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Abstract: In the past few years, deep learning-based electrocardiogram (ECG) compression methods
have achieved high-ratio compression by reducing hidden nodes. However, this reduction can result
in severe information loss, which will lead to poor quality of the reconstructed signal. To overcome
this problem, a novel quality-guaranteed ECG compression method based on a binary convolutional
auto-encoder (BCAE) equipped with residual error compensation (REC) was proposed. In traditional
compression methods, ECG signals are compressed into floating-point numbers. BCAE directly
compresses the ECG signal into binary codes rather than floating-point numbers, whereas binary
codes take up fewer bits than floating-point numbers. Compared with the traditional floating-point
number compression method, the hidden nodes of the BCAE network can be artificially increased
without reducing the compression ratio, and as many hidden nodes as possible can ensure the quality
of the reconstructed signal. Furthermore, a novel optimization method named REC was developed.
It was used to compensate for the residual between the ECG signal output by BCAE and the original
signal. Complemented with the residual error, the restoration of the compression signal was improved,
so the reconstructed signal was closer to the original signal. Control experiments were conducted to
verify the effectiveness of this novel method. Validated by the MIT-BIH database, the compression
ratio was 117.33 and the root mean square difference (PRD) was 7.76%. Furthermore, a portable
compression device was designed based on the proposed algorithm using Raspberry Pi. It indicated
that this method has attractive prospects in telemedicine and portable ECG monitoring systems.

Keywords: binary convolutional auto-encoder (BCAE); residual error compensation (REC); electro-
cardiogram (ECG); signal compression; portable ECG monitoring system

1. Introduction

Electrocardiogram (ECG) is a bioelectrical signal test which provides information
about human heart activity [1]. It is widely used by medical institutions because it is
non-invasive and inexpensive. With the rapid development of wearable ECG detection
systems and telemedicine applications in healthcare [2], ECG signals generated by these
devices need to be stored and transmitted. However, 12-lead ECG signals require large
storage space [3]. For example, an hour-long ECG record with a sampling rate of 360 Hz
and a data resolution of 11 bits per sample has a size of 20.39 megabytes. Long-time ECG
signal detection, such as with a Holter monitor, will create a very large amount of data.

Cardiovascular diseases are mainly monitored by ECG, but the application of tradi-
tional ECG equipment is limited to professional medical institutions. In order to achieve
more comprehensive monitoring of patients (such as community monitoring, home moni-
toring, etc.), there is an increasing demand for portable ECG monitoring systems. Generally,
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portable ECG monitoring systems use wireless technology to transmit ECG data, which is
inconvenient for real-time transmission of large amounts of ECG data. Fortunately, signal
compression technology can solve this problem by compressing the ECG signal before
data transmission, which reduces the amount of transmitted data while ensuring the effect
of diagnosis and treatment. Therefore, it is critical to choose an efficient compression
coding technology. The traditional lossless compression method has a small compression
ratio, which makes it difficult to meet the real-time data transmission requirements. The
near-lossless compression method can achieve a high compression ratio and low signal dis-
tortion at the same time, meeting the requirements of portable ECG monitoring systems [4].
In the following experiments, the effectiveness of our near-lossless compression method
and reconstruction scheme was verified. Generally, there are two aspects to achieving
near-lossless ECG compression: transform-based methods and deep learning methods [5].

Transform-based methods mainly convert the signals into transform domain and
abandon information which is not helpful for signal reconstruction. Due to the energy
compaction property, Fourier transform (FT), wavelet transformation (WT), and discrete
cosine transform (DCT) have shown validity in ECG compression [6]. By encoding the
critical information, the ECG signal can be compressed. In ref. [7], P. Ziran et al. extracted
frequency information by lifting wavelet transformation and discarding the insignificant in-
formation. The Embedded Zerotree Wavelet (EZW) was used to select features and improve
the compression ratio. In ref. [8], Chunyu Tan presented an adaptive Fourier decompo-
sition (AFD) with application to ECG compression. It sped up the de-composition and
improved compression performance. In ref. [9], JiaLi Ma et al. fused AFD with the symbol
substitution (SS) technique. AFD guarantees high fidelity and SS improves the compression
rate without information loss. In ref. [10], Sibasankar Padhy et al. presented a compression
method on multi-lead ECG records by using singular value decomposition in the multireso-
lution domain. In ref. [11], M.L. Hilton introduced wavelet transform in ECG compression.
By combining it with EZW coding, the ECG signal can be compressed. However, there
are two disadvantages to these transform-based methods. Firstly, these methods reduce
the signal size by discarding some parameters directly, but some critical information is
carried by these parameters, so these processes will degrade compression quality. Secondly,
transform-based methods are always combined with the independent encoding algorithm,
which will also increase computing complexity [12]. Therefore, transform-domain-based
methods are not suitable for application in portable systems.

Recently, deep learning compression methods have become more popular for their
high-quality compression, and the above two problems do not occur in the deep learning
compression method. According to Andrew Y. Ng, DNNs can recognize patterns and learn
useful features from raw input data without requiring extensive data preprocessing, feature
engineering, or handcrafted rules, making them particularly suitable for interpreting ECG
data [13]. As an end-to-end method, deep learning based on an auto-encoder can directly
compress the ECG signal without additional encoding algorithms. Auto-encoder is a
promising technique used in obtaining the low-dimensional representation of original
signal and information restoration [14–17], which is a classical end-to-end deep learning
algorithm. In ref. [18], Ozal Yildirim implemented a deep convolutional auto-encoder in
the compression of ECG signals. A model of 27 stacked layers guarantees the quality of
compression. In ref. [19], Wang et al. presented a spindle structure of a convolutional
auto-encoder to increase the sufficient information extraction and the compression ratio.
All these ECG compression methods based on deep learning rely on reducing hidden nodes
to increase the compression ratio. However, the reduction of nodes in the hidden layer will
degrade the quality of reconstruction [20]. In the above articles, the implementation of high
ratio compression inevitably sacrifices the quality of reconstruction. However, portable
ECG detection systems need to ensure good signal quality, so it is necessary to maintain
the compressed signal quality while achieving a high compression ratio.

In this paper, a novel deep learning compression method was presented, which is based
on binary convolutional auto-encoder (BCAE) equipped with residual error complement
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(REC). In this method, the convolutional auto-encoder (CAE) was determined as the base
model [21]. CAE encoder encodes the input signal to obtain the compressed code of
floating-point type, and then the CAE decoder decodes the compressed code to obtain the
reconstructed signal. The novelty of BCAE is the binary output of the encoder section. By
altering the activation function and gradient, the encoder can directly generate a binary
code without extra coding. In this way, the floating nodes of CAE can be replaced by binary
nodes. Without reducing the compression ratio, BCAE can greatly increase hidden nodes
to improve the restoration capability of the network. Moreover, to further improve the
compression quality, a new optimization model named residual error compensation (REC)
was developed. It is a network to obtain the residual error between the output of BCAE
and the original signals. Compensated with this residual error, the reconstructed signal
can be more similar to the original signal. Thus, the novel strategy of BCAE + REC is an
attractive method in both high reconstruction quality and high compression ratio.

Compared with previous compression methods, the innovations of the method pro-
posed in this paper are the following:

1. BCAE directly generated binary compressed code. Under the premise of a high
compression ratio, hidden nodes were increased to improve the reconstruction quality.

2. By using REC, the quality of the reconstructed signal from BCAE was improved,
which guarantees the compression quality.

3. Five categories of signals (normal beat, left bundle branch block beat, right bundle
branch block beat, atrial premature beat, and premature ventricular contraction) from
the MIT-BIH database were classified using the original and reconstructed signals,
respectively, further verifying the effectiveness of the compression.

4. A portable device based on Raspberry Pi was designed to realize the proposed com-
pression algorithm. It was proven that BCAE has practicality and is helpful for the
application of portable ECG monitoring systems.

In summary, the ECG compression method proposed in this paper has a high compres-
sion ratio and little signal distortion, and so can be used for the transmission and storage of
ECG data. The experiments verified that the proposed scheme can meet the requirements
of portable ECG monitoring systems for data transmission while ensuring the effect of
diagnosis and treatment.

The rest of this paper is organized as followings. Section 2 introduces the datasets used
in the model and principle of proposed BCAE and REC, followed by model configuration.
Section 3 introduces the evaluation criteria and shows detailed results. Section 4 presents
the discussion and comparison. Finally, Section 5 concludes this paper.

2. Materials and Methods

This section first introduces the MIT-BIH database and ECG signal preprocessing, then
explains the principle of the proposed method, and finally illustrates the model configuration.

As shown in Figure 1, the method proposed in this paper contains three parts: ECG
raw signal preprocessing, the binary convolutional auto-encoder (BCAE), and the residual
error compensation network (RECN).

The structures of BCAE and RECN are shown in Figures 2 and 3. The first advantage
is the BCAE which can generate the binary compressed output by encoding the hidden
features. As shown in Figure 2, the encoder is composed of six 1-D convolutional layers
to extract information as the feature vectors in the hidden layers. Through the binary
convolutional layer, these features can be encoded into the binary codes. In this way,
a conventional floating node can be replaced by a series of binary nodes. With nodes
increasing, the effect of signal reconstruction is improved, ensuring a high compression
ratio. These binary codes can be restored to the original signal by stacked deconvolutional
layers in the decoder. The second advantage is the REC network which can compensate the
loss to improve the reconstruction performance. As depicted in Figures 1 and 3, RECN is
designed to reduce the residual between the input ECG signal of the BCAE Encoder and
the decoded signal of the BCAE Decoder output. Combined with the output of RECN, the
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reconstructed signal by BCAE can be higher quality. Details of each part are introduced
as follows.
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2.1. Datasets

The MIT-BIH database is provided by the Massachusetts Institute of Technology. It is
one of the three standard ECG databases in the world and has been widely used to train
the proposed network [22]. It contains 48 records from 47 patients, each with the diagnosis
of several cardiologists. In the database, all signals are sampled at a frequency of 360 Hz
with a resolution of 11 bits.

Raw ECG carries redundant information such as noises and low-energy components.
In preprocessing stage, the noise of ECG signals was removed by a 0.5–150 Hz bandpass
filter. Therefore, eliminating these redundancies is good to retain important information for
compressing the ECG signals. Furthermore, all signals were normalized by the max–min
normalization technique [23]. Deep learning compressed methods usually process on beats.
Like many previous deep learning compressed methods, single beats were used as basic
samples. This requires heartbeat segmentation of the original records. In the heartbeat
segmentation stage, R-peak detection was first performed on each ECG recording using
the Pan–Tompkins algorithm [24]. Then, 127 sample points on the left side and 192 sample
points on the right side of the R peak were taken to obtain a heartbeat containing 320
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(127 + 192 + 1 = 320) points [25]. At this point, the samples containing 320 11-bit floating-
point numbers required for the training phase had been obtained.

2.2. Binary Convolutional Auto-Encoder (BCAE)

The proposed BCAE was developed from the traditional convolutional auto-encoder
(CAE) [26]. CAE is an available technique successfully used in ECG compression. Consid-
ering its acceptable compression ability, CAE was used here as a basic model. However,
conventional CAE achieves a high compression ratio by reducing the number of floating
hidden nodes. Similar to CAE, BCAE can be also separated into encoder and decoder parts.
In the encoder, convolution layers and pooling layers extract feature vectors with critical
information from input signals. The improvement of BCAE is the binary encoding layer
of the encoder, which replaces the conventional floating-point output with binary codes.
For example, as shown in Figure 4a, the traditional CAE compresses the original signal
into floating-point numbers; two 11-bit floating-point numbers occupy 22 bits, while in
Figure 4b, BCAE compresses the ECG signal into binary numbers, and two binary numbers
occupy only 2 bits. Therefore, compared with the traditional floating-point compression
method, even if the number of hidden nodes of BCAE increases by 11 times, the com-
pression ratio will not decrease. Enough numbers of hidden nodes can guarantee the
reconstruction quality of the network and improve the compression quality [20]. Therefore,
BCAE has great potential to achieve high compression performance. After training, trans-
posed convolutional layers and up-sampling layers of the decoder help rebuild original
signals from binary code.
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The detailed operations of the binary encoding layer (BEL) and function layers used
in the proposed model are illustrated in the following sections.

2.2.1. Binary Encoding Layer

The improvement is to modify the activation function and gradient of the convo-
lutional layer to generate the binary output. The binary technique has been employed
in the convolutional network (CNN) successfully [27]. In our work, the most important
modification is to utilize the step function as the activation function f (•):

f (x) =
{

0, x < 0
1, x ≥ 0

(1)

Due to the binary output of 0 and 1, this layer can directly achieve binary encoding.
Thus, a 20-bit floating node in conventional CAE can be replaced by 20 binary nodes in
BCAE. Under the same compression ratio, BCAE has more nodes. With nodes increasing,
the quality of the reconstructed signal can be improved to guarantee the compression
quality. This work used the backpropagation algorithm to train the network, which requires
the input to be differentiable at every point. However, the above step function is not
differentiable at x = 0. Therefore, in this work, the gradient in a small range near zero was
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modified to a constant 1. In Figure 5, from −0.5 to 0.5, the gradient g (•) as Formula (2)
calculated is 1 and the other gradients are 0.

g(x) =


0, x < −0.5
1, −0.5 ≤ x < 0.5
0, x ≤ 0.5

(2)
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2.2.2. 1-D Convolutional Layers

These layers use the convolution kernel to perform convolution operations on the
input data and output the result through the activation function. The kernels are a series
of filters with trainable weights. Through training, kernels can extract the significant
information from the input and discard the redundancy. The convolution operation can be
described by Formula (3).

xconv
l
j = f

 ∑
i∈Mj

xl−1
i ×ωl

ij + bl
j

 (3)

in which xconv
l
j denotes the jth output of the lth convolution layer, ωl

ij is the weight between

xconv
l
j and xl−1

i ; Mj represents the connection between xl−1
j and xconv

l
j; ∗ is the 1D convolu-

tion operation; bl
j is the bias of jth output from the lth convolution layer. Additionally, f (•)

represents the activation function. In this paper, the hyperbolic tangent function (tanh) was
used as an activation function in all convolutional layers except the binary encoding layer.

2.2.3. Transposed Convolution Layer

These layers achieve signal restoration by deconvolution. As an inverse process of
convolution, deconvolution is to convolve the transposed 1-D kernels with input signals as
Formula (4) defines:

xTconv
l
j = f

 ∑
i∈Mj

xl−1
i × (ωl

ij)
T
+ bl

j

 (4)

where xTconv
l
j is the jth output of the lth Transposed Convolution layer, and T represents the

transpose operation. The other parameters have the same meaning as the 1-D convolutional
layer. By stacked transposed convolution layers, the compressed code can be restored to
the original signal.
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2.2.4. Max Pooling Layer

The max pooling layer is always adopted to reduce the dimension of features by
down-sampling. As Formula (5) defines, max pooling retains the maximum value in the
range of the pooling window and discards other values while moving this window.

xMpool
l
j(n) = max

r∈R

[
xl−1

j (n× S + r)
]

(5)

in which xMpool
l
j(n) is the nth value of jth output from lth max-pooling layer; R represents

the size of the window; and S is the stride pooling layer. R was set to be equal to S for a
nonoverlapped pooling. r is the index of the sampling window. The information can be
centralized for better compression by this layer. Moreover, it can alleviate the computational
burden and avoid overfitting.

2.2.5. Up-Sampling Layer

Up-sampling is commonly used in feature extensions. Here, zero-padding is used
instead of interpolation to reduce computational complexity. In each up-sampling window,
the first value is restored by the corresponding input and the rest is padded with zeros.
This operation is formulated as Formula (6):{

xUs
l
j(n× S′ + r) = xl−1

j (n) r = 1
xUs

l
j(n× S′ + r) = 0 r = 2, 3 . . . R′

(6)

where R′ represents the size of the up-sampling window and S′ is the stride of sampling;
the other parameters in Formula (6) are as same as those in the encoder. In this way,
compressed data can be restored to the original size.

2.2.6. Linear Layer

The ECG signal is reconstructed from features by linear transform in this layer. Because
of the hyperbolic tangent activation, the output of the transposed convolutional layer is
limited between −1 and 1. To address this problem, a linear layer was used to rebuild the
original ECG signals. The linear layer operates as:

xLinear
l
j = ∑

i∈Mj

xl−1
i × (ωl

ij)
T
+ bl

j (7)

where xLinear
l
j is the jth output in lth linear layer; ωl

ij and bl
j have the same definition as that

in Formula (4).
As depicted in Figure 2, these function layers are stacked to generate a BCAE network.

The encoder of BCAE consists of stacked convolutional layers, max-pooling layers, and a
binary encoding layer. The first few convolutional layers and max-pooling layers extract
the main features and condense the features. The last of the encoder is the binary coding
layer, which directly compresses the signal into binary code. As for the decoder of BCAE, it
consists of eight transposed convolution layers, up-sampling layers, and a linear layer. The
binary compressed code can be restored to the original signal by transposed convolution
layers and up-sampling layer. The linear layer further transforms the feature signal into
the reconstructed signal with accurate amplitude.

To strengthen the performance of BCAE, Batch Normalization (BN) and dropout are
introduced after 1-D convolutions and transposed convolutions for reducing overfitting [28].
As a deep learning model, BCAE can be also improved by BN, which eliminates the
gradient vanishing and speeds up the convergence in the training phase [29]. Furthermore,
as an effective technique to avoid overfitting, dropout is also employed to improve the
compression performance [30]. In summary, all these strategies make BCAE a promising
model in ECG signal compression.
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2.3. Residual Error Compensation Network (RECN)

RECN can be treated as a complement of BCAE. It is designed to obtain the residual
error between the reconstructed signal by BCAE and the original signal. The main structure
of RECN is depicted in Figure 3. The binary compressed code was used as the input of
RECN. A Multi-Layer Perceptron (MLP) was set to transform the binary compressed data to
the desired residual error. After BCAE training, the reconstructed signal and corresponding
binary code could be obtained. Through the original signal, the difference between the
original signal and the reconstructed signal could be obtained, which is the label of the
RECN training process. The RECN network was trained based on this label to make
the reconstructed signal closer to the original signal. Because the corresponding residual
error of the reconstructed signal is actually small, the weight update speed is very slow.
Therefore, the residual error was magnified ten times as the output of RECN for more
efficient training. Therefore, the output of RECN is reduced by ten times before it is added
to the output of BCAE. In summary, as an optimization method, RECN can compensate
for the output of BCAE by outputting residual error. In this way, optimized by RECN, the
compression quality of BCAE can be further improved.

2.4. Compression Package

As shown in Figure 6a, the compression process of the heartbeat signal contains two
parts: interval code and binary compression code. The interval code stores the interval
between the current beat and the previous beat, represented by a 10-bit binary code [19].
The first bit of the interval code is the flag bit. When it is set to 0, the beat needs to be
delayed by the corresponding time to connect with the previous beat, and interpolation is
used to pad the delay interval. When the flag bit is set to 1, the beat should be connected to
the previous beat by the corresponding time earlier, and the overlapping part is represented
by an average value of the overlapping signals. The remaining 9 bits represent the delay
interval or the duration of the overlapping part, which can represent the time interval
within 512 (29 = 512) sampling points (512 samples/360 Hz = 1.4 s). Considering that the
heartbeat duration is usually not more than 1.4 s, through the above connection method, the
reconstructed heartbeats segment can be restored to the original ECG signal by using this
10-bit interval code. As for binary compressed code, it is generated by BCAE. According to
the structural configuration of BCAE, the output nodes of the encoder are 20, so the size of
the compression code is fixed. Therefore, the compressed heartbeat can be encoded into
a 20-bit binary code. In this way, a heartbeat with 320 samples can be compressed into a
30-bit binary compression pack.
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As shown in Figure 6b, in the reconstruction stage, the BCAE decoder and RECN
decode the binary compression code to obtain the reconstructed heartbeat (waveform for
floating point). Since the interval information of adjacent heartbeats is stored in the interval
code, continuous ECG records can be obtained through the interval code.

2.5. Model Configuration

The proposed architecture and parameter configuration are summarized in Tables 1 and 2.
As for BCAE, the encoder consists of 9 convolutional layers, 4 max-pooling layers, and
1 binary encoding layer. The decoder consists of 9 transposed convolutional layers, 4 up-
sampling layers, and 1 linear layer. As for RECN, it consists of 5 hidden layers and 1 linear
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layer. Here, all convolutions and transposed convolutions were operated as the “same”
pattern, which pads the output to the input size.

Table 1. Detailed configuration information of BCAE.

Section No. Layer Name Number of Filter
×Kernel Size

Pooling
(Up-Sampling)

Stride/Size
Dropout Activation

Function Output Size

Input Original Signal 320× 1

Convolutional
Encoder

1 1D Conv 4× 8 — × Tanh 320× 4
2 1D Conv + BN 8× 32 — × Tanh 320× 8
3 Max Pooling — 2 × — 160× 8
4 1D Conv + BN 16× 64 — × Tanh 160× 16
5 1D Conv + BN 32× 96 — × Tanh 160× 32
6 Max Pooling — 2 × — 80× 32
7 1D Conv + BN 64× 64 — × Tanh 80× 64
8 1D Conv + BN 64× 32 — × Tanh 80× 64
9 Max Pooling — 2 × — 40× 64
10 1D Conv + BN 32× 16 — × Tanh 40× 32
11 1D Conv + BN 16× 8 — × Tanh 40× 16
12 Max Pooling — 2 × — 20× 16
13 1D Conv + BN 1× 8 — × Tanh 20× 1

14 BEL — — × Step
function 20× 1

Compressed code
(Input of decoder) Binary Compressed Code 20× 1

Convolutional
Decoder

15 1D TConv 1× 8 — × Tanh 20× 1
16 Up-sampling — 2 × — 40× 1
17 1D TConv + BN 16× 8 — √ Tanh 40× 16
18 1D TConv + BN 32× 16 — × Tanh 40× 32
19 Up-sampling — 2 × — 80× 32
20 1D TConv + BN 64× 32 — × Tanh 80× 64
21 1D TConv + BN 64× 64 — × Tanh 80× 64
22 Up-sampling — 2 × — 160× 64
23 1D TConv + BN 32× 96 — √ Tanh 160× 32
24 1D TConv + BN 16× 64 — × Tanh 160× 16
25 Up-sampling — 2 × — 320× 16
26 1D TConv + BN 8× 32 — × Tanh 320× 8
27 1D TConv + BN 1× 8 — × Tanh 320× 1
28 Linear layer — — × — 320× 1

Output Reconstructed Signal 320× 1

BN: Batch Normalization. 1D TConv: 1D Transposed convolutional layer. BEL: Binary encoding layer.

Table 2. Detailed configuration information of RECN.

Section No. Layer Name Activation Function Output Size

Input Binary Compressed Code 20× 1

Hidden
layers

1 Hidden layer 1 Relu 80× 1
2 Hidden layer 2 Relu 140× 1
3 Hidden layer 3 Relu 200× 1
4 Hidden layer 4 Relu 260× 1
5 Hidden layer 5 Relu 320× 1
6 Linear layer — 320× 1

Output Residual Error 320× 1
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Tensorflow [31] (Python version) was used to build and train the proposed network.
Since the noises have the same frequency as ECG signals and cannot be removed [4], the
Pseudo–Huber loss function was determined as the loss function, and defined as [32]:

Lδ(y) = δ2
(√

1 + [(y− y′)/δ]2 − 1
)

(8)

where L represents the loss; y represents the original signal; and y′ denotes the reconstructed
signal. δ represents the parameter controlling the gradient less steep for extremums
and was set to 0.9 after debugging. As a smooth approximation of the Huber loss, it
guarantees derivation of each order [33]. To speed up the model convergence, the Adagrad
optimizer [34] was used for training. The initial learning rate and batch size were set to
0.1 and 256, respectively. The number of training iterations was set to 400 and the model
can converge.

3. Results

This section first introduces the evaluation criteria and then illustrates the experimental
results of ECG compression on the MIT-BIH database.

3.1. Performance Evaluation

There are several metrics used for performance evaluation, which can be divided into
two main aspects: reconstruction quality and compression efficiency. These performance
criteria are summarized as compression ratio (CR), signal-to-noise ratio (SNR), root mean
square error (RMS), percentage RMS difference (PRD), normalized version of PRD (PRDN),
and quality score (QS) [4]. They are defined as follows:

CR =
ci
co

(9)

SNR = 10× lg[
∑ n

i=1 (Do(i)− Dm)
2

∑ n
i=1 (Do(i)− Dr(i))

2 ] (10)

RMS =

√
∑ n

i=1 (Do(i)− Dr(i))
2

L
(11)

PRD(%) =

√√√√∑ n
i=1 (Do(i)− Dr(i))

2

∑i=n
i=1 (Do(i))

2 × 100 (12)

PRDN(%) =

√√√√∑ n
i=1 (Do(i)− Dr(i))

2

∑n
i=1 (Do(i)− Dm)

2 × 100 (13)

QS =
CR

PRD
(14)

where ci and co represent the size of the input signal and compressed signal, respectively. Do,
Dr are original signal, reconstructed signal and Dm is the mean value of the original signal.
L denotes the length of the signal. CR is widely accepted as a criterion of compression
efficiency. As for reconstruction quality evaluation, RMS and PRD are proportional to
the difference between the original signal and the reconstructed signal. Moreover, SNR is
used to evaluate the magnitude of the real signal and background noise. To evaluate the
performance comprehensively, QS was used to indicate the comprehensive performance
of both compression efficiency and reconstruction quality [35]. The smaller the PRD, the
better the quality of the reconstructed signal. The larger the compression ratio, the higher
the compression efficiency, but the quality of reconstruction tends to be worse. QS is the
ratio of CR and PRD, so the larger the QS, the better the overall quality of compression.
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3.2. Experimental Results

The MIT-BIH database has 48 records, and 1000 heartbeats were randomly selected
from each record for research. These 48,000 beats were divided into the training set,
validation set, and test set. The model was trained on 38,400 beats, containing 80% of
the data. The optimizations were performed on 7200 validation beats. The remaining
2400 beat samples were used to evaluate performance in the testing phase, which contains
50 heartbeats from each record. The model was trained for 400 epochs with a batch size
of 256, and the training time per epoch was about 10 s. As shown in Figure 7, the loss of
BCAE and RECN in the training phase can be visually analyzed. It can be demonstrated
that both BCAE and RECN converged to a low loss. The training losses of BCAE and RECN
decreased from 0.118 to 0.027 and 0.102 to 0.059, respectively. As for validation losses, they
decreased synchronously, which indicates that the model is not overfitting.
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After training, performance evaluation was conducted on the network with the afore-
mentioned performance criteria in Section 3.1. To further evaluate the performance of the
proposed method on each record, the trained model was tested on all 48 records. Finally,
the results are summarized in Table 3. The CR is related to the network’s structure rather
than the input signal. Since the input heartbeat contains 320 11-bit floating-point numbers,
and the compressed package is a 30-bit binary number, CR is 117.33 (320 × 11 bit/30 bit)
on each record.

Table 3 shows that the proposed model achieved good compression performance with
a low PRD of 7.76 and RMS of 0.026 respectively. Moreover, the average SNR maintained
at 15.93 dB. The high CR and low PRD indicated that the proposed method performs an
effective compression. To examine the performance of each record, the lowest PRD value
at 2.59 demonstrated the best compression performance on record 207. In contrast, record
222 generated the highest PRD with the value of 22.86, which can be considered the worst
case among all records.
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Table 3. Compression performance on the test set and each record in the MIT-BIH database.

Record PRD(%) PRDN(%) RMS SNR
(dB) QS Record PRD(%) PRDN(%) RMS SNR

(dB) QS

100 8.06 14.41 0.016 17.07 14.56 202 15.06 20.90 0.032 14.00 7.79
101 10.89 14.18 0.018 17.31 10.77 203 13.43 29.78 0.053 11.17 8.74
102 9.37 22.65 0.027 13.07 12.52 205 11.14 19.72 0.023 14.75 10.53
103 8.44 14.12 0.017 17.68 13.91 207 2.59 12.47 0.021 18.49 45.35
104 6.26 20.41 0.025 14.08 18.74 208 11.47 21.91 0.042 13.72 10.23
105 11.13 15.89 0.025 16.43 10.55 209 6.59 24.32 0.025 12.50 17.81
106 11.28 23.30 0.037 13.27 10.41 210 9.82 18.23 0.031 15.78 11.94
107 4.92 15.77 0.027 16.35 23.84 212 8.93 19.49 0.029 14.50 13.14
108 6.36 20.19 0.031 14.25 18.45 213 5.90 17.06 0.027 15.78 19.89
109 4.26 9.11 0.015 21.05 27.54 214 6.92 11.10 0.018 19.52 16.96
111 8.69 21.16 0.031 13.77 13.5 215 5.83 18.14 0.028 15.08 20.11
112 5.10 17.12 0.021 15.45 23.00 217 4.61 15.48 0.027 16.44 25.44
113 6.80 12.11 0.017 18.75 17.25 219 7.69 13.03 0.019 17.85 15.27
114 5.26 24.84 0.037 12.35 22.29 220 4.22 16.81 0.016 16.08 27.80
115 3.39 11.07 0.011 19.31 34.56 221 9.63 17.11 0.033 15.84 12.19
116 6.99 15.96 0.019 16.79 16.80 222 22.86 40.88 0.047 8.47 5.13
117 3.75 16.39 0.022 16.29 31.27 223 8.38 16.35 0.026 16.89 14.00
118 3.02 10.40 0.014 19.77 38.80 228 8.28 20.15 0.038 14.72 14.17
119 4.51 11.67 0.021 19.07 26.04 230 3.50 15.16 0.016 16.71 33.57
121 11.80 14.53 0.026 17.03 9.94 231 4.37 14.41 0.016 16.95 26.82
122 8.72 12.34 0.02 18.57 13.46 232 7.19 21.61 0.027 13.50 16.32
123 4.22 13.22 0.014 17.86 27.82 233 4.19 13.99 0.025 17.51 28.00
124 8.12 11.52 0.019 19.24 14.44 234 15.09 18.82 0.025 14.75 7.77
200 4.22 17.19 0.032 15.74 27.82 Average of

48 records
7.76 17.53 0.026 15.93 18.75201 9.31 24.98 0.044 12.91 12.60

CR: 117.33 (320 × 11 bit/30 bit).

To visually compare the performance, the reconstructed signals of records 207 and
222 by the proposed method are given in Figure 8. Notably, the network training is based
on beats, so the reconstructed signals were concatenated by reconstructed single beats.
To obtain the complete reconstructed ECG signal, the interval information between two
adjacent heartbeats was converted into binary interval code in the preprocessing process.
Through these binary interval codes and the compressed code of a single heartbeat, a
continuous reconstructed ECG signal can be obtained. The Figure shows the comparison
between the original signals and reconstructed signals. Their difference is denoted as the
loss signal. For ease of viewing, the loss signal is shifted down by one unit to the −1
position. It can be seen from Figure 8a that the reconstructed signal in the best case is of
high quality and has significant consistency with the original signal, and the signal type in
the figure is arrhythmia, which proves the effectiveness of compression and reconstruction
for different types of heartbeats. As for the worst case in Figure 8b, although there are
some differences between the reconstructed signal and the original signal, they still reserve
morphologies. Thus, the model can restore the morphology information successfully, even
though some losses exist. In summary, our results verify the high reconstruction quality of
the proposed method.

Since the input of BCAE is single heartbeat, it is necessary to evaluate the effect of
changes in rhythms and morphologies on compression quality. For this purpose, records
100, 117, and 119 were used because of their variable rhythms and morphologies [32]. Com-
pression performance on these three records and their respective rhythms are summarized
in Table 4.
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Table 4. Rhythm and compression performance on records 100, 117, and 119.

Record PRD (%) RMS SNR (dB) QS Rhythm (Samples)

100 8.06 0.016 17.07 14.56 286.05
117 3.75 0.022 16.29 31.27 422.85
119 4.51 0.021 19.07 26.04 327.02

Average 5.44 0.020 17.48 23.95 319.11
Input size: 320 samples. CR: 117.33 (320 × 11bit/30bit). Rhythm: the average of the RR interval.

Figure 9 depicts the original signal and the reconstruction signal of 2500 sample points
from records 100, 117, and 119. Due to the different rhythms, the number of heartbeats
contained in 2500 sample points was also different. The best PRD was obtained on record
117 with a value of 3.75. It had a RR interval of 422.85 samples, larger than the input
size. The worst case was generated by record 100 with PRD at 8.06, the RR interval
was 286.05 samples, smaller than the input size. Comprehensively, under these different
rhythms, the proposed method maintains the capacity of high-quality reconstruction
with average PRD at 5.44, RMS at 0.020, and SNR at 17.48, respectively. As for different
morphologies, the method proposed in this paper can reconstruct the binary codes into
the original signal with high quality. The losses are acceptable and overall morphologies
can be successfully obtained. Therefore, the proposed method can successfully deal with
compression on ECG signals which have variable rhythms and morphologies.

Biosensors 2022, 12, x FOR PEER REVIEW 14 of 19 
 

 
Figure 9. Compression performance of records 100, 117, and 119. 

4. Discussion 
More advantages of BCAE and RECN are illustrated in this section. Firstly, the im-

provements from BCAE and RECN are summarized in Figure 10. Four models, CAE, 
BCAE, CAE + RECN, and BCAE + RECN were tested with a generic test set of 2400 beats. 
The compression ratios of the four models are controlled by the hidden layer nodes to be 
equal, and the reconstruction quality results are represented by the histogram. It can be 
noted that BCAE was much better than CAE in compression quality under the same com-
pression ratio. The PRD decreased to a low level of 10.65% and the SNR was improved to 
12.71 dB. This result proves the effectiveness of BCAE on reconstruction quality. By the 
innovative binary compressed code, quality improvement can be achieved without sacri-
ficing the compression ratio.  

 
Figure 10. The performance improvement of BCAE and RECN. CR: 117.33. 

Secondly, optimized with RECN, the compression quality was also further im-
proved. It further reduced PRD to 7.76 and enhanced QS to 18.75. Complemented with 
the residual error, the reconstructed results can be more accurate. Hence, it was proved 
that the RECN, a novel optimization method proposed in this paper, boosts the compres-
sion quality. In all, the proposed BCAE compression model with RECN can achieve an 
attractive ECG compression. 

In Table 5, the results of the method proposed in this paper are compared with sev-
eral existing studies on ECG compression. The main comparison is the average result on 
the records. According to Table 5, though ref. [18] achieves lower PRD values, this is 

Figure 9. Compression performance of records 100, 117, and 119.



Biosensors 2022, 12, 524 14 of 18

4. Discussion

More advantages of BCAE and RECN are illustrated in this section. Firstly, the
improvements from BCAE and RECN are summarized in Figure 10. Four models, CAE,
BCAE, CAE + RECN, and BCAE + RECN were tested with a generic test set of 2400 beats.
The compression ratios of the four models are controlled by the hidden layer nodes to
be equal, and the reconstruction quality results are represented by the histogram. It can
be noted that BCAE was much better than CAE in compression quality under the same
compression ratio. The PRD decreased to a low level of 10.65% and the SNR was improved
to 12.71 dB. This result proves the effectiveness of BCAE on reconstruction quality. By
the innovative binary compressed code, quality improvement can be achieved without
sacrificing the compression ratio.
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Secondly, optimized with RECN, the compression quality was also further improved.
It further reduced PRD to 7.76 and enhanced QS to 18.75. Complemented with the residual
error, the reconstructed results can be more accurate. Hence, it was proved that the
RECN, a novel optimization method proposed in this paper, boosts the compression
quality. In all, the proposed BCAE compression model with RECN can achieve an attractive
ECG compression.

In Table 5, the results of the method proposed in this paper are compared with several
existing studies on ECG compression. The main comparison is the average result on the
records. According to Table 5, though ref. [18] achieves lower PRD values, this is always
due to the high offset line and different amplitude dimensions. To objectively evaluate the
compression quality, PRDN was also evaluated, which removes the offset influence. The
proposed method has good compression quality with a PRD of 7.76, and has the largest
compression ratio of 117.33 and the highest QS of 18.75. QS is the evaluation metric that
best represents the comprehensive compression effect, and high QS proves the advantages
of the proposed method. Compared with refs. [7,36], and [37], with the approximate
compression quality (PRD), the proposed BCAE strategy can greatly improve the CR and
QS. In summary, the proposed method maintains a high quality and high ratio compression,
achieves optimal overall performance, is attractive in ECG compression, and can be used
for portable ECG monitoring systems.
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Table 5. Comparison with previous work.

No. Year Method Data Records CR
(Average)

PRD (%)
(Average)

PRDN (%)
(Average)

QS
(Average)

1 2005 SPHIT [36] MITdb 3 (100, 107, 119) 21.4 7.27 — 3.21
2 2016 PCA [38] MITdb All records 50.74 16.22 16.22 3.13
3 2017 EZW [7] MITctdb All records 9.27 8.17 — 1.13
4 2018 DCT [37] MITdb All records 6.27 5.37 7.95 1.49
5 2018 CAE [18] MITdb All records 32.25 2.73 31.17 11.81
7 2019 SCAE [19] MITdb All records 106.45 8.00 — 16.44

Proposed
Method 2022 BCAE + REC MITdb All records 117.33 7.76 17.53 18.75

SPHIT: set partitioning in hierarchical trees coding. PCA: principal component analysis. EZW: embedded
zerotree wavelet. DCT: discrete cosine transform composition. CAE: convolutional auto-encoder. SCAE: spindle
convolutional auto-encoder. MITdb: MIT-BIH database. QS:CR/PRD. MITctdb: MIT-BIH ECG Compression
Test Database. CR: compression ratio. PRD: percentage RMS difference. PRDN: normalized version of PRD. QS:
quality score. (The four evaluation indicators are defined in Section 3.1).

To further verify the quality of the reconstructed signal, as shown in Figure 11, five
types of beats: Normal beat (N), Left bundle branch block beat (L), Right bundle branch
block beat (R), Atrial premature beat (A), and Premature ventricular contraction (V) were
classified using the original signals and reconstructed signals, respectively. In order to be
consistent with the number of heartbeats compressed and reconstructed in Section 3.2, a
total of 48,000 heartbeats of the above five types in the MIT-BIH database were obtained
according to the heartbeat extraction method and preprocessing method mentioned in
Section 2.1. These beats were compressed and reconstructed using the method proposed in
this paper. To reproduce the visual inspection performed by a cardiologist, this experiment
analyzed the signals in the time domain. Here, a convolutional neural network (CNN) [39]
is directly used to classify the heartbeat waveforms of the reconstructed and the original
signals, respectively. Of the beats of each class, 80% were used as the training set and 20%
were used as the test set. The classification results are shown in Table 6.
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Table 6. Classification results of original and reconstructed signals.

Signal Type Accuracy F1_Score
(Average)

F1_Score

N L R A V

original signal 96.34% 93.05% 97.50% 98.50% 98.19% 79.23% 91.81%
reconstructed signal 95.77% 92.15% 97.13% 95.96% 97.42% 79.03% 91.18%

Accuracy = (TP + TN)/(TP + TN + FP + FN) F1_score = 2 × TP/(2 × TP + TN + FP + FN) TP: true positive; TN:
true negative; FP: false positive; FN: false negative.

This experiment compares the classification results of the original signal and the
reconstructed signal, rather than pursuing the classification effect. In order to reduce
the influence of other features on the classification, this experiment only analyzed the
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waveform features, that is, only the time domain signal was used for classification. The
results showed that the difference in accuracy and average F1 score for the five-class signal
classification using the original and reconstructed signals is small (less than 1%), which is
acceptable, demonstrating the effectiveness of the proposed compression method.

In addition, to verify the practicability of the proposed method, a portable ECG
signal compression device was made using Raspberry Pi 3 Model B (as shown in Figure 12).
Transfer the neural network model (BCAE Encoder) trained in Section 3.2 into the Raspberry
Pi and compress the 2400 heartbeats from the training set. The compression code is
transmitted to the back-end processing system (such as a computer) through wifi, and the
signal is reconstructed through the BCAE decoder and RECN. The reconstructed signal can
be used for further disease detection. This experiment mainly calculates the time required
for a single heartbeat containing 320 points to be compressed by the Raspberry Pi. The
results are shown in Table 7.
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Table 7. Comparison of input signal time and signal processing time with Raspberry Pi.

Time(s)

Input heartbeat 0.8889
Compression 0.0101

According to the above experimental results, for a single heartbeat (with a duration
of 320/368 HZ = 0.88 s), the compression processing time on the Raspberry Pi is 0.0101 s,
which is much less than 0.88 s. This proves that the portable ECG signal compression device
designed in this paper can realize real-time processing of ECG signals, so the proposed
compression method has practical significance and can be used in wearable ECG devices.

5. Conclusions

In this paper, a novel ECG compression method of RECN and BCAE was proposed.
The main objective of this study was to achieve efficient ECG signal compression through
deep learning while ensuring the quality of the reconstructed signal and a high compression
ratio. Based on the CAE model, the binary encoding strategy was introduced into BCAE,
which can guarantee the compression ratio and improve the quality of reconstruction.
BCAE was an end-to-end model that needs no extra encoding algorithm. Additionally, an
efficient optimization technique, residual error compensation, was applied to improve the
compression quality. Validated experimentally by the MIT-BIH database, the efficiency of
the proposed method was proved. As a result, it achieves state-of-the-art performance with
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a compression ratio of 117.33 and PRD of 7.76. In addition, an experiment was designed to
compare the classification results of the original heartbeat and the reconstructed heartbeat
for Normal beat, Left bundle branch block beat, Right bundle branch block beat, Atrial
premature beat, and Premature ventricular contraction. The differences in accuracy and
average F1 scores were small, demonstrating that the ECG signals reconstructed by these
codes were of high quality. Moreover, a portable compression device was designed based
on the proposed compression algorithm using Raspberry Pi, which proves the practicality
of the proposed method. In a summary, this method has attractive prospects in large
data storage and portable electrocardiogram detection systems, and it can provide an
effective compression method for remote data transmission, especially in portable ECG
detection systems.
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