
����������
�������
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Abstract: Graphene-oxide and ionic liquid composite-modified pencil graphite electrodes (GO-IL-
PGEs) were developed and used as a sensing platform for breast cancer 1 (BRCA1) gene detection.
The characterization of GO-IL modified electrodes was executed by scanning electron microscopy
(SEM), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). The nucleic-acid
hybridization was monitored by a differential pulse voltammetry (DPV) technique by directly mea-
suring the guanine oxidation signal without using any indicator. The effects of the IL concentration,
the probe concentration, and the hybridization time were optimized to the biosensor response. The
limit of detection (LOD) was calculated in the concentration range of 2–10 µg/mL for the BRCA1 gene
and found to be 1.48 µg/mL. The sensitivity of the sensor was calculated as 1.49 µA mL/µg cm2. The
developed biosensor can effectively discriminate the complementary target sequence in comparison
to a three-base-mismatched sequence or the non-complementary one.

Keywords: graphene oxide; ionic liquid; electrochemical nucleic acid sensor; breast cancer 1 gene;
DNA hybridization

1. Introduction

Breast cancer is one of the most serious types of cancer affecting human health world-
wide. The region of human chromosome 17q12-21, which contains the breast-cancer
susceptibility gene known as BRCA1, is responsible for approximately 80% of breast-cancer
families and ovarian cancer and is also associated with other types of cancer, such as
pancreatic and colon cancers. BRCA1 encoded a tumor-suppressor protein that controls the
cell cycle, repairs damaged DNA, and maintains genomic stability. Mutations in BRCA1
affect the proteins produced, resulting in an increased risk of breast cancer. Besides BRCA1
mutation, the alteration of the gene-expression level can also affect biological processes and
contribute to both sporadic and hereditary breast-tumor progression [1].

Conventional methods such as capillarity electrophoresis [2], sequencing [3,4], and
PCR-mediated techniques [5,6] are available for analyzing cancer-related genes. Even
though these methods are sensitive, there are some limitations, such as high costs, time
consuming, and complex experimental steps with harmful chemical use and the require-
ment of highly trained staff. Thus, it is urgent to develop a low-cost, fast, and sensitive
detection method for the analysis of cancer-related gene sequences. In this context, nu-
cleic acid biosensors provide a simplified method to detect cancer related nucleic-acid
sequences [1,7–12].

Recently, the fluorescent method has become popular in the diagnosis of cancer or
tumor tissues due to its advantages of sensitivity and specificity. For instance, Liu et al.
developed a fluorescent method based on hairpin DNA-templated copper nanoclusters
(CuNCs) for the detection of the BRCA1 gene [10]. Although the fluorescent sensor for
the BRCA1 gene assay showed good assay performance, fluorescent-based assays also
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have some limitations, such as limited applications, being labor-intensive (i.e., labelling
molecules), and validating tools often being required. On the other hand, surface plasmon
resonance biosensors can provide an alternative platform for detection of point mutations.
For example, Li et al. presented a method that combines primer extension analysis with SPR
to discriminate single-base mutations related to the BRCA1 gene [11]. One potential limita-
tion of the SPR method is that the ligand may not maintain its native configuration upon
immobilization on the sensor chip surface, or its orientation may sterically hinder analyte
binding. Non-specific binding effects at the sensor surface must also be carefully controlled,
and this requires meticulous experimental design for SPR [12]. Electrochemical nucleic acid
biosensors are based on the electrochemical behavior of the redox active nucleobases (e.g.,
guanine or adenine oxidation) or changes in the interfacial properties of the recognition
layer or a signal change in the electroactive indicator agent after hybridization, which are
the main approaches. Electrochemical biosensors do not suffer the drawback of high sensor
setup complexity and cost. Other essential advantages of electrochemical biosensors are
their robustness, easy miniaturization, sufficient detection limits, and requirement of low
analyte volumes [13].

Graphene oxide (GO) has gained great attention in the field of biosensing [14]. Plenty
of works based on incorporation of GO to the sensor surface in the absence or presence of
other (nano)materials in a composite form have been reported so far [15–18]. For instance,
Arfin and Rangari developed a ZnO-functionalized graphene oxide (GO)-modified glassy
carbon electrode (GO–ZnO/GCE) used for the electrochemical sensory detection of phe-
nol [15]. The cost-effective carbon monoxide sensor was developed on the interdigitated
copper electrode based on PPy-GO composite materials by Farea et al. [16]. TiO2-reduced
graphene oxide composite-modified glassy carbon electrodes (TiO2–ErGO–GCE) for the
sensitive detection of tartrazine were reported by He et al. [17]. Ionic liquids (ILs) are
considered as important alternative “Green” solvents with unique properties. Thus, ILs are
attractive for a range of applications [19]. There are many biosensor studies that involve
the use of various ILs as a supporting medium or an electrode modifier [20–33].

To date, numerous biosensors developed by using graphene-IL composites have
been applied for detection of different analytes (i.e., small molecules). For example, Kim
et al. [34] developed an electrochemical detection method for capsaicin using an IL-doped
graphene-titania-nafion composite-modified electrode. Li et al. [35] designed a simple and
sensitive electrochemical sensor based on an IL-functionalized graphene-oxide supported
gold nanoparticles (GO-IL-AuNPs) coated glassy carbon electrode (GCE) for detection of
dopamine. Ma et al. [36] developed a strategy for efficient determination of the sulfadiazine
residues in the animal feed by applying the composite-modified electrode fabricated with
the rGO and N-octyl-pyridinium-hexafluorophosphate (OPPF6) IL. On the other hand,
Sukumaran et al. [37] developed a label-free platform based on an IL-functionalized nitro-
gen doped graphene (NrGO)-modified GCE for the discrimination of mutations in DNA. A
hydrophilic IL was used to trap the DNA targets onto it by electrostatic interaction, and
thereby it retained them close to the electrode surface suitable for the electroanalysis. The
change in the peak current was explained based on the extent of the hindrance experienced
by the redox species [Fe(CN)6]3− for the electron transfer at various DNA modified elec-
trodes. To the best of our knowledge, a GO-IL composite modified single-use graphite
electrode was developed for the first time herein as a sensing platform and applied for
detection of breast cancer 1 (BRCA1) gene through the direct measurement of the guanine
oxidation signal.

In this work, we aimed to develop a sensitive nucleic-acid biosensor related to the
BRCA1 gene sequence. Under this goal, graphene-oxide and ionic liquid composite mod-
ified pencil graphite electrodes (GO-IL-PGEs) were developed for the first time herein
as a single-use biosensing platform. The characterization of GO-IL modified electrodes
was carried out with scanning electron microscopy (SEM), cyclic voltammetry (CV), and
electrochemical impedance spectroscopy (EIS). Synthetic DNA sequences were used to
elevate the experimental conditions as well as to test the selectivity of the biosensor. The
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hybridization detection was monitored by directly measuring the guanine oxidation signal
via the differential pulse voltammetry (DPV) technique.

2. Materials and Methods
2.1. Instrument

All measurements were performed by AUTOLAB-302 with NOVA 1.11 software
(Eco Chemie, Utrecht, The Netherlands) in a Faraday cage with a three-electrode system
(Figure S1). FRA module was used for impedimetric measurements.

2.2. Chemicals

All oligonucleotides used in this study were acquired from TIB Molbiol (Berlin, Ger-
many) (Table 1). Graphene oxide (GO) and 1-butyl-3-methylimidazolium hexafluorophos-
phate (IL) were acquired from DropSens (Spain) and Sigma-Aldrich, respectively. See the
supplementary information for more information.

Table 1. The base sequences of all oligonucleotides.

Oligonucleotide Sequence

Probe (P1) 5′-(CH2)6-GGGGGGGGGGGG 3′

SH-link probe (P2) 5′-SH-(CH2)6-GGGGGGGGGGGG-3′

PO4 link probe (P3) 5′-PO4-(CH2)6-GGGGGGGGGGGG-3′

NH2 link probe (P4) 5′-NH2-(CH2)6-GGGGGGGGGGGG-3′

BRCA1 probe (I: Inosine) 5′-NH2-(CH2)6-IATTTTCTTCCTTTTITTC-3′

BRCA target 5′-GAACAAAAGGAAGAAAATC-3′

3-base mismatch (MM) 5′-CAACAAAAGCAACAAAATC-3′

Non-complementary (NC) 5′-TAAGCAACCTGATTTGA-3′

Note that the BRCA1-specific DNA probe has an inosine (I) base instead of a guanine
base since it is a synthetic analogue of a guanine base (Table 1). Based on this phenomenon,
indicator-free detection of BRCA1 can be performed by directly measuring the guanine
oxidation signal after full-match hybridization of the probe and the BRCA1 target [27,38].

The detection protocol is given below and represented in Figure 1.
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(ii) Hybridization BRCA1 probe and BRCA1 target, or other DNA ODNs; NC, MM.
(iii) DNA–DNA hybrid immobilization onto GO-IL-PGE.

2.2.1. Preparation of GO-IL-PGEs

GO was prepared in dimethyl sulfoxide (DMSO) as 50 µg/mL by following the
sonication step during 30 min. The GO concentration was used in our study as 50 µg/mL,
which was optimized in our previous work [39].

After sonication, IL was pipetted into the GO solution, and we obtained 7.5% IL in
GO-IL solution and sonicated it for 30 min. PGEs were activated by applying +1.40 V for
30 s in ABS (pH 4.80) via DPV. These electrochemically activated PGEs were dipped into
100 µL of GO-IL and kept for 15 min to achieve the surface modification [39–43]. There was
no precipitation in the solution of GO-IL observed during its immobilization onto the PGE
surface. Then, GO-IL-PGEs were air-dried for 5 min.

2.2.2. Hybridization of BRCA1-Specific DNA Probe with BRCA1 Target and
Immobilization onto the GO-IL-PGEs

The BRCA1-specific DNA probe and the BRCA1 target were mixed and allowed
for solution-phase hybridization during 5 min in PBS. Then, GO-IL-modified PGEs were
dipped in vials containing BRCA1 probe-target hybrids and allowed for immobilization
onto GO-IL-PGE surface during 30 min. Immobilization of hybrids arose by the formation
of peptide bonds between 5′-end amino groups of BRCA1 probe-target hybrids and car-
boxyl groups of GO as reported in our previous study [39]. Due to this bond formation, no
or negligible precipitation was expected during the sensing process. After 30 min of the im-
mobilization step, the electrodes were washed with PBS to eliminate non-specific binding.

2.3. Voltammetric Measurements

The electrochemical characterization of electrodes was studied by using the CV tech-
nique. CVs were carried out by scanning between −0.8 V and +1.4 V with a 25 mV/s step
potential and a 100 mV/s scan rate in the redox probe solution of 2.5 mM Fe(CN)6

3−/4− in
0.1 M KCl.

The guanine oxidation signal was measured by the DPV technique using the same
conditions in our earlier studies [27,28,38]. DPVs were carried out by scanning with a
50 mV pulse amplitude and a 50 mV/s scan rate in ABS (pH, 4.80).

2.4. Impedimetric Measurements

The redox probe solution of 2.5 mM Fe(CN)6
3−/4− in 0.1 M KCl was used for EIS

measurements. More information about impedimetric measurements is given in the sup-
plementary information.

3. Results and Discussion

The microscopic characterizations of PGE, GO-PGE, IL-PGE, and GO-IL-PGEs were
recorded by a Quanta 400 FEI field emission scanning electron microscope (Tokyo, Japan)
and are given in Figure 2. There are similarities between PGE (Figure 2a,b), GO-PGE
(Figure 2c,d), and IL-PGE (Figure 2e,f), where the surface is relatively rough and layered.
However, Figure 2g,h depicted SEM images of GO-IL-PGE, which was more laminated in
contrast to the ones of GO-PGEs and IL-PGEs.

The effect of IL concentration was examined by measuring Ia values after modification
of GO and IL at different percentages (2.5 % to 10 %) by the CV technique (Figure 3).
Additionally, the electrochemical behavior of GO-IL-PGEs was investigated in comparison
to PGE or GO-PGE. The corresponding anodic current (Ia) and cathodic current (Ic) with
the relative charge Q (mC) and peak potential separation value (∆Ep) and the electroactive
surface areas of PGE, GO-PGE, and GOL-IL-PGE are listed in Table 2. An increase was
obtained at Ia when IL % was increased till 7.5% (Figure 3e), after then it decreased. As
seen from Figure 3, the anodic and cathodic peak currents of GO-IL-PGE were higher
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than the ones measured by PGE or GO-PGE. This confirmed that the GO-IL expedited
the electron convey between the electrode interface and the electrolyte. Additionally, the
electroactive surface areas of the electrodes were calculated according to the Randles–Sevcik
equation [44], and accordingly, the highest surface area (i.e., 0.314 cm2) was obtained in
the case of GO-IL modification. The enhanced sensor response can be attributed to the
acceleration of ion transportation from the electrolyte to the electrode surface in the presence
of GO-IL in comparison to the one measured with PGE [27–29,39–43]. ∆Ep was found to
be 151 mV by GO-IL-GE, while it was 173 mV with PGE. Thus, it was a quasi-reversible
electrochemical response and convincing electrocatalytic effect of GO-IL modification
toward the redox reaction of [Fe(CN)6]3−/4−.
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Figure 3. The average Ia values (n = 3) measured by (a) PGE and (b) GO-PGE and GO-IL-PGE in the
presence of IL composition as (c) 2.5 %, (d) 5 %, (e) 7.5 %, and (f) 10 %. Inset: CVs recorded by PGE,
GO-PGE, and GO-IL-PGE in the presence of an IL composition of 7.5 %.

Table 2. The average values (n = 3) of anodic and cathodic peak currents (Ia, Ic), relative anodic and
catodic charge (Qa, Qc), and ∆Ep values and electroactive surface areas (A) for PGE, GO-PGE, and
GO-IL-PGE (in case of 7.5 % IL concentration).

Electrodes Ia (µA) Ic (µA) Qa (mC) Qc (mC) ∆Ep (mV) A (cm2)

PGE 73.22 ± 5.34 77.93 ± 6.88 1.73 0.97 0.173 0.221

GO-PGE 86.78 ± 6.61 90.63 ± 10.09 2.18 1.11 0.139 0.261

GO-IL-PGE 104.09 ± 4.37 100.61 ± 3.82 2.18 1.14 0.151 0.314

The electrochemical-impedance spectroscopy technique was used for stepwise char-
acterization of GO-IL-PGEs before and after DNA immobilization. Figure 4 shows the
impedimetric data obtained by PGE and GO-PGE and the results by using GO-IL-PGE
before/after DNA immobilization. A standard Randles-equivalent circuit (Figure 4-inset)
was used to fit EIS data. The Randles-equivalent circuit considers the resistance from the
electrolyte solution (Rs) and the double-layer capacitance (C) due to the accumulation
of ions at the electrode surface as well as the charge-transfer resistance of the electrode
surface (Rct) and the Warburg component (W) for diffusive proves [45]. Thus, the effect on
the impedimetric response was elucidated by means of Rs, Rct, C, and Warburg by fitting
the experimental curves with the Randles-equivalent circuit. Further analysis of circuit
components was extracted from the Randles-circuit model and is listed in Table 3. The
average Rct value of PGE was 73.30± 10.50 Ohm (RSD %, 14.30 %, n = 3). In the presence of
GO modification, a decrease in the Rct value was observed since the GO-modified surface
was becoming more conductive in contrast to the unmodified PGE, similarly as reported in
the literature [38–40,43]. After GO-IL modification onto the electrode surface, there was a
43 % decrease observed in the Rct value as GO-IL composites improved conductivity at
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the electrode surface by facilitating more electron transfer between the solution and the
electrode interface by graphene oxides, similarly as reported in earlier work [30].
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Table 3. EIS response parameters obtained after curve fit of the Nyquist diagrams presented in
Figure 4 using Randles circuit.

Electrode Rs (Ohm) Rct (Ohm) C (µF) W (mMho)

PGE 31.9 70.9 12.1 2.39

GO-PGE 40.8 48.3 6.57 2.14

GO-IL-PGE 29.5 43.2 11.7 2.72

DNA-immobilized
GO-IL-PGE 37.8 1420 6.23 1.18

There was an increase obtained in the Rct value due to a repulsive interaction between
the anionic redox probe and the negatively charged DNA-immobilized electrode [42,43].
Additionally, a decrease was observed in the C value after DNA immobilization, which is
coherent with the theory that as a biomolecule binds it reduces the surface area by resulting
with a 47 % decrease in the capacitance. DNA immobilization onto the electrode surface also
creates a shielding effect and lowers the columbic attraction between the electrode surface
and the electrolyte [45]. Hence, a lower capacitance was recorded by DNA-immobilized
GO-IL-PGE in contrast to bare GO-IL-PGE. By means of IL, an increase in the conductivity
of the PGE surface can be obtained because of the increase in the electron transfer between
the electrolyte and the electrode [29,41]. Regarding the results obtained by the electrode
(PGE, GO-PGE, and GO-IL-PGE), there was a good agreement between the data recorded
by the CV and the EIS techniques in our study.

In the presence of fsDNA immobilization on the PGE, the GO-PGE, or the GO-IL-PGE,
the Rct values were increased to 619 ± 130 Ohm (RSD %, 21%, n = 3), 570.50 ± 33.20
Ohm (RSD %, 5.80%, n = 3), and 1559.50 ± 193 Ohm (RSD %, 12.40%, n = 3), respectively
(Figure 5). The increase in Rct in case of fsDNA immobilization was due to the charge
repulsion between the phosphate backbone of DNA and [Fe(CN)6]3−/4−, which resulted
in a reduced ability for electron transfer at the electrode surface, as similarly reported
in earlier works [42,43,46]. The highest increase in Rct was obtained when fsDNA was
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immobilized onto the GO-IL-PGE relatively to the PGE or the GO-PGE. Furthermore, the
apparent fractional coverage values (θR

IS) for each of the electrode types were calculated by
Janek et al.’s equation [47]. The θR

IS values for the fsDNA-immobilized PGE, GO-PGE, and
GO-IL-PGE were found to be 0.881, 0.900, and 0.973, respectively. The highest θR

IS indicated
successful sensor surface modification with GO-IL.

Biosensors 2022, 12, x  9 of 18 
 

In the presence of fsDNA immobilization on the PGE, the GO-PGE, or the GO-IL-

PGE, the Rct values were increased to 619 ± 130 Ohm (RSD %, 21 %, n = 3), 570.50 ± 33.20 

Ohm (RSD %, 5.80 %, n = 3), and 1559.50 ± 193 Ohm (RSD %, 12.40 %, n = 3), respectively 

(Figure 5). The increase in Rct in case of fsDNA immobilization was due to the charge 

repulsion between the phosphate backbone of DNA and [Fe(CN)6]3−/4−, which resulted in 

a reduced ability for electron transfer at the electrode surface, as similarly reported in ear-

lier works [42,43,46]. The highest increase in Rct was obtained when fsDNA was immobi-

lized onto the GO-IL-PGE relatively to the PGE or the GO-PGE. Furthermore, the apparent 

fractional coverage values (𝜃𝐼𝑆
𝑅 ) for each of the electrode types were calculated by Janek et 

al.’s equation [47]. The 𝜃𝐼𝑆
𝑅  values for the fsDNA-immobilized PGE, GO-PGE, and GO-IL-

PGE were found to be 0.881, 0.900, and 0.973, respectively. The highest 𝜃𝐼𝑆
𝑅  indicated suc-

cessful sensor surface modification with GO-IL.  

 

Figure 5. Histograms representing the average Rct values before and after fsDNA immobilization 

onto the surface of PGE, GO-PGE, or GO-IL-PGE (n = 3). 

For better attachment of the DNA probe onto the sensor surface, the effect of 5′-end 

modification of the DNA probe was investigated. DNA probes with different 5′-end mod-

ifiers as amino, thiol, or phosphate were used and compared with the unmodified version 

of the probe (Figure 6). The guanine oxidation signals and RSD % values recorded by the 

PGE or the GO-IL-PGE are given in Table 4. The most reproducible and highest guanine 

signal with the relatively high increment % was obtained in the case of the amino-linked 

probe (P4) immobilization. Therefore, NH2 linkage was approved for effective probe im-

mobilization onto the GO-IL-PGE surface. 
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For better attachment of the DNA probe onto the sensor surface, the effect of 5′-end
modification of the DNA probe was investigated. DNA probes with different 5′-end
modifiers as amino, thiol, or phosphate were used and compared with the unmodified
version of the probe (Figure 6). The guanine oxidation signals and RSD % values recorded
by the PGE or the GO-IL-PGE are given in Table 4. The most reproducible and highest
guanine signal with the relatively high increment % was obtained in the case of the amino-
linked probe (P4) immobilization. Therefore, NH2 linkage was approved for effective probe
immobilization onto the GO-IL-PGE surface.
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Table 4. The average guanine oxidation signals (n = 3) and RSD % values recorded by PGE or
GO-IL-PGE in case of immobilization of probe (P1), -SH linked (P2), -PO4 linked (P3), and -NH2

linked probe (P4). Increase % values were calculated by computing the difference between the signals
recorded by PGE and GO-IL-PGE and comparing that difference to the signal recorded by PGE.

Probe Electrode Current (µA) RSD (%) Increase (%)

P1
PGE 19.30 ± 1.12 5.85

26.4
GO-IL-PGE 24.40 ± 3.10 12.73

P2
PGE 19.36 ± 0.05 0.26

3.74
GO-IL-PGE 20.09 ± 2.60 12.97

P3
PGE 22.60 ± 1.76 7.82

11.77
GO-IL-PGE 25.26 ± 0.16 0.65

P4
PGE 21.20 ± 3.40 16.05

17.05
GO-IL-PGE 24.80 ± 0.01 0.03

The BRCA1 probe concentration was further optimized by testing five probe concen-
trations (from 2 to 10 µg/mL) (Figure 7). For this purpose, the solution-phase hybridization
between the BRCA1 probe and the BRCA1 target was performed. After hybridization, the
highest guanine oxidation signal was measured as 5.88 ± 0.73 µA (RSD %, 12.41 %, n = 3),
in the case of the 6 µg/mL BRCA1 probe (Figure 7).
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probe and the 10 µg/mL BRCA1 target. (B) Histograms representing the guanine oxidation signals in
case of hybridization between 2 to 10 µg/mL BRCA1 probe and BRCA1 target (n = 3).
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The hybridization between the probe and the BRCA1 target was performed during 1,
5, 10, and 20 min. The guanine signal was recorded as 5.58 ± 0.39 µA (RSD %, 7.05%, n = 3),
which was the highest signal when hybridization was performed during 5 min (Figure 8).
Therefore, the optimum hybridization time was chosen as 5 min.
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(n = 3).

The effect of the BRCA1 target concentration at the hybridization process was then
investigated. Firstly, the hybridization between the 6 µg/mL BRCA1 probe and different
concentrations of the BRCA1 target from 2 to 12 µg/mL was performed. The signal was
increased up to 10 µg/mL; then, it was fixed (shown in Figure S2). Therefore, the 10 µg/mL
BRCA1 target concentration was chosen as the optimum. The limit of detection (LOD) was
calculated in the concentration range of 2–10 µg/mL with the equation y = 0.47x + 0.91 and
R2 = 0.98 (shown in Figure 9B), and the LOD was found to be 1.48 µg/mL [48]. Additionally,
the sensor sensitivity was estimated from the slope of the calibration curve divided by the
surface area of the GO-IL-PGE and was found to be 1.49 µA.mL/µg.cm2.
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Figure 9. (A) DPVs. (B) Calibration plot with the average guanine signal of hybridization between
the 6 µg/mL BRCA1 probe and the 2 µg/mL, 4 µg/mL, 6 µg/mL, 8 µg/mL, and 10 µg/mL BRCA 1
target on the surface of GO-IL-PGE (n = 3).

The selectivity of the assay was tested in case of hybridization between the probe
and the BRCA1 target or 3-base mismatched (MM) or the mixture samples containing
target:MM. The highest guanine signal was obtained with the full-match hybridization
between the BRCA1 probe and the target (Figure 10) and was measured as 5.08 ± 0.69 µA
(RSD %, 13.74%, n = 3). The negligible guanine oxidation signal was 0.62 ± 0.10 µA (RSD
%, 17.32%, n = 3) in case of hybridization between the BRCA1 probe and the MM sequence.
Otherwise, in the case of hybridization between the probe and the BRCA1 target in the
presence of MM sequence, almost the same guanine signal was measured with the one
obtained by the full-match hybridization signal. Therefore, it can be concluded that our
assay presented a selective behavior on BRCA1-detection.
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target (a), or MM (b), or mixture of BRCA 1 target and MM (c).

The intra-day repeatability of the assay by GO-IL-PGEs was examined by measuring
the guanine oxidation signal in the case of hybridization between the probe and the
10 µg/mL BRCA target consecutively during three days (Table S1). The values of RSD %
varied from 0.8% and 8.8%. In order to examine the inter-day reproducibility, these results
were combined, and the average signal was calculated and found to be 5.01 ± 0.33 µA with
a RSD % of 6.62% (n = 7) (shown in Table S2). The results revealed that the GO-IL-PGEs
exhibited a satisfactory reproducibility with a mean change in the response of 0.33 µA and
a relative standard deviation of 6.62% (n = 7).

4. Conclusions

In this study, graphene-oxide (GO) and ionic-liquid (IL) composite-modified pencil-
graphite electrodes (GO-IL-PGEs) were developed for the first time and then applied as a
biosensing platform for electrochemical detection of breast cancer 1 (BRCA1) gene. The
detection protocol consists of GO-IL modification onto the PGE surface, hybridization of a
BRCA1-specific probe with its target, and finally the immobilization of DNA–DNA hybrid
onto the surface of the GO-IL-PGE. The GO-IL incorporated the advantages of GO and IL,
which provide a thin film at the electrode surface for immobilization of the BRCA1 probe–
target hybrid. Additionally, the GO-IL composite could offer enhanced electrocatalytic
properties and a larger electroactive surface area than the bare electrode or only the GO-
modified electrode. The hybridization was monitored by directly measuring the guanine
oxidation signal at +1.0 V using the differential pulse voltammetry (DPV) technique. In
our previous work [41], chemically activated and graphene oxide (GO) modified graphite
electrodes (CA-GO-PGEs) were used for impedimetric detection of miRNA-34a, which was
a biomarker of Alzheimer’s disease. In that assay, the PGE surface was firstly activated by
using covalent agents (CA), and then GO modification was done by itself. In the meantime,
hybridization of the miRNA-34a-specific DNA probe with the miRNA-34a RNA target was
performed in the solution phase. After all, the sample containing DNA–miRNA hybrids
were immobilized onto the CA-GO-PGE surface. The impedimetric detection of miRNA-
34a was then performed by measuring the fractional change at the charge transfer resistance
(Rct). The aim of the earlier work was to develop an impedimetric assay for the detection
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of microRNA by GO-modified electrodes. On the other hand, the aim of our present work
was to develop a voltammetric assay in combination with GO-IL-composite-modified
electrodes to detect breast cancer 1 (BRCA1) gene while incorporating the advantages of
these two materials while increasing the electrocatalytic properties of the electrode. The
proposed assay was able to identify the complementary target sequence even in the mixture
with mismatched sequences. The preparation of GO-IL-PGEs was performed in 20 min,
and BRCA1 gene detection could be managed within 35 min with a LOD of 1.48 µg/mL
(equal to 251 nM or 25 pmol in a 100 µL sample). Some of the earlier studies related to the
electrochemical detection of BRCA1 gene were summarized in Table 5 [49–57].

Table 5. The comparison of studies developed for electrochemical detection of BRCA1 gene.

Electrode Modification Method LOD Reference

SPE SWCNT EIS and DPV 378.52 nM [49]

GCE GO/AuNP CV and
chronoamperometry 1 fM [50]

AuE MCH EIS and DPV 0.05 nM [51]

- GO 0.2 nM [52]

GCE MWCNT CV and
chronoamperometry 2 nM [53]

AuE Zwitterionic peptide EIS 0.3 fM [54]

AuE ZnONWs DPV 3.32 µM [55]

GCE (SIL-g-(N)GAs) CV and DPV 3 pM [56]

SPE AuNPs CV and amperometry 0.1 fM [57]

PGE GO-IL composite DPV 251 nM This work
Abbreviations: SPE: screen-printed electrode, GCE: glassy carbon electrode, AuE: gold electrode, SWCNT: single-
wall carbon nanotube, AuNP: gold nanoparticles, MCH: mercaptohexanol, MWCNT: multi-wall carbon nanotube,
ZnONWs: zinc-oxide nanowires, (SIL-g-(N)GAs): supramolecular ionic liquids grafted on nitrogen-doped
graphene aerogels.

Although lower LOD values have been reported in previous studies [50–54,56,57],
the LOD value obtained herein was in the acceptable level and was even lower than
the ones reported by some of the earlier studies [49,55]. The single-use GO-IL-modified
sensors brought herein the following important advantages: they are easy to use and cost
effective per measurement, resulting with reproducible results in a short time (35 min) in
comparison to earlier works. Therefore, in comparison to the conventional nucleic acid
detection technologies, our assay provides a rapid, practical, low-cost, and user-friendly
nucleic acid analysis with a satisfactory detection limit [2–6].

With any of the conventional methods (e.g., capillarity electrophoresis, sequenc-
ing, and PCR-mediated techniques) BRCA1 gene detection could be achieved in a short
time; however, the determination was carried out in 35 min in our electrochemical DNA
biosensor-based assay. This simple modification and detection protocol can be extended
for the monitoring of different type of nucleic acids or protein detection further, which can
prompt new opportunities to design novel nucleic-acid-sensing strategies and applications.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/bios12020095/s1, Figure S1: The electrochemical cell with three-
electrode setup including PGE as a working electrode, silver chloride electrode as reference and
platinum wire as counter electrode during measurement. Left image represents the enlarged view of
the electrochemical cell with three-electrode system, Figure S2: Line graph with the average guanine
signal of hybridization between 6 µg/mL BRCA1 probe and 2 µg/mL, 4 µg/mL, 6 µg/mL, 8 µg/mL,
10 µg/mL, 12 µg/mL BRCA 1 target on the surface of GO-IL-PGE (n = 3), Table S1: The guanine
oxidation signals measured in the presence of the hybridization between probe and 10 µg/mL BRCA1
target by GO-IL-PGEs for three different days with the values of the average guanine oxidation

https://www.mdpi.com/article/10.3390/bios12020095/s1
https://www.mdpi.com/article/10.3390/bios12020095/s1
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signals (n = 2 or n = 3) and the standard deviation with the RSD % for presenting the intra-day
reproducibility, Table S2: The guanine oxidation signals measured in the presence of the hybridization
between probe and 10 µg/mL BRCA1 target by GO-IL-PGEs for three different days with the average
guanine oxidation signals (n = 7) and the standard deviation with the RSD % for presenting the
inter-day reproducibility.
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