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Abstract: Monitoring the vital signs and physiological responses of the human body in daily activities
is particularly useful for the early diagnosis and prevention of cardiovascular diseases. Here, we
proposed a wireless and flexible biosensor patch for continuous and longitudinal monitoring of
different physiological signals, including body temperature, blood pressure (BP), and electrocardiog-
raphy. Moreover, these modalities for tracking body movement and GPS locations for emergency
rescue have been included in biosensor devices. We optimized the flexible patch design with high
mechanical stretchability and compatibility that can provide reliable and long-term attachment to
the curved skin surface. Regarding smart healthcare applications, this research presents an Internet
of Things-connected healthcare platform consisting of a smartphone application, website service,
database server, and mobile gateway. The IoT platform has the potential to reduce the demand for
medical resources and enhance the quality of healthcare services. To further address the advances in
non-invasive continuous BP monitoring, an optimized deep learning architecture with one-channel
electrocardiogram signals is introduced. The performance of the BP estimation model was verified us-
ing an independent dataset; this experimental result satisfied the Association for the Advancement of
Medical Instrumentation, and the British Hypertension Society standards for BP monitoring devices.
The experimental results demonstrated the practical application of the wireless and flexible biosensor
patch for continuous physiological signal monitoring with Internet of Medical Things-connected
healthcare applications.

Keywords: biosensors; physiological signals; Internet of Medical Things (IoMT); artificial neural
network (ANN)

1. Introduction

The importance of regular physiological metric monitoring and smart data analytics
in the early detection and prevention of cardiovascular diseases has been reported [1,2].
Owing to the advantages of printed electronics, flexible devices and wireless body sensor
networks have been developed to continuously collect various types of physiological data
such as heart rate variability, body temperature, systolic blood pressure (SBP), and diastolic
blood pressure (DBP) [3]. The development and advancement of wearable biosensor
devices is valuable for improving the self-monitoring compliance of patients and enhancing
the quality of the healthcare system [4–7]. However, monitoring different physiological
signals requires multiple biosensors and devices, which increases the cost of equipment
and causes inconvenience and discomfort to users [3,8]. Hence, it is important to develop
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a single device with multiple sensor combinations for continuous physiological signal
monitoring [9,10].

With the rise in information and communication technology, the concept of an Inter-
net of Medical Things (IoMT) has attracted growing attention over recent years [11,12].
Advances in IoMT and precision medicine have transformed the healthcare system, par-
ticularly in terms of regular and frequent physiological monitoring and cardiac risk as-
sessment [12]. The concept and application of a health Internet of Things and wearable
electronics are expected to address limitations of the traditional healthcare system, such as
the shortage of medical staff and high medical cost burdens [13]. The IoMT is expected to
become a technology that can improve people’s health conditions, potentially increasing
the human lifespan and preventing chronic diseases [14].

Regular blood pressure (BP) monitoring is important for patient diagnosis and man-
agement [15]. However, conventional ambulatory BP techniques, such as oscillometric mea-
surement, require a cuff to be placed and repeatedly inflated around the upper arm [14,15].
Although oscillometric measurement is the gold standard to extract the continuous features
and the for BP monitoring, it causes discomfort to users and does not allow continuous
BP monitoring [16]. Motivated by this, several cuffless BP measurement methods for
continuous and non-invasive BP monitoring based on the relationship between pulse ar-
rival time and blood pressure have been proposed [17–19]. The BP estimation model has
been developed morphological characteristics of the input signals. A common technique
for calculating pulse arrival time is based on electrocardiogram (ECG) and photoplethys-
mography (PPG) signals; pulse transit time–BP models are used to estimate BP [20,21].
Furthermore, the emergence of artificial intelligence techniques has great potential for
solving complicated systems with high-level features of inputs [22,23]. Machine learning
algorithms (support vector machine, random forest) and deep learning techniques have
been investigated and have shown superior performance in BP estimation in several stud-
ies [24–26]. Yung et al. introduced a BP estimation method using a bidirectional layer
of long short-term memory (LSTM). They extracted features from ECG and PPG signals
from the dataset of Physionet’s Multiparameter Intelligent Monitoring in Intensive Care II
(MIMIC-II) to predict systolic blood pressure (SBP) and diastolic blood pressure (DBP). The
obtained performance for BP estimation passes the AAMI (Association for the Advanced
of Medical Instrument protocols) standard [27]. Monika et al. developed a BP estimation
model using only ECG signals and different machine learning models (KNN, SVM, Naïve
Bayes, etc.) and a regression module. They predicted SBP and DBP with a mean absolute
error (MAE) of 7.72 mmHg for SBP, 9.45 mmHg for DBP, and 8.13 mmHg for MAP [28].
Peng et al. proposed a novel deep recurrent neural network (RNN) for long-term BP predic-
tion. The RNN model was tested and achieved a root mean square error (RMSE) of 3.90 and
2.66 mmHg for SBP and DBP, respectively [29]. However, most pulse transit time–BP
estimation models require two channels of physiological signals for calculation, and BP
estimation models based on single-channel PPG signals exhibit inferior performance due
to motion artifacts (MA) and noise effects [30,31]. Compared to PPG signals, ECG signals
are more reliable and display a closer association with BP [32,33]. Therefore, in the present
research, a BP estimation model based on artificial neural networks and one-channel ECG
signals for unobtrusive and continuous BP monitoring is proposed.

Here, we present a biosensor patch for remote healthcare monitoring. The main
objective of this paper is to propose a wearable, wireless, and integrated biosensor device
with an IoT-connected healthcare platform for continuous and simultaneous vital signs
monitoring. Overall, the main contributions of this paper include: (1) The design and
development of a multimodal wearable patch with high wearing comfort, stability for long-
term attachment, and wireless connection for health self-monitoring. (2) The introduction
of an IoMT platform with a cloud server, smartphone application, and remote monitoring
website. (3) Demonstration of the feasibility of the multiple biosensor integration for
monitoring different vital signs, which will be necessary for the understanding of the
body’s response and self-monitoring compliance. (4) The proposal of a BP estimation
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model based on a one-dimensional convolutional neural network (1D-CNN) and single-
channel ECG signals with superior performance.

2. Materials and Methods
2.1. A Wireless, Flexible Biosensor Patch with a Healthcare IoT (H-IoT) Application

Figure 1 presents an overview of the IoMT-connected platform for smart healthcare
monitoring. The IoMT system consists of four main modules with different functions:
(1) A flexible biosensor patch with soft mechanical properties and high stretchability for
long-term physiological signal recording. (2) Sensor data such as ECG, body temperature,
GPS, body movement, and BP are collected and transmitted to a mobile gateway by a
Bluetooth Low Energy (BLE) module. (3) The gateway functions as a bridge to connect
vital paths with the health cloud data server for healthcare data storage and analytics.
Finally, a mobile application and user interface (UI) website was developed for health
data visualization and medical interaction. The proposed IoMT-connected system is an
integration of unobtrusive biosensors and an H-IoT platform that contributes to preventive
and occupational healthcare development.
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2.2. Device Structure and Mechanical Performance

To maintain wearability and convenience for continuous and long-term physiological
monitoring, a flexible biosensor patch must be fabricated with a compact size (<0.1 mm)
and light weight (<5.0 g). This ensures maximum comfort and stability for long-term use
on the curved skin surface of the chest. The overall layout of the vital patch was designed
using an FPCB with double layers and mounted components (Figure 2a). The structure
of a single-layer FPCB includes a thin film with four main classes of materials (i.e., base
material, electrical conductors, cover lay, and adhesive material). For monitoring while
attached to the skin, the mechanical properties and performance must be investigated to
ensure the stretchability and compatibility of the flexible device on the curved surface of
the skin. Furthermore, with high stretchability and soft mechanical properties, interfaces
and interactions of the flexible device with the skin are minimal. Thus, skin irritation and
discomfort due to long-term wearability can be prevented. For this study, SolidWorks (ver-
sion 2020, SOLIDWORKS Corp., Waltham, MA, USA) was used to simulate and analyze the
strain distribution of flexible biosensor patches. The mechanical performance of the device
was quantified by the deformation capacity, which is expressed as the stretch ratio when the
device is subjected to significant deformation. In the first case, two concentrated forces were
applied at each end in the longitudinal direction of the device. Similarly, two concentrated
forces applied at each end in the transverse direction were considered for the second case.
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It has been proven that 20 kPa is the threshold for sensory perception [34,35]. Therefore,
the magnitude of the applied forces was optimized so that the stress values were 20 kPa
for all cases to evaluate the degree of comfort of the device. Simulated results are shown
in Figure 2b. The extreme scenarios of the stretch ratios are 21% and 12% for the first and
second cases, respectively, indicating that the device could cause irritation and discomfort
at the interface only if the device is subjected to very large deformations that are a departure
from the normal operating status of the device. In conclusion, the flexible design of the
biosensor patch ensures a high level of compatibility and stability with the skin surface for
long-term attachment.
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Figure 2. Design and mechanical properties of flexible biosensor patch. (a) Design and structure
of the biosensor device. (b) Simulation result showing the stress between the vital patch and skin
during bending deformations.

2.3. Hardware Architecture

Figure 3a highlights the operational scheme of the flexible and wireless biosensor
patch. Following the block diagram, the flexible biosensor patch is divided into three
main modules with different functions. The power supply module includes a rechargeable
battery and power management integrated circuits (ICs) to regulate the required voltage
(3.3 V or 2.2 V) for various components. The second unit is the biosensor module, including
a PPG sensor, a 9-axis accelerometer, a clinical-grade temperature sensor, ECG, a GPS
module, and a low-power microcontroller unit for health data acquisition and processing.
The last component is a BLE module for wireless sensor data transmission. A prototype of
the flexible biosensor patch is presented in Figure 3b. In the center module, a low-power
microcontroller unit (PIC16LF19186, Microchip Technology Inc., Chandler, AZ, USA) and a
multi-standard and BLE module (CC2650, Texas Instruments, Inc., Dallas, TX, USA) were
selected as a control unit for processing and transmitting sensor data. In long-term health
monitoring, optimization of power consumption is necessary to extend the operational
time of the proposed device [31,32]. Thus, in this design, the input voltages of the micro-
controller unit and BLE module were reduced to a minimal operating voltage range (2.2 V)
and the low-power modes were configured for optimizing power consumption [36,37]. The
biosensor module includes a wide-bandwidth 9-axis accelerometer (BNO055, Bosch Inc,



Biosensors 2022, 12, 139 5 of 14

Gerlingen, Germany), a human body temperature sensor (MAX30205, Maxim Integrated,
San Jose, CA, USA), an ECG sensor that consists of two Ag/AgCl electrodes coated with
hydrogel, and a GPS antenna module (PAM-7Q, u-Blox, Reston, VA, USA). The smart
sensor BNO055 is a system-on-a-chip that integrates a triaxial 14-bit accelerometer, 16-bit
gyroscope, and a triaxial geomagnetic sensor. With the advantages of rapid response time,
low noise, and small size, the accelerometer sensor BNO055 is a suitable choice for human
activity recording that requires long-term use and a minimized package size [38]. For
ECG signal collection, two Ag/AgCl electrodes coated with hydrogel are affixed directly
onto the chest of the subject. The 24-bit analog front-end for biopotential measurement
(ADS1293, Texas Instruments, Inc. Dallas, TX, USA) was selected for analog-to-digital con-
version [39]. The PAM-7Q GPS module, with its advantages of an embedded antenna, low
power consumption, and simple interface, is an ideal choice for tracking user position [40].
Moreover, the MAX30205 temperature sensor, with high accuracy (±0.1 ◦C accuracy from
37 ◦C to 39 ◦C) and low-voltage operation (2.7 V to 3.3 V) is an ideal choice for body
temperature measurement [41]. The power module includes a rechargeable lithium battery
(ML2032, Maxell, Japan), and synchronous boost converters (TPS61322, TPS613221A Texas
Instruments, Inc. Dallas, TX, USA) are used for power supply. The flexible biosensor patch
is designed with a small size and low power consumption for long-term health monitoring.
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2.4. IoT-Connected Healthcare Platform

The advancement of smart healthcare IoMT applications has led to a paradigm shift in
medicine 4.0 [42,43]. Herein, an IoT-connected healthcare platform including mobile and
website (Web) user interfaces, a database server, an IoT gateway, and data flow is proposed
for prognosis–health management. The vital signs data recorded by the biosensor patch
are wirelessly transmitted to the mobile gateway using Bluetooth (BT) communication.
A smartphone application was developed to visualize personal health data, including
the user’s profile, physiological signals, and health status. A bio-connection between
the biosensor patch and the smartphone app was established for the device parameter
configuration and display (battery status, sample rate, etc.). Health data are automatically
sent to the server for data storage and health analysis. The mobile gateway is responsible for
the bio-connection between the IoMT cloud database and the biosensor patch. The health
data are transferred from the gateway to the server using a message queuing telemetry
transport protocol [44]. The Firebase cloud server was selected in the IoMT-connected
platform for real-time data storage and management [45]. A large amount of vital sign
data through the sensor patches were collected for data analytics. The health data such as
biometric information, physiological parameters were analyzed for better diagnosis and
health deterioration risks identification. The integration of medical data analytics and IoMT
play important roles in tackling the issue of increasing health information extraction and
exchange. The health data will be visualized on a smartphone application, or a web based
on a local UI for remote healthcare management (Figure 4b,c). Medical professionals and
healthcare staff can access the web application for remote patient health status monitoring
and emergency rescue. The IoMT-connected healthcare platform with multiple biosensor
patch communication will lead to the development of a cost-effective and smart healthcare
system in the near future [46].
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(a) Diagram of IoMT-connected platform. (b) Smartphone application. (c) Website application for
remote healthcare management.

3. Results
3.1. Health Status Monitoring

The performance of the flexible biosensor patch for monitoring cardiovascular parame-
ters and physiological responses was evaluated. Among the physiological responses of the
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body, the ECG signal is one of the most important vital signals [47]. ECG waveforms can
dynamically and directly reflect cardiac conditions and cardiovascular disease (CVD) [48].
The simultaneous monitoring of ECG signals and cardiac cycle reference (QRS complex) is
essential for early diagnosis and prompt intervention in CVDs [49]. Here, experiments were
designed to evaluate the ability of the flexible biosensor patch in real time, continuously
collecting ECG signals and cardiovascular responses with physical activity. The volunteers
were required to perform three light cycling exercise sessions for 45 min with a 10-min
rest period between each session. An ECG waveform with QRS analysis recorded in the
relaxed phase is shown in Figure 5a. Figure 5c illustrates the physiological responses,
including changes in heart rate and RR interval during different light exercise sessions.
Furthermore, body position and accelerometry signals can be continuously monitored
using a high-bandwidth, 9-axis accelerometer. The x-, y-, and z-axis accelerometry data
recorded from one subject during different daily activities are shown in Figure 5d. Based
on the results, the acceleration (g) in the x, y, and z-axis showed considerable differences in
the cases of sitting, standing, and walking, which is important for tracking body movement
and fall detection in daily activities [50]. Moreover, a GPS module is included in the device
to track user position and enable emergency rescue. In the case of abnormal situations, a
short message service (SMS) alert including the user’s profile and GPS data will be auto-
matically sent to relevant medical professionals or family members [51]. Figure 5b shows
real-time GPS locations of one subject using the proposed wireless vital patch. In summary,
the feasibility of such biosensor patches in simultaneously and continuously recording
multiple physiological parameters and biomarkers in real-life scenarios was demonstrated.
Monitoring the body’s response in daily activities can be beneficial for the early detection
and prevention of abnormal cardiovascular changes [50,51].
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Biosensors 2022, 12, 139 8 of 14

3.2. Advanced Use Cases in BP Estimation

Continuous BP measurement is necessary to prevent hypertension and cardiovascular
diseases [16,17]. This study proposes a deep learning model using 1D-CNN and single-
channel ECG signals for a continuous BP estimation. An overview of the developed method
for BP estimation is shown in Figure 6. A 1D-CNN and two fully connected layers are
combined to extracted morphological and rhythmic features from ECG signals. The outputs
from the fully connected layers are the predicted results of systolic and diastolic blood
pressures. In this study, ECG and arterial BP (ABP) signals were extracted from Physionet’s
Multiparameter Intelligent Monitoring in Intensive Care (MIMIC) II dataset [52]. The ECG
and ABP signals were acquired at a sampling rate of 125 Hz and divided into two rows for
further processing. Notably, the raw ECG signals are contaminated with different artifacts,
noise power frequency interference, baseline drift, and contract interference. Therefore, a
low-pass filter with a cut-off frequency of 50 Hz and wavelet transformation were applied
to process and remove the high-frequency interference and baseline drift of the raw ECG
signals [39]. Next, a sliding window with no overlap was used to segment the ECG and
ABP signals into a fixed length of 128 points. Peaks and inverse peaks were extracted from
the simultaneous ABP waveform, SBP, and DBP calculations. The average values of SBP
and DBP in each data frame were calculated and used as inputs for the training process.
After the sampling step, 80% of the data were divided for training the model, and 20% were
selected for model performance evaluation. Next, the ECG signals and corresponding BPs
were fitted into the training 1D-CNN for model training and evaluation [53]. The proposed
network architecture of the BP estimation model (Figure 6b) consists of four convolutional
layers, four max-pooling layers, and two fully connected layers that output the estimated
SBP and DBP. The number of filters was set to 32, 64, 128, and 256. Finally, 128 features are
learned through the proposed 1D-CNN model servers as input in this step and connected
to two fully connected layers. The numbers of nodes in each layer of the fully connected
layers were 32 and 16, respectively. A rectified linear unit was selected as the activation
function. Finally, a linear function was used as the final feature for SBP and DBP estimation.
The mean squared error was chosen as the error function to evaluate the accuracy of the
developed deep learning model. The proposed model was trained with a batch size of
32, learning rate of 0.01, and adaptive moment estimation (Adam). This study uses mean
square error (MSE) as a loss function in the training process. The model was optimized at
epoch 83 (best epoch), with a training and validation mean squared error of 0.18 (Figure 6c).

To assess the performance of the proposed deep learning architecture for continuous
BP estimation using a flexible biosensor device, five young healthy volunteers (27 ± 3 years
old, 70 ± 5 kg) with no history of CVDs and hypertension were recruited to collect ECG
signals and reference BP measurements. The subjects were required to sit and rest to collect
the bio-signals. ECG waveforms were collected from the developed vital patch, while
reference SBP and DBP were recorded using commercial ambulatory BP monitoring (Oscar
2, SunTech, Carlsbad, CA, USA). The correlation between the reference BP and the estimated
BP using the proposed neural network model is shown in Figure 6c,d. The results showed
a high correlation coefficient (r = 0.86 for SBP, 0.84 for DBP), which fulfills the requirements
of the Association for the Advancement of Medical Instrumentation (AAMI) and the British
Hypertension Society (BHS) standards for BP monitor certification [54,55]. Alternatively,
the proposed BP estimation model combined with the flexible biosensor patch exhibited
good performance with an acceptable requirement for non-invasive BP estimation.
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the proposed BP estimation method. (b) The architecture and structure of 1D-CNN. (c) Performance
of the proposed neural network with mean squared error. (d) Correlation plots of estimated SBP with
reference SBP. (e) Correlation plots of estimated DBP with reference DBP.

4. Discussion

In this study, we demonstrated the feasibility of a flexible, skin-interfacing, and wire-
less biosensor patch with an IoMT-connected healthcare platform for monitoring vital signs
and body responses. In fact, the flexible biosensor patch was designed with high levels of
mechanical stretchability and reliability in the case of a curved skin surface to enhance wear-
ability for long-term cardiac monitoring outside of clinical environments [30,34]. Another
advantage of flexible devices is their ability to capture body orientation and movement
information, which are relevant in terms of fall detection [50]. Moreover, the GPS location
of the user is recorded when using the wireless device, which is valuable for tracking user
location, and to facilitate emergency rescue in cases of abnormal situations [43,51]. The
successful performance of the biosensor patch in monitoring physiological data has the
potential to provide insight into cardiac conditions and CVD diagnosis [1–3].

With the advantages of data accessibility, data sensing, and communication, IoT is
becoming a key feature for the development of smart cities, manufacturing industries,
consumer services, etc. The integration of IoT in healthcare applications is referred to as H-
IoT. H-IoT is a subset of IoT systems that are increasingly employed for diagnosis–treatment
methodology and the prognosis–health management approach [42]. In general, both IoT
and H-IoT refer to a network that is embedded with smart sensors, embedded devices,
and processing ability for data communication and integrity. However, there are several
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differences between the generic IoT and H-IoT [13,43]. Firstly, the underlying technology
for IoT is a wireless sensor network (WSN), while that for H-IoT is identified as a body
sensor network (BSN). A BSN is a network of wearable or implantable biosensors placed
on the human body for healthcare applications [13]. Secondly, the current widespread
applications of IoT are in maintenance management, smart grid, and saving, as well as
traffic monitoring, whereas H-IoT only focuses on medical applications, including fitness
tracking and cardiovascular diseases [14]. Another difference between generic IoT and
H-IoT is the energy and power consumption, in which the former deploys in a large
geographical area and utilizes a large amount of energy, while the latter deploys in a small
geographical area and uses the energy harvested from human self-generated heat, motion,
and battery [56]. Moreover, the nodes of generic IoT are varied in size and stability, while
those of H-IoT are miniature and mobile [34]. The generic IoT allows sensor deployment
and maintains data integrity, whereas deploying sensors in H-IoT is more difficult and
requires data preservation and transmittance at a high integrity level [43]. For the IoMT-
connected platform, a BLE module is employed for wireless connectivity between the
biosensor device and a mobile gateway, which transmits health data to an IoT cloud server
for data storage and management. Real-time physiological measurements are visualized
on a smartphone app or a UI website for real-time monitoring and access to patient health
data. A mobile gateway functions as an intelligent central link between the biosensor
patch and the IoT cloud server for data transmission and synchronization to enhance an
efficient end-to-end interaction between patients, family members, and medical staff in real
time. The development of the IoMT-connected platform will facilitate a loosely coupled
connectivity between the user and their caregivers at different locations, thus reducing
healthcare costs, length of hospital stay, and improving medical outcomes [42,43,46]. This
will also contribute to healthcare and lifestyle behavioral changes in the near future [46].

In this research, we proposed a cuffless continuous BP measurement model based on
a deep CNN model employing single-channel ECG signals. A BP estimation algorithm
based on pulse arrival time, pulse wave velocity, and pulse transit time for non-invasive
BP measurement has been proposed in numerous studies, but most multiparameter-based
methods require a complex setup of ECG and PPG signals [15–18]. Yan et al. developed
a BP estimation method using a single-channel PPG signal and support vector machine
as a regression model involving the estimated and reference BP [57]. However, the BP
estimation model based on a single source of PPG signals exhibits inferior performance
owing to the effects of noise, motion artifacts, and sensor placement [30,31]. Motivated
by this, an ECG–BP estimation algorithm was proposed. The close association between
ECG signals and morphological changes to BP has been discussed previously in a small
number of studies [32,33]. Compared to PPG signals, ECG signals are easier to acquire with
high-quality, reliability, and low-noise effects [33]. The emergence of artificial intelligence
in solving medical problems and signal processing has led to the development of many BP
estimation models with different traditional machine learning models, such as an ensemble
of trees, random forests, regression trees, and support vector machine (SVM) [15–17]. Deep
neural networks, with advantages in complex non-linear relationships, have proven to
be a powerful method for improving the accuracy of BP estimation models [20–23]. The
combined deep learning architecture-based multitasking model shows a better performance
in comparison with the BP estimation model using a single model due to the sequence
relationship between pulse pressure and PAT [58]. Certain limitations should be addressed
in future developments. First, the experimental subjects of the study should be expanded
to include overweight, elderly, and hypertensive subjects. Second, the effects of factors
such as CVD, drug state, and caffeine levels should be considered in future studies. Third,
more advanced data pre-processing procedures could be leveraged to remove noise effects
and improve the stability of BP models. Lastly, the future development can incorporate the
biosensors patch with wireless power transfer technology and a flexible printed coil array
for a comprehensive skin-worn sensing device [6,7].
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5. Conclusions

In short, a flexible, wireless, and wearable biosensor patch with skin-conformal attach-
ment and multiple biosensor integration for monitoring different vital signs is introduced
in this study. The proposed flexible biosensor device consists of sensor, center, power,
and biosensor modules, which are connected to a flexible printed circuit board (FPCB) for
wearable health monitoring of body temperature, body movement, heart rate, and BP. The
flexible biosensors patch is designed with a compact size (<0.1 mm) and to be lightweight
(<5.0 g) to maintain wearability and convenience for long-term use. The simulation results
show an acceptable stretch ratio (21%, and 12%) between the flexible device and skin
during bending deformation. The stress value was optimized below the threshold for
sensory perception (20 kPa) to increase the degree of comfort and the stability of the device
with the skin surface for long-term attachment. In addition, an IoMT platform with a
cloud server, smartphone application, and remote monitoring website is demonstrated
for prognosis–health management. The applicability of the flexible biosensor patch for
monitoring cardiovascular parameters and physiological responses was demonstrated.
The ECG waveform and cardiovascular responses in three light cycling exercise sessions
for 45 min with a 10-min rest period between each session were recorded. Moreover,
the accelerometry signals, body movement, and user position were simultaneously and
continuously recorded for smart healthcare applications. In addition, by leveraging the
advantages of a deep neural network for a regression problem, a BP estimation model
based on a one-dimensional convolutional neural network (1D-CNN) and single-channel
ECG signals with superior performance is proposed. The proposed BP estimation model
presented a high correlation coefficient for BP prediction (r = 0.86 for SBP, 0.84 for DBP),
which satisfies the requirements of the AAMI and BHS for BP monitor devices. In summary,
this study highlighted the performance of a flexible and wireless biosensor patch with
an IoT-connected healthcare platform for remote healthcare monitoring external to the
clinical environment.
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