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Abstract: A simple, rapid, and sensitive point-of-care (POC) device for the on-site detection of dox-
orubicin was developed. The proposed method relies on the naked-eye detection of the intrinsic
fluorescence of the drug in a lateral flow device (LFD) configuration, exploiting the biological recogni-
tion of DNA probes and avoiding the use of expensive antibodies and sophisticated instrumentations.
The POC assay does not require any pre-treatment or purification step and provides an immediate
visual readout, achieving a limit of detection as low as ca. 1 ng doxorubicin, outperforming several
laboratory-based instrumental techniques. The POC method was proven useful for the detection of
trace amounts of the drug both in the case of water solutions (to simulate surface contaminations)
and in urine samples, opening promising perspectives for routine monitoring of doxorubicin, with
potential benefit to healthcare workers and personalized chemotherapies.
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1. Introduction

Doxorubicin belongs to the family of anthracyclines, a class of anticancer agents widely
used against a variety of tumors, from breast, ovarian, and thyroid carcinoma to lymphoma
and leukemia. The action mechanism of doxorubicin involves its interaction with DNA at
different levels: intercalation between the base pairs, strand breakage, and the inhibition of
the topoisomerase II enzyme [1]. Although it is frequently used as a first-line anticancer
agent, doxorubicin presents many side effects, such as cardiotoxicity, myelosuppression,
nausea, and hair loss, which have to be taken into strict consideration during its clinical
use [2]. Consequently, its regulated dosage is essential in chemotherapy. Furthermore, the
potential toxicity to the exposed healthcare workers in the occupational environment is also
emerging as a serious concern [3]. Doxorubicin, indeed, can penetrate protective clothes
and, when administered at the therapeutic concentration (2 mg/mL), it was reported to
persist on the hand of a volunteer for 30 s, even after washing with common detergents [4].
Therefore, developing affordable methods for the determination of drug contaminations in
hospital settings is of great interest.

The analysis of trace amounts of doxorubicin in the clinical departments where the
drug is administered to patients is typically performed by laboratory-based instrumen-
tal techniques, such as high-performance liquid chromatography, spectroscopic methods,
mass spectrometry, and electrochemical sensors [5–11]. Among these strategies, exploiting
doxorubicin intrinsic fluorescence appears a promising and versatile approach. The drug
generates strong fluorescence when excited by ultraviolet (~250 nm) or blue light (~465 nm),
emitting broad-spectrum orange–red light (530–700 nm range) [12]. Doxorubicin fluores-
cence properties have been extensively studied in cancer research and imaging [13,14].
However, to the best of our knowledge, only few articles reported the analysis of doxoru-
bicin contaminations on surfaces with this approach [15], especially in the context of point-
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of-care (POC) sensors. In this framework, a POC device could be interestingly adapted
for monitoring drug concentrations in non-invasive biofluids such as urine, improving
the workers’ safety as well as the clinical practice, promoting personalized therapies and,
hence, reducing the adverse effects [16].

This work aims to develop a simple, rapid, and sensitive POC device for the on-
site identification of doxorubicin contamination on surfaces and in urine. The proposed
method relies on the naked-eye detection of the drug fluorescence in a lateral flow device
(LFD), exploiting the biological recognition of DNA probes, which provides high specificity
and sensitivity [17]. This approach also allows avoiding the use of expensive antibodies
and sophisticated instrumentations. The LFD was firstly optimized on water solutions to
simulate doxorubicin collected from contaminated surfaces and then successfully applied
to real urine samples.

2. Materials and Methods
2.1. Chemicals and Materials

The chemicals employed for this project were of high technical grade and used without
further purification. All solutions and buffers were prepared using ultrapure deionized
water (MilliQ). Doxorubicin hydrochloride (C27H29NO11···HCl, suitable for fluorescence,
98.0–102.0% (HPLC)), bovine serum albumin (heat shock fraction, protease free, fatty acid
free, essentially globulin free, pH 7, ≥98%), Tween-20 (C58H114O26, viscous liquid), sodium
dodecyl sulfate (C12H25O4S.Na, BioUltra, for molecular biology, ≥99.0% (GC)), deoxyri-
bonucleic acid from calf thymus (D4522, Type XV, activated, lyophilized powder), poly-
D-lysine hydrobromide (P6407, mol wt 70,000–150,000, lyophilized powder, γ-irradiated,
BioReagent, suitable for cell culture), chitosan (448,869, low mol wt), Triton™ X-100 solu-
tion (laboratory grade, X100), hippuric acid (112,003, 98%), creatinine (C4255, anhydrous,
≥98%), magnesium sulfate heptahydrate (1.05886, Supelco, for analysis EMSURE® ACS,
Reag. Ph Eur), sodium sulfate (1.06649, Supelco, anhydrous for analysis EMSURE® ACS,
ISO, Reag. Ph Eur), potassium chloride (P9541, for molecular biology, ≥99.0%), sodium
chloride (S3014, for molecular biology, DNase, RNase, and protease, none detected, ≥99%
(titration)), sodium citrate tribasic dihydrate (C6H5Na3O7···2H2O, BioUltra, for molecular
biology, ≥99.5%), urea (U5378, powder, BioReagent, for molecular biology, suitable for cell
culture), uric Acid (U2625, ≥99%, crystalline), ammonia solution 25% (1.05432, Supelco,
for analysis EMSURE® ISO, Reag. Ph Eur), sodium phosphate dibasic (71640-M, puriss.
p.a., ACS reagent, anhydrous, ≥99.0% (T)), phosphoric acid (695017, ACS reagent, ≥85 wt.
% in H2O), sodium Hydroxide (221,465, ACS reagent, ≥97.0%, pellets) were purchased
from Merck (Sigma-Aldrich). UltraPure™ 1 M Tris-HCI Buffer, pH 7.5 (15,567,027), TE
Buffer (20X) (RNase-free, T11493) were purchased from ThermoFisher. For use as a sensing
element, 3′ overhangs duplex sequence was designed, and purchased from Integrated
DNA Technologies.

Sample pad (grade 319, composition Cotton Fibers), sample pad (grade 8980, composi-
tion Chopped Glass w/Binder), and absorbent pad (grade 440, composition Cotton/Glass
Blend) were purchased from Ahlstrom-Munksjö. Whatman® qualitative filter paper, Grade
1 (WHA1001090, circles, diam. 90 mm, pack 100), Hybond®-N+ hybridization membranes
(GERPN203B, W× L 20 cm× 3 m, roll), Amersham™ Protran® Supported Western blotting
membranes, nitrocellulose (GE10600016, pore size 0.45 µm, roll W × L 300 mm × 4 m)
were purchased from Merck (Sigma-Aldrich). Unisart® nitrocellulose membrane (CN95
backed, 50 m roll) was purchased from Sartorius.

UV lamp (UVP UltraViolet Product™ EL Series UV Lamps, 95-0252-02) was purchased
by Fisher Scientific (part of Thermo Fischer Scientific).

2.2. Lateral Flow Device Assembly and Electrostatic Immobilization of the Capture Probe

For the realization of the proposed device, the Hybond®-N+ hybridization membrane
was chosen as the running pad. It was cut to obtain strips of a final dimension of 4 mm
× 25 mm, while the absorbent pad was realized with a size of 4 × 18 mm. After the
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running pad and the adsorbent pad were laminated on the backing card, a cutter was
employed to realize strips with a width of 4 mm and a final length of 40 mm, with a
2 mm overlap of the two membranes. For the optimization of the flow, three different
running pads (Amersham™ Protran® Supported Western blotting membranes, Unisart®

Nitrocellulose Membrane, and Whatman® qualitative filter paper) were tested and their
performance was compared with that of the positively charged Nylon membrane. For the
immobilization of the capture probe, the electrostatic interaction between the probe and
the membrane was exploited. Specifically, 0.5 µL of the 3′ overhangs duplex sequence
(200 nmol double-stranded DNA (dsDNA)) were dropped on the test zone, 15 mm far from
the beginning of the running pad and in the middle of the strip. Due to the negatively
charged phosphate groups of the DNA probe and the positively charged nylon membrane,
it was possible to electrostatically immobilize the capture probe on the test zone. After
the deposition, the probe was allowed to dry for 60 min at room temperature to ensure
dsDNA was completely dried and stably immobilized. For the optimization of the capture
probe, solutions of dsDNA with poly-L-lysine and with chitosan were pre-mixed in an
equal volume. Specifically, 200 nmol dsDNA were incubated with 0.1 mg/mL aqueous
solution of poly-L-lysine hydrobromide and with 0.01% (m/v) diluted acetic acid solution
of chitosan. Thereafter, the solutions were deposited on the test zone and dried at room
temperature, as previously described.

2.3. Assay Procedure and Data Processing

The proposed device was tested by depositing 30 µL of doxorubicin hydrochloride,
previously solved in water and diluted at various concentrations, in 0.1% Triton X-100
solution. Control assays were performed running 30 µL of Triton X-100 solution. In
particular, the sample was added at the edge of the running pad, taking approximately
20 s to reach the end of the strip and, hence, the absorbent pad. Considering the wicking
capacity of the absorbent pad, 30 µL was established to be the correct volume to avoid
overflow and ensure the fluid reaches the end of the strip. For the optimization of the
flow, 10 µM doxorubicin was diluted in different solvents, i.e., 0.05% BSA solution in PBS,
0.5% SDS solution in PBS, 100 mM Tris Buffer solution, and 0.1% Tween solution in PBS,
and compared with doxorubicin solved in Triton X-100. At the end of the run, the device
was analyzed under the UV lamp operating at 254 nm, and a smartphone picture was
recorded. A clear fluorescent spot was immediately visualized if doxorubicin amounts
were present in the sample. The intensity of the fluorescence was processed through
the ImageJ program, recording the green coordinate (G). Doxorubicin has an absorption
maximum at 496 nm, which corresponds to the blue/green region of the visible light
spectrum. Therefore, G, being the complementary color of the orange–red fluorescence
produced in the detection zone, showed the largest change in color values [18,19]. In
particular, the images were analyzed through the “color inspector” plug-in of ImageJ,
zooming onto the fluorescent spots. ∆G values were obtained by subtracting the G value of
the spot obtained when the sample contained doxorubicin from that of the blank (a strip
treated with the solvent alone). All the G values represent the average of 9 independent
measurements, obtained by processing the relative photos of the devices tested with
decreasing doxorubicin amounts. The limit of detection (LoD) of the device was derived
from the following equation: (3.3 ×
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and can be determined as the standard deviation of the blanks and S represents the slope
of the graph in the linear range [20].

2.4. Application in Urine Samples

The proposed device, in the optimized conditions, was firstly tested with synthetic
urine, prepared in a laboratory following the protocol of Sarigul et al. [21]. Each component,
in the biological concentration, was tested singularly to evaluate the interference with the
recognition mechanism. Subsequently, the assay was performed on a urine sample testing
the real applicability for routine use. Samples were collected from a healthy volunteer,
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spiked with the desired doxorubicin concentration, and finally diluted 1:10 in Triton 0.1%.
Experiments, both in synthetic and real urine, were carried out in triplicate.

3. Results
3.1. Device Design and Detection Mechanism

Developing a traditional LFD for the detection of doxorubicin either in direct or in
competitive assay format is challenging, due to the very limited commercial availability
of anti-doxorubicin antibodies and their remarkably high costs. Therefore, to overcome
such issues, we designed and developed an innovative detection strategy, in which the
recognition mechanism exploits the pharmacological interaction of doxorubicin with its
biological target, namely DNA. Unlike the conventional lateral flow assays, where aptamers
or antibodies are commonly employed as capture probes, the design of the proposed LFD
here involves the deposition of dsDNA in the test zone as the recognition/capture element.
When doxorubicin is present in the test sample, it flows through the device, interacts with
the electrostatically immobilized DNA, intercalates in its strands, and remains captured
onto the test region. Upon irradiation by a simple UV lamp, the detection zone emits an
intense orange/red fluorescent signal, which can be directly detected by the naked eye,
with no further instrumentation. Notably, exploiting the pharmacological interaction of the
drug with DNA significantly boosts the specificity and sensitivity of the assay.

Nowadays, the development of nucleic-acid-based lateral flow assays (NALFAs) is
attracting increasing interest. NALFAs are widely used for the detection of several targets,
such as DNA sequences, biomarkers, metal ions, and drugs of abuse [22–25]. Most of the
reported NALFAs are designed with aptamers or single-strand DNAs as sensing probes,
and they are commonly used for hybridization-based platforms, where the detection is
performed by the complementary recognition of two oligonucleotide strands. For instance,
single-strand-based NALFAs have been proposed for the detection of pathogens in food
and water [26,27], while aptamers have been reported for the assessment of toxins [28].
However, to the best of our knowledge, no NALFA devices have been developed for
the detection of anticancer drugs; moreover, no studies reported the use of dsDNA as
recognition/capture probe in the test zone. Herein, we combined such innovative features
for the realization of a promising LFD for the specific and high-sensitivity detection of
doxorubicin contaminations, exploiting the pharmacological interaction of the drug with
the dsDNA, stably immobilized in the test zone.

Figure 1 shows the schematic description of the proposed device. In particular, a
positively charged nylon membrane was chosen as the running pad, and a blend of cotton
and glass fibers was used as the absorbent pad, due to its high wicking capacity. Materials
were cut obtaining a width of 4 mm and they were assembled on a backing card for the
realization of the device. At a distance of 15 mm from the sample deposition zone, 0.5 µL
of dsDNA was placed in the middle of the running pad, acting as the capture probe. Upon
deposition of 30 µL of the sample on the running pad (see Section 2, Methods for details),
capillary forces enable the analyte to reach the absorbent pad, flowing homogeneously
through the membrane and passing across the test zone. When doxorubicin is present in
the tested sample, it interacts with the dsDNA probe, and it becomes captured in the test
zone. Detection is immediately visualized as an intense fluorescent signal of the test region
after irradiation by UV light. In the case of non-contaminated samples, no intercalation
occurs and, hence, no fluorescence is visualized.
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Figure 1. Schematic illustration of the LFD for the assessment of doxorubicin contamination on
surfaces and in urine. The device is composed of a running pad made of positively charged nylon
and an absorbent pad, both laminated on the backing card and partially overlapped (2 mm). The test
zone is realized by dropping 0.5 µL of the DNA solution onto the nylon pad. The test samples are
deposited on the lateral side of the running pad and, flowing through the membrane, they reach the
recognition element on the test zone. When doxorubicin molecules are present in the test sample,
they intercalate with the immobilized DNA probes, giving an intense fluorescence, detectable by the
naked eye, when excited by a UV lamp. In the case of non-contaminated samples, no intercalation
occurs and, hence, no fluorescence is visualized.

3.2. Optimization of the Capture Probe

Most of the reported techniques for DNA probe immobilization on the running mem-
brane rely on the use of biotinylated capture ssDNA that is pre-complexed with streptavidin.
This approach typically allows for efficient probe immobilization along with sensitive de-
tection of target analytes; however, with this system, the costs of the lateral flow devices
strongly increase. Other available techniques are physical adsorption and chemical bond-
ing, the latter requiring the use of a linker molecule [29]. In this work, adsorption was
selected as the probe immobilization method because of its simplicity and low cost, since it
does not require chemical reagents and DNA modification [29,30]. To achieve this goal, four
different running pads (nylon+, two different nitrocellulose membranes, and a Whatman
filter paper) were tested, comparing their performance after the immobilization of 0.5 µL of
DNA on the test zone (see Figure S1, Supplementary Materials). When probed for the cap-
ture of a doxorubicin solution, only nylon+ showed a clearly detectable visual fluorescence
(under the UV lamp), due to the stability of the DNA probe molecules immobilization in
the test zone and the consequent efficient interaction between the drug analyte and the
probe. Indeed, the positively charged nylon enables the stable electrostatic adsorption of
the negatively charged phosphate group of DNA probes, allowing for the subsequent target
detection. On the contrary, the other substrates did not guarantee stable immobilization
of the probe molecules in the test region, mainly because probes were washed in the LFD
both after the immobilization step and during the test sample flow.
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To further increase the ionic interaction between the probe and the surface (to maximize
probe stability and its surface density), the literature reports the possibility to functionalize
the support creating a positively charged film, e.g., by employing chitosan or poly-L-
lysine [29]. We thus tested the performance of our assay, depositing three different t-lines:
DNA, poly-L-lysine with DNA, and chitosan with DNA (see Section 2, Methods for details).
As it is shown in Figure S2, in our test conditions, no significant advantages were obtained
by immobilizing DNA with these agents. Specifically, chitosan led to false-positive results,
while poly-L-lysine gave a non-defined signal due to drying process issues.

An additional experimental step was to optimize the DNA sensing probe. In particular,
to promote the immobilization process, we selected a short chain (27 nucleotides) duplex
oligonucleotide with 3′ overhangs as the capture probe. Overhangs are known to be
beneficial to increase the electrostatic interaction between the negatively charged phosphate
groups of the nucleotides in the tail and the positively charged surface. Furthermore,
smaller oligonucleotides present more flexibility and, hence, favored surface adsorption
due to the reduced conformational restrictions [31]. To verify this concept, the assay was
tested comparing the performance of the LFD with a t-zone made by DNA from calf
thymus, composed of 10 kb pairs, and the selected short sequence. Despite both nucleic
acids gave fluorescence in the t-zone upon exposure to UV light, the smaller sequence
clearly resulted in a better-defined signal (Figure S3). Calf-thymus DNA was susceptible
to the worst drying process, leading to a significant coffee ring effect of the fluorescent
spot. Furthermore, we tested the assay upon the addition of decreasing concentrations
of doxorubicin, comparing the performance of the two nucleic acids. We observed that
the short sequence with the overhangs enabled a higher detection sensitivity along with a
homogeneous test spot.

We also evaluated the role of the drying time after the immobilization of the DNA
probe in the t-zone. To this purpose, the doxorubicin fluorescence signal was analyzed
at four different time points, namely 5, 10, 30, and 60 min (Figure S4). By using short
drying times (5 and 10 min), the DNA probe molecules were not completely dried in the
t-zone, hence the genetic materials partly followed the flow of the sample till the absorbent
pad, producing a strong fluorescent tail. After 30 min, a well-defined signal started to be
obtained. However, 60 min gave the best result and, hence, such condition was chosen as
the optimal drying time for the assay.

The final optimization of the sensing element concerned the amount of the oligonu-
cleotide immobilized on the t-zone. Specifically, four different DNA concentrations were
checked, i.e., 1, 20, 100, and 200 µM. After doxorubicin was deposited on the running pad,
we observed that, starting from 100 µM, the fluorescent spot began to be clearly visible and
well-defined (Figure S5). However, 200 µM was chosen as the optimal concentration for
the assay since it allowed for the best visual response.

3.3. Optimization of the Flow

Despite the wide variety of commercially available running pads, which enable a fast
and uniform flow, in this work we selected nylon+ for its high binding capacity for nucleic
acid probes, as discussed in the previous paragraph. Usually, nylon+ is employed for the
Southern blotting technique and, due to its pore size of 0.45 µm, it is not considered a
conventional material for the LFD assays, since it allows for a very slow capillary flow
rate. Therefore, several tests were performed to promote the samples flowing through the
nylon+ running pad uniformly and efficiently. First, sample pads of cotton or glass fibers
were tested to assess their suitability for loading the samples, ensuring an even flow [32].
Unfortunately, as shown in Figure S6, both the pads retained a huge amount of doxorubicin,
not allowing the drug to properly flow through the running pad and reach the t-zone, thus
hampering the detection. Therefore, sample pads were not included in the final design of
the device.
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We then tried to optimize the sample solvent. When doxorubicin was solved in water,
the flow of the drug was uneven and it did not reach the absorbent pad, stopping along
the membrane. To allow the analyte to correctly complete the run, we found that two
further additions of water were required (Figure S7A). Nevertheless, in this latter case,
the running pad resulted not completely clean, with a significant residual fluorescence on
the membrane and a front beyond the t-zone. Hence, to improve the flow, doxorubicin
was dissolved in several running buffers, and the assay was performed without further
additions of solvents. Solutions containing doxorubicin were prepared using BSA, Triton,
SDS, Tris Buffer, and Tween (see Section 2, Methods for details). As clearly shown in Figure
S7B, only Triton enabled a uniform flow of the drug, allowing its efficient intercalation with
DNA probes and providing a good fluorescence signal. All the other tested solvents led to
the creation of several fronts on the running pad, hampering the recognition mechanism.
Hence, Triton was chosen as the buffering agent in the final device configuration.

3.4. Analytical Performance

After all the optimizations discussed above, the performance of the proposed LFD
was tested to evaluate the limit of detection (LoD) for doxorubicin contamination.

As shown in Figure 2A, 30 µL of decreasing doxorubicin concentrations were tested.
As a negative control, 30 µL of triton buffer was also run. Under the UV lamp illumination,
a clearly visible spot can be visualized down to a doxorubicin amount of 4 ng. However,
a closer inspection reveals that the detection limit appreciable by the naked eye is as low
as 1.5 ng doxorubicin. This result has been further confirmed by the image analysis of the
fluorescent spots performed on the smartphone photograph (see Section 2, Methods for
details of the RGB analysis). The graph reported in Figure 2B shows that there is a good
linear relationship between the ∆G values and the doxorubicin amounts over the range
tested. As anticipated, the analytical limit of detection of the LFD assay is 1.5 ng (0.1 µM).
This means that the POC method is highly sensitive, and the analytical performance is
comparable or even superior to other laboratory-based techniques, with the advantage of
being rapid and instrument-free (see Table 1).
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Figure 2. (A) Representative photograph of the proposed devices tested with decreasing doxorubicin
amounts, ranging from 160 to 0 ng, as reported in the upper part of the image (160, 80, 40, 16, 8, 4,
1.5, 0 ng, roughly corresponding to 10, 5, 2.5, 1, 0.5, 0.25, 0.1 µM); (B) analysis of the optical response
of the device as a function of doxorubicin amounts (∆G values were obtained subtracting the G
coordinate of the sample from that of the blank (in RGB coordinates system)). G values were recorded
in 9 different experiments.
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Table 1. Comparison of our POC method with other instrumental techniques for the detection
of doxorubicin.

Sample Type LOD (µM) Preparative
Procedure

Visual Detection
(Instrument-Free) Ref.

Pharmaceutical
formulations 0.034–0.22 - X [33]

Pharmaceutical
formulations 0.46 - X [34]

Exhaled breath
condensate 0.004 Water bath 70 ◦C for

10 min X [35]

Skin and surfaces 1.8 - 3 [15]

Blood and plasma 0.92
Extraction with

ethyl acetate and
drying

X [18]

Cultured cells 0.18 Washing and lysis X [36]

Urine samples 0.055 Flow injection X [37]
Surfaces and urine

samples 0.10 - 3 This work

3.5. Detection in Urine

To evaluate the applicability of the proposed method also in the analysis of doxorubicin
in urine samples, we performed a series of experiments maintaining the point-of-care
concept of our device, namely we did not rely on any purification or pre-treatment of
urine samples.

Clinically, the urinary concentration of doxorubicin after the first infusion of the
chemotherapeutic drug (0–4 h) was reported to be 95× higher than that observed in plasma.
Specifically, Maliszewska et al. showed that the urinary concentration ranges from ca. 17
to 33 µM [38]. As reported in Table 1, most of the reported instrumental techniques have
been applied to pharmaceutical formulations due to the possible interactions/interferences
between the target analyte and the other components of the biological fluids. Indeed,
in many cases, a procedure of pretreatment was required before analyzing the sample
and usually the achieved LoD was lower than in aqueous solutions [18]. However, as
anticipated, complicated procedures of sample treatment are not suited for a POC device,
which is usually applied for near-patient testing without complicated instrumentation.

In this work, we first performed the assay in synthetic urine, in order to understand
the possible interference of specific urinary components. In particular, constituents were
analyzed singularly running high concentrations of doxorubicin solved in solutions con-
taining each salt at the physiological concentration. As reported in Figure S8, chlorides
and ammonia strongly interfere with doxorubicin recognition, hampering DNA bonding.
Sodium hydroxide does not completely block the intercalation, but the signal appeared
strongly reduced. We could conclude that the interference in our assay conditions arises
from a synergic interplay of different constituents rather than a single one. Since it would
be challenging to remove such components without resorting to complex pretreatment
procedures, we tried to reduce interference effects through a simple pre-dilution step.
Interestingly, we observed a partial recovery of the fluorescence signal in the test zone
starting from a dilution of 1:5 (Figure S9), while a well-defined and intense spot can be
achieved only for higher dilutions (i.e., 1:50). Nevertheless, a good compromise to avoid
strong sensitivity loss was represented by the 1:10 dilution.

After these preliminary optimizations, we tested the overall performance and sensi-
tivity of the LFD assay running decreasing drug concentrations. A urinary sample from a
healthy volunteer was spiked with the target in the 0–250 ng concentration range. Urine
was diluted 1:10 in Triton as established by previous experiments, and the fluorescence
was recorded under UV lamp. Figure 3 shows the results of the test. As mentioned be-
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fore, an expected loss in sensitivity with respect to aqueous solution naturally occurred.
However, visual detection could be achieved also at a concentration of 80 ng, which is
clinically relevant, being much lower than the drug concentration in urine in the first 4 h
post-infusion.
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Figure 3. Representative photograph of the LFD devices tested with real urine sample spiked with
increasing doxorubicin amounts, as reported in the upper part of the image (240, 160, 80, 40, 16, 0 ng,
roughly corresponding to 15, 10, 5, 2.5, 1, 0 µM).

4. Conclusions

In this work, we showed the development of a portable LFD for the determination
of doxorubicin contaminations on surfaces and in urine. The sensing strategy exploits the
intrinsic fluorescence of the drug molecule, and the detection approach relies on its capture
on the test zone through its intercalation with dsDNA probe, which is the pharmacological
target of the drug. Traces of doxorubicin in the test samples (as low as few ng doxorubicin)
can be immediately visualized as an intense fluorescence in the test zone, appreciable with
a simple UV lamp, with no further instrumentation. The POC device was developed and
optimized through a series of systematic experiments. Optimal immobilization of DNA
was achieved by exploiting positively charged nylon, which was selected as a running pad
because of its electrostatic interaction with the negatively charged phosphate groups of
DNA probes. A short dsDNA oligonucleotide with 3′ overhangs was selected as the sensing
element since it allowed to further increase its electrostatic adsorption and its surface
density, with an overall enhancement of the detection signal. After further optimizations of
the LFD device in terms of materials and solvents used, the analytical performance of the
device was tested with decreasing concentrations of the target, reaching a visual detection
of doxorubicin as low as ca. 1 ng. Remarkably, such naked-eye detection outperforms many
instrumental techniques, while being portable, rapid, and not requiring any pre-treatment
steps. The LFD device was further tested in a urine sample and also successfully proved
its potential applicability for non-invasive drug monitoring in chemotherapeutic patients.
Overall, the proposed POC test shows interesting perspectives for routine monitoring of
doxorubicin, possibly improving the safety of healthcare workers as well as the quality of
clinical practice, paving the way for personalized therapies.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/bios12100896/s1, Figure S1: Comparison of different running pads, Figure S2: Comparison of
different t-lines, Figure S3: Comparison of DNA sensing probes, Figure S4: Optimization of dsDNA
drying time, Figure S5: Optimization of dsDNA concentration, Figure S6: Device performance with
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sample pads, Figure S7: Comparison of different running buffers, Figure S8: Urinary salts interference,
Figure S9: Effect of different urine dilutions on the device performance.
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