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Abstract: The antibiotic drug trimethoprim (TMP) is used to treat bacterial infections in humans
and animals, and frequently TMP is used along with sulfonamides. However, a large portion of
TMP is excreted in its active state, which poses a severe problem to humans and the environment.
A sensitive, rapid, cost-effective analytical tool is required to monitor the TMP concentration in
biological and environmental samples. Hence, this study proposed an analytical methodology to
analyze TMP in clinical, biological and environmental samples. The investigations were carried
out using a glucose-modified carbon paste electrode (G-CPE) employing voltammetric techniques.
Electrochemical behavior was examined with 0.5 mM TMP solution at optimum pH 3.4 (Phosphate
Buffer Solution, I = 0.2 M). The influence of scan rate on the electro-oxidation of TMP was studied
within the range of 0.05 to 0.55 V/s. The effect of pH and scan rate variations revealed proton transfer
during oxidation. Moreover, diffusion phenomena governed the irreversibility of the electrode
reaction. A probable and suitable electrode interaction and reaction mechanism was proposed for the
electrochemical oxidation of TMP. Further, the TMP was quantitatively estimated with the differential
pulse voltammetry (DPV) technique in the concentration range from 9.0 × 10−7 to 1.0 × 10−4 M.
The tablet, spiked water and urine analysis demonstrated that the selected method and developed
electrode were rapid, simple, sensitive, and cost-effective.

Keywords: trimethoprim; glucose-carbon paste electrode; calibration curve; detection limit; excipients

1. Introduction

Trimethoprim (TMP) is a prominent antibacterial drug consumed with a variety of
sulfonamides, such as sulfamethoxazole, to treat various infections caused by bacteria [1,2].
TMP has been utilized to treat bacterial infections in humans and livestock. It efficiently
inhibits dihydrofolate reductase, which is required for the formation of four hydrogen folic
acids [3]. According to the World Health Organization (WHO), TMP is the basic drug that
can be used effectively to treat and prevent respiratory, urinary and intestinal infections
caused by bacteria [4]. TMP is frequently used in conjunction with sulphonamides to
improve therapy efficacy. It is also available as a single drug, excluding sulfonamides.
Antimicrobial resistance prompted the formation of TMP derivatives, which led to some
health hazards to humans [5]. The use of TMP is not recommended in the first trimester
during pregnancy and for people who have specific blood abnormalities. It can also lower
creatinine clearance in renal tubules and result in dangerously low thrombocyte levels
(cells that assist blood clots) by reducing folic acid levels and accompanying bone marrow
blood cell development [6]. As per literature, a large portion of the TMP dose (50–70%)
is excreted in its pharmacologically active state, causing toxicity in the aquatic habitat,
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particularly on the green algae, P. Subcapitata, and Daphnids [7]. As a result, there is a need
for a new analytical method for monitoring the substance’s residues in the environment
so that the hazardous effects of the drug’s residues can be efficiently assessed. However,
environmental cleanup procedures or assistance with the medical diagnosis can both be
used to undertake close monitoring [8,9].

The literature revealed that many approaches had been conducted and tested for the
detection of TMP, and the most often stated determination method for TMP is liquid chro-
matography [10]. Apart from that, spectrophotometry [11], capillary electrophoresis [12], High
performance liquid chromatography (HPLC) [13], potentiometry [14] and voltammetric meth-
ods are also reported [15–18]. However, most of these approaches are costly, need many solvents,
and lack selectivity and sensitivity. A simple, cost-effective, and time-saving approach for TMP
determination is required.

Electrochemical sensors have recently aroused the scientific community’s interest and
have been frequently employed as sensitive detection techniques [19,20]. Rapid reaction, high
sensitivity and selectivity, beneficial portability, simple sample preparation process, and cost-
effective and simple design are the advantages of these approaches [21]. These characteristics
are advantageous not only for detecting the bioactive material, but also for gaining insight
into its metabolic processes and gaining a better knowledge of their interactions [22,23].
Electrochemical sensors are widely used practical appliances for detecting targeted species
in biological samples, viz., blood, urine samples, etc. [24]. These techniques are particularly
adapted in constructing miniaturized tools with a wide array of domestic and therapeutical
applications [25]. Electrochemical sensors also provide the potential qualities needed for drug
therapy diagnosis and monitoring. As a result, with further study and investment, these
strategies may provide faster results for patients and physicians.

Glucose is commonly termed a monosaccharide observed predominantly in an envi-
ronment with an appealing non-enzymatic oxidation mechanism. Glucose is oxidized to
form gluconate and adsorbed on the electrode surface. The intermediate RCOO− can interact
with the analyte molecule, which elevates the aggregation of the molecule at the electrode
surface [26]. It has a strong affinity for oxidizing organic compounds and has a higher adsorp-
tion potential on carbon powder [27]. Adsorption can improve the electrode’s sensitivity by
intensifying the interaction between the analyte and the sensor’s surface. The most attrac-
tive properties of glucose, such as great mechanical strength, less toxicity, biocompatibility,
and chemical inertness, have encouraged the utilization of glucose as a modifier material to
enhance the sensitivity and the detection limit of the developing electrode.

On the other hand, graphite, which is insoluble in water, is a readily available material
with the qualities required for the fabrication of electrodes, making it an economical,
practical choice. Graphite has a very high melting point and is a good conductor of
electricity, even in high-temperature processes, without changing state. Using glucose and
graphite with a binder oil, i.e., paraffin oil, improves sensitivity in the detection of TMP.

In this research, a very efficient approach for the detection of TMP was proposed by
fabricating a carbon paste electrode with glucose. As per the literature, TMP determination
has not been carried out using G-CPE so far. The established sensor could be appropriate
for identifying TMP in clinical and biological samples.

2. Materials and Methods
2.1. Materials and Solutions

TMP and glucose were acquired from Sigma Aldrich (Bengaluru, India). Throughout
the study, double distilled water was utilized. Ortho-phosphoric acid (H3PO4), potassium
dihydrogen phosphate (KH2PO4), trisodium phosphate (Na3PO4), and disodium phos-
phate (Na2HPO4) were purchased from HiMedia chemicals (Bangalore, India); they were
used without being purified further for the preparation of phosphate buffer solution (PBS)
of 0.2 M to obtain different pH values.
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2.2. Instruments Used

The electrochemical analyzer CHI-1112C (USA) was employed to record the voltam-
mograms with the assistance of a three-electrode compartment comprising an auxiliary
electrode (platinum wire), reference (Ag/AgCl), and the working electrodes carbon paste
electrode (CPE) and glucose modified carbon paste electrode (G-CPE). All the investigations
were conducted in an electrochemical cell under controlled conditions at ambient tempera-
ture. The electrolyte solution’s pH was evaluated using a pH meter (Equiptronix model,
Mumbai, India). The developed electrode matrix was characterized using an atomic force
microscope (AFM-Nanosurf, Liestal, Switzerland), and a scanning electron microscope
with energy dispersive X-ray spectroscopy (SEM EDS-JSM IT500, JEOL, Tokyo, Japan).

2.3. Fabrication of A Sensor

The carbon paste was developed by mixing powder graphite and mineral oil in
7:3 ratio (w/w%) using a mortar, and then homogenizing [28]. The resultant paste was filled
in a Teflon pipe having a copper wire for electrical conductance, and the surface of the
fabricated sensor was smoothened, followed by washing with double distilled water. The
G-CPE was developed by adding glucose (0.05 g), along with graphite powder and mineral
oil of the quantity mentioned above, and was homogenized. Later, it was used to fill a
Teflon tube and washed. After each analysis, the paste was correctly eliminated, and fresh
paste was used for individual measurements. The pre-treatment of a sensor was done to
reduce background current by employing the cyclic voltametric (CV) technique within the
potential of 0.4–1.4 V for 20 cycles in pH 3.4 of PBS.

2.4. Pharmaceutical and Urine Sample Preparations

Tablets (Bacstol 200, Bangalore, India) with TMP as the main content were procured
from a nearby pharmacy and were crushed to obtain a powder form. A standard stock
solution was arranged by mixing an appropriate mass of tablet powder in double-distilled
water. Then, it was sonicated to achieve proper dissolution. A known volume of the
prepared supernatant liquid with a varied concentration in electrolytic solution was taken
for investigations. Clinical sampling and urine sample analysis were performed to verify
the developed electrode’s sensitivity. Primarily the samples of urine were acquired from
healthy individuals. The samples were then centrifuged at ambient temperature, and the
supernatant solution was spiked with a known concentration of TMP. The differential
pulse technique (DPV) technique was adopted for recovery studies. The content of TMP
in pharmaceutical and biological samples was examined to determine the recovery at the
proposed sensor.

2.5. Water Sample Analysis

The water sample was collected from Kelgeri lake (Dharwad, India), and the water
sample was filtered to remove suspended pollutants. Then, the filtered sample was mixed
with PBS (pH 3.4) solution in a 1:1 ratio, followed by spiking of a known amount of TMP
concentrations for recovery studies.

2.6. Electroactive Area of G-CPE

In voltammetric analysis, the electrode surface plays a prominent role as the electro-
chemical oxidation/reduction occurs at the electrode vicinity. Hence, the surface area was
estimated employing the Randle-Sevcik Equation (1), and voltammetric measurements
were registered at various scan rates for 1.0 mM K3 [Fe(CN)6] in a standard test solution in
0.1 M KCl as a supporting electrolyte [29].

Ip = (2.69 × 105) n3/2D◦1/2 C*A

Biosensors 2022, 12, x  6 of 13 
 

3.4. Impact of Supporting Buffer 
The electrochemical behavior of 0.5 mM TMP was examined at various pH levels 

using cyclic voltammetry in the presence of electrolyte solution with a pH ranging from 
3.0 to 5.8 at G-CPE. The recorded voltammograms are depicted in Figure 3A. No oxida-
tion peak was detected for the TMP in and above pH 6.0, suggesting the efficient oxida-
tion of the TMP in the acidic medium for the developed electrode system. The intensified 
peak was obtained for pH 3.4 (Figure 3B); hence, it was an appropriate buffer for further 
investigations. From Figure 3C, it is evident that the peak potential (Ep) value was shift-
ing toward a negative potential value with increased pH verifying the transfer of H+ ions 
in the reaction mechanism [32]. The linear equation can be expressed as: Ep = −0.0174 pH 
+ 1.35; R2 = 0.987. From the above equation, the slope value was closer to 0.021 V/pH, 
implying the involvement of unequal protons and electrons in the process [33]. 

 
Figure 3. (A) Cyclic voltammograms obtained for 0.5 mM TMP at different pH; (B) Plot of Ip vs. 
pH; (C) Plot of Ep vs. pH. 

3.5. Impact of Scan Rate 
The physicochemical characteristics of the electrode process of TMP were examined 

by increasing the scan rate (υ) from 0.05 to 0.55 V/s using a CV approach for 0.5 mM TMP 
in pH 3.4. It can be observed from Figure S3A that with the progressive rise in scan rate, a 
substantial enhancement in the oxidative peak current with shifting peak potential in the 
direction of positive value evidenced the irreversible nature of the reaction. The Ip and 
ʋ1/2 plot (Figure S3B) shows the linear relationship as follows: Ip (μA) = 197.71 υ1/2 (V/s) + 
44.15; R2 = 0.971. 

Diffusion governed the oxidation reaction of TMP, as the obtained slope of 0.395 in 
the regression equation (log Ip = -0.395 log υ + 2.37; R2 = 0.992) for the plot of log Ip versus 
log υ (Figure S3C) was closely related to the theoretical value of 0.5 [34]. 

In the case of irreversible reaction, the charge transfer coefficient was evaluated us-
ing the Bard-Faulkner Equation (2), and the Laviron Equation (3) was used in estimating 
the participation of electron number (n) involved in the reaction mechanism [35,36]: 

(Ep − Ep/2) = ∆Ep = 47.7/α (mV) (2)

Ep = E° + [2.303 RT/(1 − α)nF]. log[(1 − α)nF/RTk°] + [2.303 RT/(1 − α)nF] log υ (3)

Ep = E° + (0.0591/n) log [(ox)a/(R)b] − (0.0591 m/n) pH (4)

Here, Ep is peak potential, Ep/2 is potential at half of peak current, formal standard 
redox potential is termed as E°, R is gas constant, T is temperature in K, α termed for 

1/2 (1)
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where, Ip is peak current, n is number of electrons transferred, D◦ is diffusion coefficient, C* is
concentration, A is area of electrode and
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is scan rate. The active area of the fabricated electrode
material was estimated to be 0.042 cm2 for nascent CPE and 0.074 cm2 for G-CPE, respectively.

3. Results and Discussions
3.1. Characterization of the Modifier

AFM is a beneficial device for studying the surface morphology of the material at the
nano to microscale. The modifier’s average surface roughness (Ra) was determined by
AFM analysis [30] and the obtained AFM images are depicted in Figure 1A,B. The Ra of
CPE and G-CPE were found to be 0.4 and 1.0 pm2, respectively, indicating the enhancement
in the surface roughness of the developed electrode material. The SEM of the glucose
intercalated carbon matrix (Figure 1C,D) showed an exfoliated and layered structure, which
might have been due to the modifier’s uniform dispersion, which led to the increased
surface area. The SEM of CPE displayed the homogenous and uniform shape graphite
matrix. The SEM image of CPE and SEM-EDS image of CPE are depicted in Figure S1A,B,
respectively. Figure S1C displays the EDS image of CPE where we can notice the presence of
only one peak for carbon, implying high purity of graphite. The elemental composition of
the graphite matrix and modifier was analyzed using energy dispersive X-ray spectroscopy,
shown in Figure 1E. The peaks were observed for C and O with the weight percent of
74.46 ± 0.59 (atom%—79.53 ± 0.63) and 25.54 ± 1.28 (atom%—20.47 ± 1.02), respectively.
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Figure 1. AFM image of (A) CPE and (B) G-CPE, (C) and (D) SEM images of G-CPE, and (E) EDS
image of G-CPE.

The outcome of the characterization led to the conclusion that the surface roughness
and morphology had improved or increased, due to the incorporation of glucose into the
carbon matrix. The EDS image showed the oxygen distribution in the modifier, which later
acted as an active site in the sensor mechanism. Based on all of these modifier contributions,
it could be concluded that the electrode was effective in detecting trace concentrations of
the target analyte.

3.2. Electro-Oxidation of TMP

Electrochemical investigations of 0.5 mM TMP at CPE and G-CPE were carried out
using the CV technique. A highly defined anodic peak was detected at 1.293 V, having the
peak current (Ip) value of 100.3 × 10−6 A at G-CPE. While at nascent CPE, an oxidation
peak with 36.63 × 10−6 A was observed at 1.306 V. During the backward scan, no peak was
obtained, indicating the TMP had undergone an irreversible process. It can be noticed from
Figure 2 that, in contrast to nascent CPE, G-CPE had higher peak strength.
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3.3. Accumulation Time

An accumulation time is when the maximum concentration of active species of an
analyte molecule interacts with the working electrode. The concentration of the analyte and
the contact between the analyte molecule and electrode are key factors in electrochemical
processes. The concentration gradient that occurs when the electrode is submerged in the
test solution causes the analyte to move toward the electrode before the potential is applied,
indicating that the time of the interaction plays a substantial role, influencing the analyte’s
vicinity concentration and, consequently, affecting the electrochemical behavior [31]. Hence,
to investigate the accumulation time of TMP onto the surface of G-CPE, CV measurements
were recorded for 0.5 mM TMP in 3.4 pH of PBS at a definite interval of time from 0 to
30 s at a 0.05 V/s scan rate. It was noticed from Figure S2 that the voltammetric response
was highest at the accumulation time of 5 s, which meant that a large concentration of
TMP molecules had accumulated at the electrode’s surface, causing the peak current to
reach its maximal level. After that, a saturation limit was attained, causing the peak current
to decline to show peak current with low values after 5 s. However, the intensified peak
current was noticed for 5 s; hence, it was chosen as the optimum accumulation time for the
entire investigation.

3.4. Impact of Supporting Buffer

The electrochemical behavior of 0.5 mM TMP was examined at various pH levels
using cyclic voltammetry in the presence of electrolyte solution with a pH ranging from
3.0 to 5.8 at G-CPE. The recorded voltammograms are depicted in Figure 3A. No oxidation
peak was detected for the TMP in and above pH 6.0, suggesting the efficient oxidation
of the TMP in the acidic medium for the developed electrode system. The intensified
peak was obtained for pH 3.4 (Figure 3B); hence, it was an appropriate buffer for further
investigations. From Figure 3C, it is evident that the peak potential (Ep) value was shifting
toward a negative potential value with increased pH verifying the transfer of H+ ions in the
reaction mechanism [32]. The linear equation can be expressed as: Ep = −0.0174 pH + 1.35;
R2 = 0.987. From the above equation, the slope value was closer to 0.021 V/pH, implying
the involvement of unequal protons and electrons in the process [33].
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Ep = E◦ + (0.0591/n) log [(ox)a/(R)b] − (0.0591 m/n) pH (4)

Here, Ep is peak potential, Ep/2 is potential at half of peak current, formal standard
redox potential is termed as E◦, R is gas constant, T is temperature in K, α termed for charge
transfer coefficient, the electron involved in the reaction was termed as n, F is Faraday’s
constant, k◦ is a heterogeneous rate constant, m is number of protons involved and the
remnant notations describe their standard meanings. The electron number that participated
in the reaction was 1.72 ≈ 2. The proton involved in the reaction was calculated by
Equation (4) [36,37], where m is referred to as the proton number. The number of the
involved proton (m) was determined to be 0.57 ≈ 1.

The surface coverage concentration (Γ) of TMP at G-CPE was computed using the
Equation (5) [38]:

Ip = n2F2A◦ΓTMP(
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Here peak current is referred to as Ip, the electrons transferred in the reaction are
given by notation n, F is termed for Faraday’s constant, A◦ refers to the surface area of
the working electrode,
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3.6. Probable Electrode Interaction

The working electrode was enriched with a glucose having a hydroxyl group and
formed gluconate [26], which conjugated with the analyte through electrostatic force of
attraction, which resulted in the formation of the intramolecular hydrogen bond. This
interaction was sufficient to hold the TMP in the sensor’s vicinity, as shown in Scheme 1.
This temporary coupling of the analyte molecule and the modifier matrix facilitated the
electrooxidation reaction mechanism.
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3.7. Possible Electrode Mechanism

The result from the investigation of pH suggested the oxidation process involved the
participation of protons. From scan rate studies, we acknowledged that an unequal number
of protons and electrons were transferred during the reaction. The scan rate study also
revealed the electron and proton number, which was determined to be 2 and 1, respectively.
The possible electrode mechanism was predicted and is shown in Scheme 2.
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4. Analytical Applications
4.1. Concentration Study

The CV technique is less sensitive than differential pulse voltammetry (DPV). Detection
of TMP in lower concentrations was evaluated employing DPV, and investigations were
carried out at pH 3.4 of PBS using the developed electrode. The concentration range varied
from 0.9 µM to 100 µM (Figure 4A). The linearity was confined in the concentration range
(Figure 4B) viz., 0.9 to 100 µM, respectively. Figure 4B shows that the increase in the TMP
concentration enhanced a peak current yielding a linear equation; Ip = 0.709 [TMP] + 3.14;
R2 = 0.984.
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A linear range confined to a lower concentration was selected for quantification. With
the help of the standard deviation and slope of the graph, limit of detection (LOD) and
limit of quantification (LOQ) were computed by applying the below Equations [39]:

LOD = 3 s/m (6)

LOQ = 10 s/m (7)

The calculated LOD and LOQ were 2.06 × 10−8 M and 6.89 × 10−8 M, respectively.
The calibration characteristics of TMP are shown in Table S1.

The obtained LOD value was compared with the other reported methods (Table 1),
which illustrated that the fabricated electrode was more efficient in determining TMP than
the other methods.

Table 1. Comparative study of the limit of detection with some published reports.

Technique Detection Limit (µM) Reference

CuPh/PC/GCE 0.6 [5]
HPLC AMP 5.5 [13]

Potentiometric transduction 0.4 [14]
MIP-Gr/GCE 0.1 [15]
CTAB/CPE 0.1 [16]

AgNps-rGo/GCE 0.4 [17]
GR-ZnO/GCE 0.3 [18]
rGNR/SPCE 0.04 [40]

G-CPE 0.02 Proposed method
GCE—glassy carbon electrode, CuPh—copper (II) phthalocyanine/Printex L6 carbon black, HPLC—High-
performance liquid chromatography, AMP—Amperometric, MIP-Gr—Molecularly imprinted graphene,
CTAB—Cetyltrimethylammonium bromide, CPE—Carbon paste electrode, AgNps—Silver nanoparticles, rGo—
reduced graphene oxide, Gr—Graphene, ZnO—Zinc oxide nanoparticles, rGNR/CPE—reduced graphene nanorib-
bon screen printed carbon electrode, G-CPE—Glucose modified carbon paste electrode.

4.2. Effect of Excipients

This research examined the impact of interfering species on TMP determination.
Lactose, citric acid, sodium chloride, potassium chloride, and glycine are some excipients
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in preparing TMP tablets. The excipient solution of appropriate concentration (1 mM) was
prepared, and interference of the developed solution was determined for 10 µM TMP using
the standard addition method. The obtained reports suggested that the peak current of
TMP varied to a certain limit, but it did not exceed the permissible limit of ±5% (Table 2).
The excipients did not interfere with TMP peak responses at the G-CPE.

Table 2. Interference studies.

Excipients Signal Change (Ip%)

Trimethoprim 0
Lactose 0.06

Citric acid −1.139
Glycine −0.229

KCl 1.41
NaCl 1.27

4.3. Pharmaceutical Dosage Analysis

The proficiency of the fabricated G-CPE was substantiated by investigating G-CPE
with a commercially available TMP tablet utilizing DPV. TMP tablets were finely ground
before being dissolved in double distilled water and sonicated. The solution was then
subjected to filtration, and the aliquot was diluted to a predetermined amount before being
used for recovery studies, employing the standard addition procedure [41,42]. Table 3
displays the recorded analytical data of the TMP tablet solution at G-CPE. Three replicate
measurements were recorded for TMP determination for 10 µM of the TMP tablet sample.
The recovery obtained verified that the proposed G-CPE had perceptible sensitivity towards
TMP. The method illustrated credibility and appropriateness and, thus, could be applied to
detect pharmaceutical samples.

Table 3. Tablet analysis.

Trimethoprim Experimental Findings

Specified amount (mg) 200
Obtained amount (mg) a 187.9

RSD% 0.86
Added (mg) a 1.00
Obtained (mg) 0.93

Recovery% 93.97
a (Average of three measurements).

4.4. Urine Analysis

The proposed sensor was employed to determine the TMP in urine samples by utilizing
the DPV technique. For recovery research, a urine sample was collected from healthy
individuals and was diluted with water in 1:100 ratios. Then, it was filtered and TMP of a
known concentration was added. A known volume of test aliquot in 0.2 PBS of pH 3.4 was
taken for the recovery studies. Table 4 shows that the developed electrode had an excellent
recovery range toward the TMP and was found to be 95.4–98.78%.

Table 4. Results obtained for analysis of urine samples.

Samples Spiked (10−5 M) Obtained a (10−5 M) Recovery (%)

1 1.0 0.95 95.4
2 0.8 0.79 98.7
3 0.6 0.57 96.0

a (Average of three measurements).
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4.5. Water Sample Analysis

Water sample analysis was conducted to evaluate the efficiency of the developed sensor
to TMP persisting in the environment [43]. The water sample collected from the lake was
mixed with an equivalent volume of supporting electrolyte (5.0 mL) and a known amount
of TMP was added. The acquired results are shown in Table S2. A technique would need to
show sensitivity, selectivity, dependability, minimal cost, ease of handling, and swiftness in
providing data to be a valuable instrument for assessing water quality. To build a platform
for monitoring environmental water samples, the developed sensor was used to test lake
water with the same concentrations of TMP analyzed before. Apart from basic filtering,
the water sample was not processed further. The retrieval peak current data suggested
that the proposed electrode could be utilized in detecting TMP, even when a complex
matrix was present. These findings also supported the G-CPE sensor’s applicability and
appropriateness for environmental monitoring.

4.6. Stability of G-CPE

To inspect the validity of the developed sensor, repeatability and reproducibility
measurements were performed. By taking three consecutive readings with 0.05 mM TMP,
the electrode was examined for repeatability. The reports displayed a negligible change
in the peak current of TMP, with 95.26% recovery to its initial peak current value. Further,
investigations were carried out to check the reproducibility nature of G-CPE. It was placed
in a sealed jar for 10 days. Then, the CV scans were acquired, and the reports revealed
an excellent recovery response of electrode material with an RSD of 2.74%. Hence, the
obtained results verified that the electrode was stable and could give reproducible results.

5. Conclusions

The electrooxidation behavior of TMP was investigated by employing a glucose-modified
CPE. The current response of TMP was excellent at G-CPE compared to nascent CPE. The AFM
and SEM characterization revealed the high surface area and exfoliated layer structure of the
modifier, respectively. TMP is electrochemically active in pH 3.0–5.8 of PBS, and the responses
were prominent in pH 3.4. The electrode process was irreversible and diffusion-controlled,
transferring one proton and two electrons. The concentration linearity was in the range of
9.0 × 10−7 to 1.0 × 10−4 M. The LOD was found to be 2.06 × 10−8 M. Pharmaceutical, spiked
urine, and water sample analysis displayed an excellent recovery, which illustrated the suitability
of the fabricated sensor in a real-time application. Overall, the sensor was easy to fabricate, cost-
effective, and could produce reproducible results. Furthermore, G-CPE allows a miniaturized
system to offer high sensitivity and quick response with a small sample volume. Hence, the
developed electrode is suitable for drug monitoring in pharmaceutics.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/bios12100909/s1, Figure S1: (A) SEM image of CPE, (B) SEM EDS
image of G-CPE, (C) EDS of CPE; Figure S2: Accumulation time; Figure S3: (A) Cyclic voltammograms
for varying scan rates from 0.05 mV/s–0.55 mV/s, (B) Plot of peak current vs. square root of scan
rate and (C) Plot log (peak current) vs. log (scan rate); Table S1: Calibration characteristics; Table S2:
Water sample analysis.
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