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Abstract: Sleep stage classification is an essential process of diagnosing sleep disorders and related
diseases. Automatic sleep stage classification using machine learning has been widely studied due
to its higher efficiency compared with manual scoring. Typically, a few polysomnography data are
selected as input signals, and human experts label the corresponding sleep stages manually. However,
the manual process includes human error and inconsistency in the scoring and stage classification.
Here, we present a convolutional neural network (CNN)-based classification method that offers
highly accurate, automatic sleep stage detection, validated by a public dataset and new data measured
by wearable nanomembrane dry electrodes. First, our study makes a training and validation model
using a public dataset with two brain signal and two eye signal channels. Then, we validate this
model with a new dataset measured by a set of nanomembrane electrodes. The result of the automatic
sleep stage classification shows that our CNN model with multi-taper spectrogram pre-processing
achieved 88.85% training accuracy on the validation dataset and 81.52% prediction accuracy on our
laboratory dataset. These results validate the reliability of our classification method on the standard
polysomnography dataset and the transferability of our CNN model for other datasets measured
with the wearable electrodes.

Keywords: automatic sleep stage classification; convolutional neural network; nanomembrane
electrode; multi-taper spectrogram

1. Introduction

An accurate sleep stage classification [1–3] plays a significant role in sleep quality
monitoring and the diagnosis of disorders. The polysomnogram (PSG) is widely used
in the diagnosis of obstructive sleep apnea (OSA) syndrome [4]. PSG is non-invasive
and consists of a simultaneous recording of multiple physiological parameters related
to sleep and sleep disorders. Standard polysomnography includes the measurement of
various physiological signals such as an electroencephalogram (EEG), an electrooculogram
(EOG), an electromyogram (EMG), and an electrocardiogram (ECG). Typically, a series of
polysomnographic signals for a 30-second-long epoch is labeled as a certain sleep stage by
an expert sleep scorer.
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Compared to the manual scoring of sleep stages, automatic sleep stage classifica-
tion serves as a more efficient way to evaluate a large amount of sleep data. Machine
learning algorithms have been adopted in automatic sleep stage classification to increase
classification efficiency and performance in recent years. Among them, conventional statis-
tical machine learning algorithms, such as Support Vector Machine [1,5], Hidden Markov
Model [6], k-nearest neighbors [7], and Random Forests [7] are adopted at the early stage.
Recent progress of deep learning in computer vision, natural language processing, and
robotics has advanced these methods to application in automatic sleep stage classification.
A convolutional neural network (CNN) has been frequently employed for the task. The
weight sharing mechanism at the convolutional layers forces the shift-invariance of the
learned features and greatly reduces the model’s complexity, consequently improving the
model’s generalization. Other network variants, such as Deep Belief Networks (DBNs),
Auto-encoder, and Deep Neural Networks (DNNs), have also been explored. Moreover,
Recurrent Neural Networks (RNNs), e.g., Long Short-Term Memory (LSTM), capable of
sequential modeling, have been found to be efficient in capturing long-term sleep stage
transitions. However, these methods still have limited accuracy in sleep stage classification
as they have been trained and tested merely on a public dataset, without validation study
with real lab datasets.

This work presents an automatic sleep stage classification model that could be applied
to the public dataset, and that could also be applied to the classification of our laboratory
datasets measured with a novel wearable system. In the public dataset from ISRUC used
for this study [8], four channels of signals (two EEG and two EOG) were selected based
on their proximity to the electrode locations of our new wearable system being tested.
The four signals were preprocessed with various filters and a multi-taper spectral analysis
was performed. They were then split into 30-second-long epochs and converted into
spectrogram images to be used and tested with our newly developed CNN sleep stage
classification model. This CNN model trained with a public dataset was then applied to our
lab dataset measured with nanomembrane electrodes that were pre-processed with the same
methods. A comparison study with a multi-taper spectrogram and band-pass-filtered raw
signals showed the advantage of a multi-taper spectrogram in enhancing the transferability
of the model. The final result of this study supports not only the performance of our new
classification model on the standard PSG dataset, but also the model’s transferability to a
dataset measured with our novel system.

2. Materials and Methods
2.1. ISRUC Public Dataset

The ISRUC sleep dataset (Figure 1A) consists of complete overnight standard PSG
recordings of 118 subjects with three health statuses (healthy, sick, and under-treatment).
For this study, a total of 100 data from 100 subjects from subgroup 1 were used. ISRUC
subgroup 1 included subjects aged between 20 and 85 years (51 on average), with 55 males
and 45 females. The subjects were diagnosed with various sleep disorders. More details of
individual subject information can be found in Khalighi et al. [8]. Each recording contained
six EEG channels (i.e., C3-A2, C4-A1, F3-A2, O1-A2, O2-A1, and F4-A1), two EOG channels
(i.e., LOC-A2 and ROC-A1), and three EMG channels (i.e., X1, X2, and X3) as well as an
annotation file with detailed events. For this study, two of the EEG channels (F3-A2 and
F4-A1) and both of the EOG channels (LOC-A2 and ROC-A1) were used. The recording rate
was 200 Hz. In addition, each 30-second-long epoch was labeled with one of the five sleep
stages (W, N1, N2, N3, R), as scored by two experts according to the American Academy of
Sleep Medicine (AASM) rules [8].
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Figure 1. Overview of a public dataset (ISRUC) and the measured lab dataset. (A) Detailed infor-
mation of both datasets. (B) Data recording system using nanomembrane bioelectrodes (left) and 
the sensor mounting locations (right) were the upper center of the forehead (EEG1 and EEG2) to 
measure two-channel EEG, one electrode on the lower-left corner of the left eye (EOG1) to measure 
two-channel EOG, and another electrode on the upper-right corner of the right eye (EOG2). (C) 
Measured EOG signals of five different sleep stages: W, N1, N2, N3, and R. (D) Measured EEG 
signals of five different sleep stages: W, N1, N2, N3, and R. (E) Examples of multi-taper spectro-
grams of both the ISRUC public and the lab datasets with five sleep stages. From top-to-bottom and 
left-to-right, the spectrograms show channels F3-A2, F4-A1, EOGL, and EOGR of the public dataset, 
and channels EEG1, EEG2, EOG1, and EOG2 of the lab dataset. 

2.2. Measured Lab Dataset 
The lab dataset used for this study was measured from four healthy male subjects 

aged between 24 and 27 years. A total of four data were collected, with one recording per 
subject. To measure our own dataset in the lab, we fabricated a set of nanomembrane, 
stretchable electrodes using a gold and polyimide (PI) composite, laminated on a silicone 
adhesive (Figure 1B). This fabrication utilized a microfabrication technique, including 
photolithography, developing, and etching for making stretchable patterns [9,10]. After-
ward, the patterned electrode was transfer-printed onto a soft silicone elastomer for skin 

Figure 1. Overview of a public dataset (ISRUC) and the measured lab dataset. (A) Detailed infor-
mation of both datasets. (B) Data recording system using nanomembrane bioelectrodes (left) and
the sensor mounting locations (right) were the upper center of the forehead (EEG1 and EEG2) to
measure two-channel EEG, one electrode on the lower-left corner of the left eye (EOG1) to measure
two-channel EOG, and another electrode on the upper-right corner of the right eye (EOG2). (C) Mea-
sured EOG signals of five different sleep stages: W, N1, N2, N3, and R. (D) Measured EEG signals of
five different sleep stages: W, N1, N2, N3, and R. (E) Examples of multi-taper spectrograms of both
the ISRUC public and the lab datasets with five sleep stages. From top-to-bottom and left-to-right,
the spectrograms show channels F3-A2, F4-A1, EOGL, and EOGR of the public dataset, and channels
EEG1, EEG2, EOG1, and EOG2 of the lab dataset.

2.2. Measured Lab Dataset

The lab dataset used for this study was measured from four healthy male subjects
aged between 24 and 27 years. A total of four data were collected, with one recording
per subject. To measure our own dataset in the lab, we fabricated a set of nanomembrane,
stretchable electrodes using a gold and polyimide (PI) composite, laminated on a silicone
adhesive (Figure 1B). This fabrication utilized a microfabrication technique, including pho-
tolithography, developing, and etching for making stretchable patterns [9,10]. Afterward,
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the patterned electrode was transfer-printed onto a soft silicone elastomer for skin mount-
ing [11,12]. For the two-channel EEG setup, two electrodes were placed near the upper
center of the forehead (EEG1 and EEG2) to measure frontopolar EEG. For the two-channel
EOG, one electrode was placed on the lower-left corner of the left eye (EOG1), and the other
electrode was placed on the upper right corner of the right eye (EOG2). All the EEG and
EOG channels were derived with a single common reference electrode placed on the bony
area of the nose. In PSG, the mastoid is the most widely used common reference point, but
the nose is also considered one of the inactive areas suitable as a common reference alterna-
tive to the mastoid. Some of the previous works related to EEG measurement adopted the
nose as the reference on special occasions [13–16]. The nanomembrane dry electrode needs
to be placed on clean skin without hair to measure signals with high quality, so the nose
was selected as the common reference for this study. The ground electrode was placed on
the forehead next to the EEG1 electrode. These electrode locations were chosen to develop
a compact facial patch device for sleep monitoring in future studies.

A customized printed circuit board (PCB) with an nRF52 (Nordic Semiconductor,
Trondheim, Norway) and an ADS 1299 (Texas Instruments, Dallas, TX, USA) was used
to collect EEG and EOG signals at a sampling rate of 250 Hz and to transmit them to an
Android mobile device via Bluetooth for data storage. The systems used to collect the
lab datasets, the nanomembrane-based electrodes and the custom PCB with the nRF52
and ADS 1299 have been extensively studied and validated by comparison with well-
established measurement systems by numerous related previous studies [17–21]. A set
of example datasets in Figure 1C,D, measured by standard PSG setup and the wearable
device, show EOG signals and EEG signals with different patterns based on sleep stages.
Figure 1E shows representative multi-taper spectrograms of data measured by the standard
PSG setup and the setup used for this study at each of the five sleep stages.

2.3. Data Pre-Processing

Rather than training an automatic classification model based on raw sleep data, the
data pre-processing method was applied for better classification performance. In the
ISRUC public dataset, preprocessing was already applied to eliminate undesired noise
and DC offset, enhancing the signal quality and the signal-to-noise ratio. The filtering
stage consisted of a notch filter to eliminate the 50 Hz powerline noise and a bandpass
Butterworth filter with a lower cutoff of 0.3 Hz and a higher cutoff of 35 Hz for both
the EEG and EOG channels. To maximize the performance and transferability of the
classification model, the same bandpass filtering parameters were used for the lab dataset.
The notch filter setting was adjusted to remove a 60 Hz, rather than 50 Hz, power line
noise because the frequency of powerline noise varies based on the place of measurement.
Moreover, to match the per-epoch data size to the public dataset, the lab dataset was
down-sampled from 250 Hz to 200 Hz by interpolating the datapoints that matched the
timepoints corresponding with the 200 Hz sampling rate.

2.4. Input Dataset for Deep Learning

EEG and EOG signals are commonly analyzed with time-frequency processing tech-
niques or spectrograms, since they are frequently related to behavioral patterns [22]. CNN
models are mainly applied to classify and recognize two-dimensional images due to their
good compatibility and unprecedented ability to extract image features. As a result, there
were many attempts to use spectrograms generated from EEG and EOG signals as the input
dataset of a CNN [23–26]. The spectrogram used for this study was generated by multi-
taper spectral analysis, which utilizes multiple taper functions to compute single-taper
spectra for better resolution and reduced bias and variance compared to the traditional
method. The default settings and parameters provided by Prerau et al. were used for
generating spectrograms [27]. The frequency range of spectral analysis was set between
0 and 20 Hz. The time-half-bandwidth product was set to 5, and the number of tapers
was set to 9. A window size of 5 s was used, with a step size of 1 s. The entire dataset
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was first converted into a multi-taper spectrogram, which was then segmented into a
30-second-long epoch. The size of the spectrogram matrix was 30 × 103 for each epoch.
Since four data channels were used for this study, four spectrogram matrices were put
together as a 60 × 206 matrix, which was then converted into a PNG image file sized
256 × 256 (Figure 2A). The same dataset was prepared with raw data for a comparison
study to show the advantage of using a multi-taper spectrogram. The dataset with raw
data was composed of bandpass-filtered raw data. The filtered data were then segmented
into 30-second-long epochs of four channels, with a matrix size of 4 × 6000. Figure 2B is the
flow diagram of how our training dataset (sampled from the ISRUC dataset) and testing
dataset (sampled from the lab dataset) were processed.

Biosensors 2022, 12, x FOR PEER REVIEW 5 of 14 
 

was first converted into a multi-taper spectrogram, which was then segmented into a 30-
second-long epoch. The size of the spectrogram matrix was 30 × 103 for each epoch. Since 
four data channels were used for this study, four spectrogram matrices were put together 
as a 60 × 206 matrix, which was then converted into a PNG image file sized 256 × 256 
(Figure 2A). The same dataset was prepared with raw data for a comparison study to 
show the advantage of using a multi-taper spectrogram. The dataset with raw data was 
composed of bandpass-filtered raw data. The filtered data were then segmented into 30-
second-long epochs of four channels, with a matrix size of 4 × 6000. Figure 2B is the flow 
diagram of how our training dataset (sampled from the ISRUC dataset) and testing dataset 
(sampled from the lab dataset) were processed. 

 
Figure 2. (A) Arrangement of four multi-taper spectrograms for deep learning dataset input. (B) 
Flow chart capturing data processing overview. (C,D) Proposed machine learning architectures for 
multi-taper spectrograms (C) and raw signals (D); in this figure, Conv: convolution, F.C.: fully con-
nected layers, and BN: batch normalization. 
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taper spectrograms (C) and raw signals (D); in this figure, Conv: convolution, F.C.: fully connected
layers, and BN: batch normalization.
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2.5. CNN-Based Classifier

The architecture was developed by trial and error, drawing influence from earlier
models [28,29]. Two models were created according to the form of input data: the CNN
architecture in the case of image-based multi-taper spectrograms and the CNN + LSTM
architecture in the case of time-based raw signal data. The sleep stage classification CNN
architecture is described in Figure 2C,D. For the multi-taper spectrogram, the inputs of
our CNN were 30-second-long spectrogram images (256 × 256 pixels) of 4 channels (two
EEG and two EOG) connected together in a square. The spectrogram image was then
resized to 64 × 64 and converted to a value between 0–1 using normalization. Since the
color-image consisted of 3 channels (Red, Green, and Blue), every input matrix became a
3-dimensional matrix (64 × 64 × 3). The non-linear activation function employed was the
Leaky Rectified Linear Unit (Leaky ReLU). ADAM (learning rate = 0.002) was utilized for
the optimization of the CNN architecture. The batch size was set to 16 and the dropout
deactivation rate was set to 0.5. Early stopping was used to prevent overfitting by randomly
eliminating 20% of the data from the training set and utilizing it as a validation set at the
start of the optimization phase. When the validation loss stopped improving, learning
rate annealing was performed with a factor of 5. The training was terminated when two
successive decays occurred with no network performance improvement on the validation
set. A single convolutional cell (Conv_N) consisted of a convolutional layer, one layer of
batch normalization, one layer of max pooling, and one layer of the Leaky ReLu function.
The final output of the Deep Neural Network was a 5 × 1 vector. It was then passed
through a softmax layer and finally outputted the predicted class (one of the five sleep
stages). For the raw signals, the inputs of our CNN_LSTM were 30-second raw signal data
of 4 channels (two EEG and two EOG) with an input size of 6000 × 4. The kernel layer was
composed of two convolutional cells and one LSTM cell. Most of the set-ups were the same
as those of the spectrogram CNN architecture, except structure, while the learning rate of
ADAM was 0.001 and the batch size was set to 128.

3. Results and Discussion
3.1. Experimental Setup

In this section, we elaborate on the details of our experimental set-ups, outcomes, and
the significance of the results. Figure 2 summarizes the overview of the automatic sleep
stage classification process using a CNN model we developed. To evaluate the performance
of the proposed CNN architecture, we designed two experiments: (1) training a CNN model
that could correctly classify sleep stages and evaluate the performance with the ISRUC
dataset, and (2) Using the trained CNN model to classify the sleep stages in the newly mea-
sured lab data. These two experiments were conducted on a laptop equipped with an Intel
i7 processor (I7-9750H). To compare the transferability, both experiments were performed
with two different types of input data: raw data and multi-taper spectrogram data.

In the first experiment, the first 100 subjects’ data were selected in subgroup 1 of the
ISRUC dataset. To enhance the accuracy and minimize the bias associated with our classi-
fication model, only the epochs where the two scorers agreed with each other were used.
The epochs were then split into three parts: 60% of the dataset for training (42,094 epochs),
20% for validation (14,032 epochs), and 20% for the test (14,032 epochs). The number of
epochs of each of the five classes for the three separate parts is listed in Table 1. For each
training step, the weight of the CNN network parameters was updated based on the result
of model training validation accuracy. Most of the hyperparameter values (learning rate,
kernel size, and filter of each convolutional layer, and unit of each dropout) were selected
by a random search method. In the end, we chose the model with the highest validation
accuracy as our best model. The performance of this best model was evaluated based on
the prediction accuracy of the test dataset.
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Table 1. Number of epochs of each sleep stage for training, validation, and testing.

Input Type

Number of Epochs (ISRUC Public Dataset)

Training Set Validation Set Test Set

Aw N1 N2 N3 R Aw N1 N2 N3 R Aw N1 N2 N3 R

Raw signal 10,968 3299 13,366 8264 6197 3591 1148 4570 2692 2031 3617 1065 4492 2739 2119
Spectrogram 11,013 3275 13,210 8189 6207 3568 1073 4729 2675 1987 3575 1144 4469 2791 2053

As a result, for the multi-taper spectrogram, CNN architecture, a (2,2) pool size of 2D-
max pooling, 64 filters and a (3,3) kernel size were used on the first two 2D-convolutional
layers and 32 filters and a (3,3) kernel size were used on the last 2D-convolutional layers.
Moreover, in order, dense layers with the units 1024, 512 and 5 were used for the fully-
connected layer. Batch normalization, first dropout (0.25), and second dropout (0.40) were
utilized to prevent overfitting. For the raw-signal CNN + LSTM architecture, four pool sizes
of 1D-max pooling, 80 filters, and three kernel sizes were used on the first 1D convolutional
layers, and 32 filters and five kernel sizes were used on the last 1D-convolutional layers
and unit 10 on the LSTM layers. Moreover, in order, dense layers with the units 64 and
5 were used for the fully-connected layer. Batch normalization and dropout (0.45) were
utilized to prevent overfitting (Figure 2C,D).

In the second experiment, we evaluated the transferability of our trained CNN model
on our lab dataset. We used the same model architecture as the first experiment. Our best
model was used to predict sleep stages in the lab dataset, and this prediction performance
was evaluated through comparison with the manual sleep stage scorings performed, based
on AASM criteria, by one human expert with about one year of experience.

3.2. Performance Comparison with Other Works

The classification model was well-trained, based on the accuracy and loss of the
training and validation graphs shown in Figure 3A,B. Table 2 summarizes the result of the
first experiment. As a result of the first experiment with multi-taper spectrogram input
data, our classification model’s prediction of the 100 subjects showed 88.85% accuracy and
a Cohen’s kappa value of 0.854 with the consensus scores of the two expert scorers of the
ISRUC dataset (Figure 3C). The classification results with raw data as input showed an
accuracy of 87.05% and a Cohen’s kappa value of 0.829.

Table 3 summarizes the result of the second experiment and enumerates the number
of epochs of each sleep stage that were included in the lab dataset. As a result of the
second experiment with the multi-taper spectrogram input data, an accuracy of 81.85%
and a Cohen’s kappa value of 0.734 could be achieved when the exact same classification
model was used to predict the lab dataset measured with our own system (Figure 3D). The
classification results with raw data as input showed an accuracy of 72.94% and a Cohen’s
kappa value of 0.608. The results of these experiments clearly show that, compared to using
just raw signal, converting the signal to multi-taper spectrogram as the input data provides
not only comparable or higher classification performance within the public dataset but
also superior transferability of the trained model for the classification of another dataset.
The average inter-scorer agreement on standard PSG data was usually reported between
82% and 89% [3]. In agreement with this reported value, the average agreement between
the two expert scorers of the ISRUC dataset was calculated to be 82.00%, with a Cohen’s
kappa value of 0.766. The results of the second experiment (81.85%) fall very close to
this expected inter-scorer reliability value, and this can show the potential of the effective
transferability of our classification model into our lab-based custom system with high
performance. The hypnograms in Figure 3E,F show the prediction results from the ISRUC
and lab datasets, respectively.
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Figure 3. CNN classification results. (A) Loss curves of the training on the ISRUC dataset (red: loss
on the training; blue: loss on the testing). (B) Accuracy curves of the training on the ISRUC dataset
(red: accuracy on the training; blue: accuracy on the testing). (C) Confusion matrix with the public
dataset (accuracy 88.85%, Cohen’s kappa = 0.854). (D) Confusion matrix with lab dataset (accuracy
81.52%, Cohen’s kappa = 0.734). (E,F) Hypnograms of prediction results from the ISRUC (E) and lab
datasets (F).
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Table 2. Public dataset based on classification models trained and tested with raw signals and
multi-taper spectrograms.

Input Type
ISRUC Public Dataset

Test Accuracy Cohen’s Kappa

Raw signal 87.05% 0.829
Multi-taper spectrogram 88.85% 0.854

Table 3. Lab dataset prediction based on classification models trained and tested with raw signal and
multi-taper spectrograms, and the combined number of epochs of each sleep stage.

Input Type

Lab Dataset Number of Epochs (Lab Dataset)

Prediction Accuracy Cohen’s Kappa
Prediction Set

Aw N1 N2 N3 R

Raw signal 72.94% 0.608 230 111 1091 721 554
Multi-taper spectrogram 81.52% 0.734 230 111 1091 721 554

Table 4 compares the performance of our CNN method in sleep stage classification
with other prior works. To evaluate the performance of the sleep stage classification, there
are multiple performance metrics being used in the field, including sensitivity, specificity,
and F-measure. Among these metrics, the accuracy rate and Cohen’s kappa coefficient
are the most commonly used metrics [3], so these metrics are presented and used for
comparison in this table. Most of the existing works focused on analyzing public sleep
datasets, except for a few cases. Compared to the resulting accuracy and kappa values of
these works, our work in the first experiment within the public dataset shows comparable
performance. Among the prior works, the work from Bresch et al. presented a study
similar to ours where a classification model was built from a public dataset (SIESTA) and
transfer-tested to a private dataset [30]. Their results showed a kappa value of 0.760 in the
public dataset and 0.703 in their private dataset. Compared to this work, our work shows
improved performance with both the public and private datasets. Overall, this study shows
the human-level performance of our CNN-based sleep classification model in scoring the
standard PSG dataset and presents the potential of its effective transferability to other types
of datasets, such as our own custom lab dataset with novel nanomembrane electrodes.

Although we could demonstrate transferability of the classification model from the
public PSG dataset to a private dataset, the setup and results from the current study
still possess some limitations that need to be considered for future studies. First, the
public dataset used for this study, ISRUC subgroup 1, includes data from subjects with
sleep disorders. Sleep patterns and signal characteristics of subjects with various sleep
disorders are likely to be different from those of healthy subjects, and this aspect could
have led to reduced performance when the classification model was applied to healthy
subject data. Since this study was intended to build a model to classify data from healthy
subjects, for future studies, the inclusion of data from a healthy population will be necessary
and helpful to enhance the classification performance. Next, a small population of four
subjects was used for the tested lab dataset to explore the potential of the transferability
of the classification model and to compare the pre-processing methods for more effective
transferability. To further validate the effectiveness of multi-taper spectrograms along with
a CNN to build a more globally transferable classification model, a much larger number of
subjects from various cohorts will need to be included in future studies.
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Table 4. Comparison of sleep-stage classification performance with prior works.

Ref. Year Data Type Input Data Number of
Subjects

Public
Dataset

Private
Dataset

Number of
Channels

Classification
MethodAccuracy

(%)
/Kappa

Accuracy
(%)

/Kappa

This
work 2022 ISRUC and

Lab dataset

Multi-taper
spectrogram

and
Raw data

100 88.85/0.854
87.05/0.829

81.52/0.734
72.94/0.608

2 EEG, 2
EOG CNN

[31] 1993 Private
data

Extracted
features 12 - 80.60/- 2 EEG, 1

EOG, 1 EMG

Multilayer
Neural

Network

[32] 2005 SIESTA Extracted
features 590 79.6/0.72 - 1 EEG, 2

EOG, 1 EMG
LDA, Decision

tree

[5] 2014 Sleep-EDF Extracted
features 1 88.9/- - 1 EEG SVM

[33] 2016 Sleep-EDF Raw data 20 74/0.65 - 1 EEG CNN

[34] 2016 Sleep-EDF Extracted
features 20 78/- - 1 EEG Stacked Sparse

Autoencoders

[35] 2017 Montreal
archive

Extracted
features 62 83.35/- - 1 EEG Mixed Neural

Network

[36] 2017 Sleep-EDF
& Montreal Raw data 32 86.2/0.80 - 1 EEG DeepSleepNET

(CNN + LSTM)

[37] 2018 Montreal
archive Raw data 61 78/0.80 - 6 EEG, 2

EOG, 3 EMG
Multivariate

Network

[38] 2018 Private
dataset

Extracted
features 76 - -/0.8 1 EEG, 2

EOG
Random Forest,

CNN, LSTM

[39] 2018 SHHS Raw data 5728 87/0.81 - 1 EEG CNN

[40] 2018 12 sleep
centers Raw data 1086 87/0.766 - 4 EEG, 2

EOG, 1 EMG CNN

[7] 2018 ISRUC Extracted
features 100 75.29/- - 6 EEG Random Forest

[41] 2018 ISRUC Raw data 116 92.2/- - 6 EEG, 2
EOG, 3 EMG CNN

[30] 2018 SIESTA/private
data Raw data 147 -/0.760 -/0.703 1 EEG, 2

EOG RNN

[6] 2019 ISRUC Extracted
features 10 79.64/0.74 - 6 EEG HMM

[42] 2019 Sleep-EDF Raw data 61 91.22/- - 1 EEG, 1
EOG CNN

[43] 2019 Montreal
archive

Extracted
features 200 83.6/- - 1 EEG, 1EOG,

1EMG CNN

[44] 2020 ISRUC Extracted
features 10 81.65/0.76 - 1 EEG IMBEFs

[45] 2020 Sleep-EDF Raw data 100 85.52/- - 2 EEG CNN

[46] 2020 ISRUC Raw data 294 81.8/0.72 -
2 EEG, 2

EOG, 1 EMG,
1 ECG

CNN + RNN

Moreover, despite the transferability of the classification model shown in this study,
there was a clear reduction in accuracy when the model was tested on the lab dataset. This
reduction in the accuracy came from the intrinsic differences between the two different
measurement settings, such as subject population, electrode type, equipment, sampling
rate, etc. These discrepancies resulted in slightly different spectral analysis signal char-
acteristics and reduced classification performance. One of the critical differences was
the electrode locations, especially the EEG electrodes on the forehead and the common
reference electrode on the nose. Although the nose is considered to be a relatively inactive
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area, nose referencing still suffers from larger artifacts from facial muscle activity in both
the EEG and EOG channels, and especially EOG artifacts in the EEG channels, due to its
proximity to the eyes [47,48] In our lab system, the EEG electrodes were placed closer to the
eyes on the forehead, and the reference was placed on the nose. With the measurement and
reference electrode of each EEG channel placed on the top and bottom sides of the eyes, the
vertical eye movement signals observed in the EEG channels were large, and they were
also larger than those observed in our EOG channels. As shown in Figure 1E, the described
discrepancy in the signals observed from the EEG and EOG channels of each system could
be observed, with slightly different spectral characteristics at each stage potentially leading
to a reduction in accuracy, most likely in stages N1, where slow eye movement (SEM) is
present, and R, where rapid eye movement (REM) is present. In stages N1 and R of the
public dataset, the EOG channels generally showed stronger activity observed in the lower
frequency range, caused by SEM and REM, as compared to the EEG channels. On the other
hand, in the lab datasets, the EEG channels often show comparable or stronger activity
in the lower frequency range compared to the EOG channels, caused by strong vertical
eye movement signals in the EEG channels and stronger horizontal eye movement signals
observed in the EOG channels. In addition to the well-known difficulty in classifying N1,
the number of N1 epochs used for both training the model and prediction of the lab dataset
was much smaller compared to other stages, and this could have resulted in the misrep-
resentation of the model’s classification performance of N1 with the numerical results
obtained in this study [49,50]. These discrepancies between the systems and the smaller
number of channels in our system could have led to less accurate scoring of the lab dataset,
as it was not measured with the standard PSG setup used for proper scoring with AASM
criteria, which resulted in larger uncertainty in the classification performance assessment.
For future study, the use of both a standard setup and our novel lab-based setup is desired
for more objective and fair classification performance assessment, comparison with expert
scorings and inter-scorer reliability.

Furthermore, there were two factors that could have led to the overestimation of our
classification model’s performance within the public dataset: (1) using consensus epochs for
the testing of the model, and (2) using all subjects’ data throughout the training, validation,
and testing without subject separation. Consensus epochs have clearer signal character-
istics of corresponding sleep stages compared to the epochs without consensus, so using
consensus epochs for the testing of model may have led to performance overestimation.
For future studies, it would be preferred to use all epochs for performance evaluation,
and compare the results with inter-scorer reliability. Moreover, due to signal characteristic
variability from subject to subject, a more objective evaluation of the performance would
be achieved by separating the epochs of certain subjects and keeping them independent for
testing purposes alone. If the same subject’s epochs used for training and validation are
also used for testing, the testing performance could be higher than the result obtained when
the model is used on another subject’s data. For future studies, the use of the leave-one-
subject-out method for the evaluation of the model would be preferred, for more objective
evaluation and comparison with other works.

4. Conclusions

In this work, we presented an automatic sleep stage classification model that could
achieve good performance on the public dataset and accurately predict the sleep stage on
our own laboratory dataset. A set of nanomembrane electrodes and custom wireless circuits
were used to record lab datasets with EEG and EOG from multiple subjects during their
sleep. We developed a classification model based on CNN, which was utilized for training
and validating the classifier model based on the ISRUC public dataset using two EEG
(F3-A2, F4-A1) and two EOG (EOGL, EOGR) channels. Then we transferred our model to
the classification of our experimental dataset, which was collected with the nanomembrane
electrodes. Overall, the collective results show that our model had high performance on
both the test dataset (accuracy = 88.85%, Cohen’s kappa = 0.854) and on our lab dataset
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(accuracy = 81.85%, Cohen’s kappa = 0.734). Future work will resolve the limitations of the
current study discussed above and expand this research to include a larger group of sleep
patients to measure data with the wearable system for automatic sleep stage classification.
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