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Supplementary Materials: 

1. Experimental Section

1.1 Characterization Analyses 

Polymerization was confirmed via Fourier Transform Infrared (FTIR) by using a Bruker Vertex 70 
FTIR spectrometer. The morphology of as prepared samples was investigated using Field 
emission scanning electron microscopy (FE-SEM, S-4800, JEM-6701F). Energy dispersive X-ray 
spectroscopy (EDX) coupled with FE-SEM was used to determine the elemental percentages. 
Microstructures of graphitic materials were carried out on FEI Tecnai T-20 TEM. It provides 
information about the morphology; dimensions and crystallinity as well as defects and crystal 
orientations. To analyze the crystal structures, a diffractometer (XRD-6000) was used to 
characterized for powder X-ray diffrac-tion (PXRD) at voltage of 40 kV using monochromated Cu 
Kα radiation (λ = 1.54 Å, 40 kV, 30 mA) at scan rate of 10° min-1. Raman spectroscopy is a simple 
but versatile technique used to identify rotational, vibrational, and other lower energy modes in 
the materials. Using Raman (Renishaw invia microscope), we studied ratio of in-plane vibrations 
of the sp2 carbon (G-band) and disorder-induced mode (D-band) at excitation wavelength of 633 
nm. The N2 adsorption-desorption were measured via a Quantachrome Autosorb-1C-VP. Prior to 
N2 adsorption-desorption, all the sample were subjected at 200 ̊ C under vacuum for 5 hours. 
Specific surface area was determined via Brunauer−Emme −Teller method. X-rays photoelectron 
spectroscopy (XPS) is surface sensitive spectroscopic techniques used to measure the chemical 
states surface compositions, and electronic states. XPS was performed (using K-Alpha, Thermo 
Fisher Scientific, USA) coupled to an ultrahigh vacuum system equipped with a monochromatic 
Al Kα (1486.6 eV). 
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2. Results and discussion 

 

 

 

 

 

 

                

 

 Figure S1. Digital image of LPG system prepared for electrochemical measurements.  

 

 

Figure S2. XRD analysis of PCD polymer. 
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Figure S3. SEM image of PCD polymer revealing sphere like morphology. 

 

Figure S4. Pore size distribution of all three electrodes. 
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Figure S5. (A) Survey spectrum of SNPO-CPL-800. Deconvoluted high resolution XPS spectrum of 
C (B), O (C), N (D), S (E) and P (F). 
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Figure S6. (A) Mapping analysis of SNPO-CPL-800 with homogeneous distribution (A) of S (B), N 
(C), P (D), O (E) and C (F). 

2.1 The Electrochemical Activity of SNPO-CPL-(600, 800 and 1000)  

The electrochemical activity of SNPO-CPL-(600, 800 and 1000) modified LPG was assessed through 
cyclic voltammogram (CV) measurements in 0.1 M PBS electrolyte containing 5 mM [Fe(CN)6] with 
in applied potential rang of 0.0 to 0.75 V. A pair of redox peak with varying peak current and po-
tential appeared at the surface of all four electrodes (Figure S7A). However, SNPO-CPL-800 shows 
high peak current and small peak separation difference compared to SNP-CPL-600 and SNP-CPL-
1000. This high sensing efficacy of SNP-CPL-800 could be attributed to efficient charge density at 
the delocalized surface because of maximum percentage doping of S, N, P, O, and graphitic C. 

Additionally, charge transfer capability of the SNPO-CPL-(600, 800 and 1000) were also calculated 
by impedance spectroscopy (EIS). Figure S7B shows the Nyquist plot of impedance spectrum with 
two portions; semicircle at high frequency refers the electron transfer resistance (Res) and line part 
at low frequencies reflects the diffusion process velocity. Results indicate that SNP-CPL-800 have 
the smallest semicircle diameter compared to others, which indicate high electron transport effi-
ciency of the developed electrode. 

 

Figure S7. Shows CV (A) and typical -Nyquist impedance spectra (B) for SNPO-CPL-600, SNPO-
CPL-800, and SNPO-CPL-1000 in 5 mM [Fe(CN)6] in 0.1 M PBS (pH:7). 
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Table S1. Atomic percentages of the as synthesized electrocatalysts from XPS analysis. 

Catalyst Atomic % 
(S) 

Atomic % 
(N) 

Atomic % 
(P) 

Atomic % 
(O) 

Atomic % 
(C) 

SNPO-
CPL-600 

0.63 1.99 1.7 21.89 73.75 

SNPO-
CPL-800 

0.87 2.02 1.87 22.3 72.98 

SNPO-
CPL-1000 

0.00 0.00 0.88 14.24 71.84 

 

 

Figure S8. (A) Peak potential versus pH and (B) plot of anodic current versus pH derived from 
Figure 3B. 

 



Biosensors 2022, 12, 1106 7 of 8 
 

Figure S9. (A) CV of SNPO-CPL-800 with varying scan rate from 20- 100 mV/s. (B) Peak current vs. 
scan rate derived from figure S9-A. 

Table S2. Sensitivity and limit of detection comparison of different carbon-based electrodes for DA. 

Electrocatalysts Sensitivity 
(μA/mM) 

Limit of detection 
(nM) 

References 

Carbon nano-
rods 

5 60 [1] 

Graphene oxide 
nanorib-

bons/GCE 

2.39 80 [2] 

S doped carbon 4.1 3 [3] 
N-doped gra-

phene 
9.87 1 [4] 

N Gra-
phene/GCE 

0.113 250 [5] 

N doped gra-
phine 

2.22 630 [6] 

N doped gra-
phine 

__ 930 [7] 

N, S doped car-
bon 

__ 0.02 [8] 

P doped gra-
phene 

__ 0.36 [9] 

N, P doped car-
bon 

7.94 600 [10] 

SNPO-CPL-800 0.38 0.009 This work  

 

 

Limit of detection calculated by using equation S1.  

LOD = F x SD/b……………………………………….. (S1) 

Where 

F: Factor of 3.3, SD: Standard deviation of the blank, standard deviation of the ordinate in-

tercept, or residual standard deviation of the linear regression, b: Slope of the regression line 
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