sweat
composition and measurement errors due to the changing environmental conditions can
still be challenging for sweat patch sensors. The battery of the sensor can be developed
to be self-powered, supplying energy and sensing capabilities to a battery-free, reusable
electronic reader, which makes the integration of a patch sensor into a smartphone easier.

4. Smartphone-Based Multiplexed Biosensing
4.1. Metabolic Biomarker Detection

Early detection of metabolites is crucial to controlling the risk and severity to the
individual. The body produces metabolites as either byproducts or intermediates of
metabolic processes. Monitoring metabolite biomarkers can provide useful information
for chronic disease management. Real-time patient monitoring technologies proved to
be effective regarding the detection of various metabolites such as glucose, lactate, and
electrolytes (sodium, potassium, chloride, and hydrogen/pH) [104]. Various concentrations
of metabolite biomarkers are readily available in body fluid matrices such as sweat, tears,
saliva, and interstitial fluid. Shifted values of these metabolic biomarkers can indicate acute
fluctuations or chronic illnesses. Sensors with multiple-metabolite detection ability offer
practicality for both the self-diagnosis of patients and health care workers. These sensors
are developed as portable or wearable systems to enhance practicality. On-body or skin-
interfaced wearable sensors are useful for tracking metabolites in real time. As they have
non-invasive or minimally invasive sample collection methods, smart biosensors have been
widely developed recently [105]. A stretchable patch sensor for epidermal collection and
analysis of sweat with a customized smartphone app for the color analysis is demonstrated
in Figure 4A. The patch consists of colorimetric assays and reference colors [103]. A wrist-
mounted, multiplexed electrochemical platform was developed by Choi et al. to analyze
glucose, lactate, potassium, and sodium in sweat [106]. Gao et al. demonstrated a real-time
wound-healing device for monitoring inflammatory mediators, bacterial growth, pH, and
temperature at the same time as a wearable device, shown in Figure 4B [34]. The flexible
sensor and PCB includes a microcontroller, a digital-to-analog converter (DAC), and analog
switches to achieve multichannel operations. Portable examples of multiplexed metabolite
analyzers also exist. Figure 4C shows a monolithic, paper-based device for the simultaneous
colorimetric detection of three model salivary biomarkers: glucose up to 0.18 mM, lactate
up to 180 µM, and uric acid up to 0.11 mM [60]. The assay is performed by placing a single
drop of saliva in the central zone of the device and exploiting controlled reactions in the
microfluidic paper channels, followed by the target-induced reshaping of multibranched
gold nanoparticles. Though both electrochemical and colorimetric examples were reported
previously, the simultaneous monitoring of several biomarkers is critical and requires full
system integration to ensure the accuracy of measurements considering the complexity of
biological fluids.
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Figure 4. (A) Stretchable patch sensor for epidermal collection and analysis of sweat. Patch consists
of colorimetric assays and reference colors. Adapted with permission from Ref. [103]. Copyright
2021, American Chemical Society. (B) A multiplex immunosensor for detection of TNF-α, IL-6, IL-8,
TGF-β1, S. aureus, pH, and temperature for chronic wound monitoring. The device is integrated
into a wireless, flexible, printed circuit board (PCB) and can be wearable. Adapted with permission
from Ref. [36]. Copyright 2021, American Association for the Advancement of Science. (C) A closed
bipolar electrode (CBE)-based two-cell electrochromic device for sensing multiple metabolites, using
the simultaneous colorimetric detection of lactate, glucose, and uric acid as a model system. Adapted
with permission from Ref. [60]. Copyright 2017, American Chemical Society.

4.2. Pathogen Detection

Biomarkers can be used to objectively assess pathogenic processes since both quali-
tative and quantitative detection is crucial for disease identification [107]. Viruses, such
as the highly pathogenic Asian avian (H5N1) influenza A, Zika, Ebola, hepatitis B and
hepatitis C, coronaviruses (CoVs), SARS-CoV-1 and SARS-CoV-2, and Middle East respi-
ratory syndrome (MERS-CoV), cause a variety of infectious diseases that affect millions
of people [49,108–110]. However, the identification of a single biomarker is insufficient to
identify a disease. Considering that multiple biomarkers are simultaneous indicators of the
development and progression of pathogenic diseases, simultaneously detecting multiple
biomarkers is needed for accurate diagnosis. Since detecting more than one infectious agent
simultaneously encourages self-diagnosis and reduces the need for multiple molecular
tests, it provides both fast and low-cost diagnosis [111].

Multiplexing platforms for viral infections have drawn a lot of attention in recent years
due to the ongoing epidemic. Because of the early symptoms, such as respiratory prob-
lems, fever etc., multiplexed sensors have the ability to differentiate them from seasonal
allergies, the common cold, and other viral infections [112]. Smart biosensors for multiple-
pathogen detection are often designed for personalized medicine and reduce the need for
health care professionals for diagnosis. Reverse transcription polymerase chain reaction
(RT-PCR) is currently the gold standard method on the market for active pathogen detec-
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tion [113]. Though there are multiplexed PCR systems, they require specialized equipment
and attention during handling. Other commonly used pathogen detection techniques are
enzyme-linked immunosorbent assays (ELISA) and LFAs, measuring the immune response
of viral infections. Both techniques perform result identification by colorimetric reaction.
Multiplexed smart colorimetric sensors were reported previously for pathogen detection.
A portable, smartphone-based quantum barcode serological assay device for real-time
SARS-CoV-2 diagnosis at different sampling dates and infectious severity is demonstrated
in Figure 5A. The device is based on a databasing app to provide instantaneous results [44].
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Figure 5. (A) Portable smartphone-based quantum barcode serological assay device for real-time
SARS-CoV-2 diagnosis at different sampling dates and infectious severity. The device is based on a
databasing app to provide instantaneous results. Adapted with permission from Ref. [44]. Copyright
2022, Elsevier. (B) The SARS-CoV-2 RapidPlex developed on target-specific, laser-engraved graphene
immunoassays for PoC COVID-19 biomarkers. The electrochemical device is connected to a PCB and
can send the signal to an app wirelessly. Adapted with permission from Ref. [37]. Copyright 2020,
Elsevier. (C) A PoC microfluidic platform consisting of a homemade fluorescence detection analyzer,
SARS-CoV-2 diagnostic microchips, and immunoassays for detecting IgG, IgM, and SARS-CoV-2
antigen. Adapted with permission from Ref. [114]. Copyright 2022, American Chemical Society.
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Another multiplexed device for multiple-biomarker identification for SARS-CoV-2 di-
agnosis is shown in Figure 5C. The platform consists of a homemade fluorescence detection
analyzer and immunoassays for detecting immunoglobulin G (IgG), immunoglobulin M
(IgM), and the SARS-CoV-2 antigen simultaneously. Moreover, integration of multiple virus
indicators into electrochemical detection platforms has been combined with smartphone
systems in recent years. RapidPlex, a portable piece of COVID-19 at-home testing equip-
ment was introduced in recent research as a multiplexed amperometric system (Figure 5B).
This device can measure SARS-CoV-2 N protein, IgG/IgM, and C-reactive protein (CRP)
simultaneously by laser-engraved graphene immunosensors combined with a wireless data
transfer module [37]. Another multiplexed electrochemical platform was developed by
Dou et al. for SARS-CoV-2 detection. The smart sensor recognized the S gene RNA, protein,
and antibody simultaneously and collects the data wirelessly [115]. As well as SARS-CoV-2
variations, HIV, Ebola, and Zika viruses were also targeted by multiplexed sensors with
smartphone integration [25,116,117]. Overall, simultaneous detection of pathogenic mark-
ers is essential for rapid and accurate diagnosis for effective treatment and early detection.
However, the accuracy limits the sensor fabrication and biological surface structuring due
to the possibility of cross-reactivity with other pathogens of a similar nature [1].

5. Challenges and Outlook for Future Perspectives

Smart multiplexed sensors provide an appealing approach for the diagnosis and mon-
itoring of progressive diseases, especially in cases of sample-volume- or resource-limited
clinical settings. Table 1 summarizes existing multiplexed sensors integrated into a smart-
phone platform. The possibility of implementing the sensor devices into various detection
methods makes smartphone-based biosensing systems very promising candidates for next-
generation personalized diagnostics for tracking self-health. Multiplexed sensors perform
simultaneous tests from a limited sample volume and reduce the diagnosis time. The rapid
development of diagnostic kits that were approved for emergency use during the pandemic
period indicates that smart sensor systems will take their place in our daily lives in the very
near future. Although smartphone-based PoC systems are starting to take their place in the
market, multiplexed versions of smartphone-based biosensors are yet to be commercialized.
The main reason for this is that multiplexed sensors have the tendency to suffer from
cross-reactivity. Immobilizing multiple recognition units in a sensing platform leads to
undesired reactions within the same biological fluid, eventually affecting the output signal.
Future research should be focused on improving multiplexing performance by assessing
many biomarkers simultaneously and making experimental condition optimizations. More-
over, advancing these systems with machine learning methods should make them more
effective and successful diagnostic tools. With the creation of more data banks supported by
clinical-evidence-based algorithms, smartphone-based multiplexed sensing devices will be
very important tools for early disease diagnosis, the monitoring of treatment effectiveness,
continuous health tracking, and patient-specific therapies.

Table 1. Multiplexed PoC devices for health monitoring based on a smartphone readout.

Target Analyte Platform Detection
Method Application Evaluation in

Real Samples Information Limit of
Detection Ref

Glucose,
lactate, uric

acid

Paper-based
carbon electrode

Closed bipolar
electrode-
enabled

electrochromic
detection

Metabolite
monitoring -

Disposable and
inexpensive,

high selectivity,
naked-eye
detection

Lactate: 180 µM
Glucose:
0.18 mM
Uric acid:
0.11 mM

[118]

Anti-HIV,
anti-HA,
anti-DEN

Microfluidic
thread-based

analytical
device

Bioluminescence
detection

Health
monitoring

Human whole
blood

Simple and rapid,
small sample

amount required,
use of a 3D-printed

lens adapter

Anti-HIV:
4.0 nM

Anti-HA:
2.1 nM

Anti-DEN:
14.9 nM

[119]
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Table 1. Cont.

Target Analyte Platform Detection
Method Application Evaluation in

Real Samples Information Limit of
Detection Ref

SARS-CoV-2
nucleocapsid

protein,
specific

immunoglobu-
lins against

SARS-CoV-2 S1
spike protein

and CRP

Graphene-
based

telemedicine
platform

Electrochemical
detection

Infectious
disease

detection

Human blood
and saliva

Rapid and effective,
detection of
SARS-CoV-2
mutations,

wireless data
analysis

- [37]

THC, alcohol Ring-based
sensor platform

Electrochemical
detection

Illicit drug
detection Human saliva

Wearable
wireless data

analysis,
rapid roadside

testing,
non-invasive

THC: 0.5 µM [120]

Inflammatory
mediators

(TNF-α, IL-6,
IL-8,

TGF-β1, S)

Microfluidic
immunosensing

platform

Electrochemical
detection

Wound
monitoring

Mouse wound
model

Portable wireless
analyzer,
flexible,

non-invasive

- [36]

Sodium,
potassium,

calcium, pH,
uric acid, and
temperature

Functionalized
micropatterned-
electrode array
smart bandage

system

Electrochemical
detection

Wound
monitoring

Rat wound
model

High sensitivity,
stability, and

reproducibility,
wide linear ranges,
customized mobile

application

- [121]

Human
coronavirus

229E, influenza
A H1N1,

influenza A
H3N2

Air sampler
with enrichment

channel-
integrated
handheld

system

qRT-PCR Virus detection -

Rapid and real
time,

requirement of
additional

materials for
enrichment

- [122]

Alcohol,
vitamins,
glucose

Wearable tear
bioelectronic

platform

Microfluidic
electrochemical

detection

Metabolite
monitoring Human tear

Wireless circuitry
integrated into

eyeglasses,
non-invasive

- [123]

Glucose,
ethanol

Zinc oxide thin
films integrated

nanoporous
electrode
system

Impedance
detection

Metabolite
monitoring Human sweat Flexible

non-invasive

Ethanol:
10 mg/dL
Glucose:

0.1 mg/dL

[124]

Alprazolam,
citalopram,
diazepam,

fluvoxamine,
imipramine,
nortriptyline,

sertraline,
zolpidem

Condition-
based sensor

array

Colorimetric
detection

Drug
monitoring Human urine

Rapid, visual, real
time,

non-invasive

Flu:
0.4008 µg.mL−1

Nor:
0.1468 µg.mL−1

Cit:
0.2779 µg.mL−1

Alp:
0.0088 µg.mL−1

Dia:
0.2728 µg.mL−1

Ser:
0.6307 µg.mL−1,

Zol:
0.0264 µg.mL−1,

Imi
0.1259 µg.mL−1

[125]

H1N1, H7N9,
H5N1

Label-free
imaging array

Fluorescence
detection

Health
monitoring Human serum

Good mismatch
discrimination, low
interference effect,

early infectious
disease diagnosis

H1N1: 136 pM
H7N9: 141 pM
H5N1: 129 pM

[126]
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Table 1. Cont.

Target Analyte Platform Detection
Method Application Evaluation in

Real Samples Information Limit of
Detection Ref

IL-6, thrombin Lateral flow
assays

Optical
detection

Biomarker
detection -

Fast, simple, cost
efficient,

high sensitivity
and specificity

Thrombin:
3.0 nM [127]

HIV,
leukocytosis

Giant magne-
toresistive

nanosensor
array

Magnetic
detection

Monitoring
disease

Human saliva
whole blood,

serum

Additional
circuitry, signal
processing, user
interface, mobile

application

- [25]

Uric-acid,
nitrite, glucose

Microfluidic
paper-based

analytical
platform

Colorimetric
detection

Metabolite
monitoring - Biocompatible

ease of fabrication

Uric acid:
100 µM, Nitride:

156 µM,
Glucose:

49 mg/dL

[128]

L-DOPA,
tyrosine,

creatinine

Periodate-
modified paper

platform

Colorimetric
detection

Biomarker
detection

Artificial urine,
fetal bovine

serum

Highly effective in
simultaneous

analysis

L-DOPA:
0.12 nM

L-tyrosine:
0.93 µM

Creatinine:
0.16 mg/dL

[129]

RASSF1A,
SLC5A8

Fe3O4@UiO-66
and

AuNRs@C3N4
NS

Functionalized
bipolar

electrodes

Electrochemilu-
minescence

detection

Cancer
diagnostics

Cancer patient
plasma sample

Monitoring
therapeutic agents

of patients

RASSF1A:
0.86 pM
SLC5A8:
1.72 pM

[29]

Zika, Dengue,
Chikungunya

viruses

Complementary
metal oxide

semiconductor
sensor

Colorimetric
detection Virus detection Blood, urine,

and saliva

Small footprint and
versatility of
smartphones

Zika Virus:
22 PFU/mL

Dengue:
4.9 PFU/mL

[130]

Prostate-
specific antigen
(PSA), human

chorionic
gonadotropin

(hCG)

Multicolor
persistent

luminescent
nanophosphors

lateral flow
assay

Luminescent
detection

Health
monitoring -

High sensitivity
and photostability,
access to minimal

hardware

PSA:
0.1 ng mL−1

hCG:
1.0 ng mL−1

[131]

Escherichia coli,
Klebsiella

pneumoniae,
Staphylococcus

aureus

Pipette-
actuated

capillary array
comb

platform

LAMP reaction
fluorescence

detection

Pathogen
detection Urine Process takes 85

min

E. coli:
200 copies

K. pneumoniae:
500 copies
S. aureus:

500 copies

[132]

6. Conclusions

In summary, an up-to-date survey of smartphone-based multiplexed health monitor-
ing systems was reviewed in this paper. A wide range of biosensors with a smartphone
attachment was reported. Data processing and transfer of the output signal through a
smartphone promote personalized diagnostic platforms. However, the smart monitoring
of the qualitative and quantitative state of various biomarkers simultaneously provides
practical solutions for both patients and health care professionals. Though many of the
smart biosensors focus on single-analyte measurements, certain diseases are better diag-
nosed when multiple biomarkers are monitored. Simultaneous measurement of multiple
analytes saves time and boosts practicality during diagnosis. Current studies mainly focus
on pathogenic and metabolic applications of smartphone-based multiplexed sensors. These
previous reports proved that multiplexed systems are possible based on both electrochemi-
cal and optical detection techniques. Considering biosensing technologies, multiplexed
sensors have high potential to be implemented in portable and wearable systems. However,
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they require certain improvements and are not yet complete. Although they offer the conve-
nience of the hardware and data processing, the analytical performance of multi-electrode
systems still suffers from the cross-reactivity problem. Mixed concentrations of certain
biomarkers in complex biological media may lead to an undesired readout signal. Overall,
multiplexed smart biosensing systems have high potential in fast and practical diagnostics
when the necessary optimizations are established. In the future, the biosensor field will
evolve, and smart multiplexed sensors will become simpler and more accessible to meet
clinical and personalized health care needs.
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