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Abstract: Cobalt phthalocyanine multiwalled carbon nanotubes (CoPc-MWCNTs), a nanocomposite,
are extraordinary electrochemical sensing materials. This material has attracted growing interest
owing to its unique physicochemical properties. Notably, the metal at the center of the metal
phthalocyanine structure offers an enhanced redox-active behavior used to design solid electrodes
for determining varieties of analytes. This review extensively discusses current developments in
CoPc-MWCNTs nanocomposites as potential materials for electrochemical sensors, along with their
different fabrication methods, modifying electrodes, and the detected analytes. The advantages of
CoPc-MWCNTs nanocomposite as sensing material and its future perspectives are carefully reviewed
and discussed.
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1. Introduction

Developing new electrochemical sensing materials with enhanced electrocatalytic
properties, good stability, reproducibility and repeatability, high sensitivity, and selectivity
is one of the most significant and rapidly growing areas in materials science [1]. Carbon
nanotubes (CNTs) have become promising materials in constructing sensors and biosensors
for wider applications simply because of their excellent chemical inertness, high specific
surface area, high mechanical strength, and high electrical conductivity with a unique
one-dimensional structure that allows rapid electron transfer [2]. In addition, CNTs can
be found in a wide range of applications, e.g., in electronics, polymer composites, energy
storage materials, catalysis, gas storage materials, and sensors [3]. Particularly, multiwalled
carbon nanotubes (MWCNTs), as depicted in Figure 1, exhibit good mechanical strength
and enhanced surface activity with a high specific surface area. They are frequently
utilized in biological applications, thermally stable materials, sensors, water filtration,
structural materials, and so forth [4,5]. Additionally, the acid functionalized MWCNTs
(fMWCNTs) are very intriguing as catalyst supports because of their multiple means of
connecting with organic molecules [6]. Studies have shown that during redox reactions
in both acidic and alkaline mediums, electron transfer occurs rapidly with MWCNTs,
resulting in higher current density and lower redox potential. Thus, MWCNTs have better
redox activity than single-walled carbon nanotubes (SWCNTs) [7]. Importantly, CNTs
(SWCNTs and MWCNTs) have been extensively used as a sensing material to fabricate
various nanocomposites which have been successfully employed to determine a wide range
of analytes, such as uric acid, ascorbic acid, dopamine [8,9], styrene, epinephrine [7,10],
glutathione, cysteine, acetaminophen [11,12], carbaryl, thiols, bisphenols [13–15], bromate,
nitrite [16], hydrogen peroxide, paracetamol [17,18], lactic acid, hydrazine, glucose [19–21],
and others.
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increased when thin films of MPcs are immobilized on working electrodes together with 
other highly conductive materials [46,47]. Noteworthy, incorporating metallic 
nanoparticles and carbon-based components (graphene, sheets, MWCNTs, quantum dots, 
SWCNTs) into the MPc-based film increases its conductivity [48]. Through the use of these 
conductivity-enhancing materials, fast electron transfer is promoted between the surface 
of the electrode and analytes adsorbed on the thin film. In addition, electrochemical 
sensors produced from MPcs and other nanomaterials exhibit large electroactive surface 
areas for an improved immobilization of analytes compared to bare electrodes [46]. 

CoPcMWCNTs nanocomposites have recently been studied and exhibit improved 
capacitive behavior due to the enlarged surface area of the phthalocyanine and MWCNTs 
as well as the excellent conductivity and stability of cobalt and the MWCNTs [49]. The top 
qualities of MWCNTs, cobalt (Co), and Pc, are combined to construct electrochemical 
sensors with a high current response, huge capacitance, remarkable cycling stability, good 
repeatability and reproducibility, high sensitivity, and selectivity. Electrochemical sensors 
fabricated with CoPc-MWCNTs nanocomposites have been employed to determine 
numerous types of analytes with outstanding performances ranging from the low limit of 
detection, high sensitivity to a wider concentration range. Hence, the main reason for the 
wide usage of CoPc-MWCNTs nanocomposite in fabricating electrochemical sensors 
either alone or in combination with other conducting materials. In this review, we have 
extensively discussed the detection of various analytes using electrochemical sensors 
fabricated with CoPc-MWCNTs nanocomposite. Details of these are given below. 

  
(a) (b) 

Figure 1. Diagram of (a) CoPc and (b) MWCNTs. 

2. Application of CoPc-MWCNTs Nanocomposite as Electrochemical Sensing 
Material 
2.1. Detection of Ascorbic Acid, Dopamine, Paracetamol 

Kutluay and Aslanoglu [50] developed an electrochemical sensor to simultaneously 
detect dopamine (DA) and paracetamol (PAR) via chemical deposition. The SEM image 
of the prepared CoNPs/MWCNT/GCE clearly shows the surface of the MWCNTs having 
a spherical and evenly dispersed CoNPs. The CoNPsMWCNT-GCE could simultaneously 
detect DA and PAR in 0.1 M phosphate buffer saline PBS (pH 7) using square wave 
voltammetry (SWV). The electrode exhibited good linear concentration ranges of 0.05–3.0 
μM and 0.0052–0.45 μM for DA and PAR, respectively. Limit of detections (LOD) of 0.015 

Figure 1. Diagram of (a) CoPc and (b) MWCNTs.

Phthalocyanines (Pc) are macrocyclic compounds with a central planar molecule and
an 18-π-electrons electron system, which is delocalized on the carbon-nitrogen double
bond [22]. Phthalocyanines are one of the best chemicals with broad applications in electro-
catalysis, electrochemical sensors, electrochromism, photodynamic therapy, photovoltaic
cells, photosensitizer liquid crystal materials, and catalysts due to their high stability and
good spectral performance [23–25]. Pcs can bind to a variety of analytes in an indifferent
manner via the coordination interactions with the central metal, hydrogen bonds, and
van der Waals forces [26]. They are highly suitable for incorporating into electrochemical
sensors due to their significant chemical and thermal stability qualities. Additionally, the
chance to incorporate up to 70 different metal atoms into their rings and the ability to vary
the side chain substituents result in the formation of unique and efficient thin films with
varying degrees of stability, selectivity, and sensitivity [22].

Recently, metal phthalocyanines (MPcs) have received much interest in the field of
catalysis. The high catalytic activity of metal phthalocyanine is attributed to the cen-
tral metal ions [6,27]. Among these MPcs, cobalt phthalocyanine (CoPc) is one of the
bright catalysts for varied organic reactions because of its high activity and selectivity
of oxidation processes [6,28–30]. CoPc has been widely used as a mediator in electronic
devices and in constructing electrochemical sensors due to its electronic, catalytic, and
semi-conductor proprieties; besides, it can be anchored in cationic substrates by simple
adsorption processes [31,32]. Additionally, the rich redox chemistry of CoPc and its high
ability to transport electrons leading to its outstanding electrocatalytic activity for various
chemicals, has given it a wider usage in sensor fabrication [19].

The coordination environment of the central metal of the CoPc, as shown in Figure 1,
can be changed easily which effectively enhances its catalytic activity and selectivity. One of
the outstanding properties of CoPc, which makes it an excellent material in electrochemical
sensor fabrication, is the ease of replacement of organic groups in the axial and equatorial
positions of the complex, giving rise to several functionalities for anchoring complexes
in solid substrates [33–36]. In metal phthalocyanine, the central metal ions have six co-
ordination sites, in addition to four N coordination with the central metal, there are also
two coordination sites. The metal phthalocyanine can be fixed to the carrier in an axial
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coordination manner by introducing an axial ligand, improving the activity, selectivity, and
stability of the catalyst [37–40].

Multiple series of approaches have been developed for the synthesis of CoPcMWCNTs
including ultrasonic impregnation, solid phase synthesis, chemical deposition, amide bridge
synthesis, electropolymerization, and drop coating method. The formation of CoPcMWCNTs
nanocomposites is accomplished by the π-π interactions between the -COOH of acidified
functionalized MWCNT and the -NH2 terminal of CoPc composites. Through these π-π
interactions, CoPc molecules can be anchored on the wall of MWCNTs by axial coordination
to achieve molecular dispersion of CoPc on MWCNTs. The axial coordination of metal
phthalocyanine also provides another driving force for immobilization, which invariably
increases electrocatalytic activity, selectivity, and stability of the nanocomposites. Additionally,
the high solubility of CoPc offers a huge advantage in fabricating several sensors due to its
film forming capacity with a positively charged polyelectrolyte, which are widely used in the
layer-by-layer (LbL) method and LB method of film forming [41–43].

Researchers have found that phthalocyanine–CNT complexes exhibit excellent cat-
alytic properties of Pc while retaining all the electronic properties of carbon nanotubes [44].
Moreover, Pcs have been widely studied for functionalizing CNTs because they demon-
strate rich electronic and photoelectronic properties, which make CNT-based devices more
efficient. Recent reports show that MPc-CNT hybrids exhibit enhanced electrochemical
responses compared to CNTs or MPc alone [45]. According to reports in the literature,
redox overpotentials are decreased, and electrode faradaic currents are increased when thin
films of MPcs are immobilized on working electrodes together with other highly conductive
materials [46,47]. Noteworthy, incorporating metallic nanoparticles and carbon-based com-
ponents (graphene, sheets, MWCNTs, quantum dots, SWCNTs) into the MPc-based film
increases its conductivity [48]. Through the use of these conductivity-enhancing materials,
fast electron transfer is promoted between the surface of the electrode and analytes ad-
sorbed on the thin film. In addition, electrochemical sensors produced from MPcs and other
nanomaterials exhibit large electroactive surface areas for an improved immobilization of
analytes compared to bare electrodes [46].

CoPcMWCNTs nanocomposites have recently been studied and exhibit improved
capacitive behavior due to the enlarged surface area of the phthalocyanine and MWCNTs
as well as the excellent conductivity and stability of cobalt and the MWCNTs [49]. The
top qualities of MWCNTs, cobalt (Co), and Pc, are combined to construct electrochemical
sensors with a high current response, huge capacitance, remarkable cycling stability, good
repeatability and reproducibility, high sensitivity, and selectivity. Electrochemical sensors
fabricated with CoPc-MWCNTs nanocomposites have been employed to determine nu-
merous types of analytes with outstanding performances ranging from the low limit of
detection, high sensitivity to a wider concentration range. Hence, the main reason for the
wide usage of CoPc-MWCNTs nanocomposite in fabricating electrochemical sensors either
alone or in combination with other conducting materials. In this review, we have exten-
sively discussed the detection of various analytes using electrochemical sensors fabricated
with CoPc-MWCNTs nanocomposite. Details of these are given below.

2. Application of CoPc-MWCNTs Nanocomposite as Electrochemical Sensing Material
2.1. Detection of Ascorbic Acid, Dopamine, Paracetamol

Kutluay and Aslanoglu [50] developed an electrochemical sensor to simultaneously
detect dopamine (DA) and paracetamol (PAR) via chemical deposition. The SEM image of
the prepared CoNPs/MWCNT/GCE clearly shows the surface of the MWCNTs having a
spherical and evenly dispersed CoNPs. The CoNPsMWCNT-GCE could simultaneously
detect DA and PAR in 0.1 M phosphate buffer saline PBS (pH 7) using square wave voltam-
metry (SWV). The electrode exhibited good linear concentration ranges of 0.05–3.0 µM
and 0.0052–0.45 µM for DA and PAR, respectively. Limit of detections (LOD) of 0.015 and
0.001 µM were obtained for DA and PAR, respectively. The developed electrode exhibited
good stability, reproducibility, repeatability, and high recovery. An interference study
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showed that UA and AA did not affect the detection of PAR and DA. This technique
accomplished the determination of PAR and DA in pharmaceutical drugs.

Xia Zuo and his research group [51] fabricated CoPc-MWCNTs/GCE electrode via a
drop coating method to determine ascorbic acid (AA). The fabrication of CoPc-MWCNTs
nanocomposites was actualized by exploiting the advantage of strong non-covalent inter-
actions between the highly delocalized π-bonding network of MWCNTs and the metal
phthalocyanines conjugated ring. This consequently influenced the electrode performances
having strong electrocatalytic activity toward AA with the oxidation potential of the AA
simultaneously decreased. The study revealed that the fabricated electrode exhibited en-
hanced electrocatalytic behavior towards the oxidation of ascorbic acid in 0.1 M PBS at
a pH of 7. The biosensor offered an LOD of 1 µM and a wider concentration range of
1.0 × 10−5 M to 2.6 × 10−3 M. The CoPc-MWCNTs/GCE electrode is characterized by
high stability, high reproducibility, and fast response time. The mechanism of oxidation
of AA at CoPc-MWCNTs/GCE involves two-step electrocatalysis. The first step is the
oxidation of CoIIPc to CoIIIPc while the second step is the chemical oxidation of AA and
the regeneration of CoIIPc. These are illustrated in Scheme 1 below.
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Scheme 1. Chemical oxidation of AA.

A series of complex interactions occurs between the central metal ion and the acti-
vated AA as it diffuses from the bulk solution to the sensor surface and is adsorbed on
the macrocyclic 18-electron conjugated system of phthalocyanine that is bonded to the
MWNTs surface. The CoIII/CoII absorb the electrons lost from AA and transfer them to
MWNTs on the hydrophobic surface of the GCE. The authors also established that the
CoPc-MWCNTs/GCE modified electrode exhibited good selectivity for AA determination
in the presence of glucose, potassium chloride, l-phenylalanine, citric acid, and uric acid.

Jilani et al. [52] fabricated a GCE/MWCNT-CoTMBANAPc electrode to simultane-
ously detect ascorbic acid and dopamine in PBS at a pH of 7.0 via AP and differential pulse
voltammetry (DPV). The Tetra8[(E)(4methoxybenzylidene)amino] naphthalene1amine
cobalt (II) phthalocyanine (CoTMBANAPc) was synthesized from cobalt (II) tetracarboxylic
acid phthalocyanine (CoTCAPc) via amide bridge. The oxidation process of AA and DA
at GCE/MWCNT-CoTMBANAPc electrode surface involves a three-step electrocatalytic
process. The first two steps are the same as those explained in Scheme 1 while the third step,
which involves the chemical oxidation of DA and the regeneration of CoIIPc, is illustrated
in Scheme 2 below.
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The fabricated sensor was able to determine both AA and DA with a low LOD of
0.33 and 6.6 µM for DA and AA, respectively, and a limit of quantification from 1 to 15 µM.
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The authors reported that the fabricated sensor exhibited high selectivity for AA and
DA amidst interferents, such as glycine, glucose, hydrogen peroxide, tyrosine, and L-
cysteine. The stability, reproducibility, and sensitivity of the fabricated electrode were good.

Another CoPc-MWCNTs-based sensor for dopamine and paracetamol detection from
Mounesh and Reddy [53] was produced by drop-casting tetra 1-benzyl-1H-pyrazol-3-
carboxamide cobalt(II) phthalocyanine (CoTBPCAPc) with MWCNTs on a GCE’s surface.
The electrocatalytic mechanism of DA at CoTBPCAPc/MWCNTs/GCE is illustrated with
Equations (1) and (2). CoPc(III) oxidizes dopamine to dehydrodopamine (DHDA) by the
center Co ion of the phthalocyanine and then regenerates CoPc(II).

CoPc(II)→ CoPc(III) + e− + H+ (1)

2CoPc(III) + DA→ 2CoPc(II) + DHDA + 2H+ (2)

In 0.1 M PBS (pH 7), the CoTBPCAPc/MWCNTs/GCE electrode’s electrocatalytic
activity towards DA and PAR was performed using cyclic voltammetry (CV), DPV, and
chronoamperometry (CA). The developed sensor displayed excellent DA and PAR detection
performance in linear ranges of 50–750 nM, with a LODs of 17 and 19 nM, respectively.
The authors described the sensor as having high stability, excellent reproducibility, and
repeatability. When applied to detect DA and PAR in both commercial and urine samples,
the sensor delivered satisfactory results.

Again, Moraes and his research team [54] used CoPcMWCNTs/GCE modified elec-
trodes to fabricate an electrochemical sensor to detect dopamine in ascorbic acid. Under
optimum conditions, in 0.2 M PBS (pH 4.0), dopamine was successfully detected by the
CoPcMWCNTs/GCE modified electrode via DPV with a low LOD of 0.256 µM and a wide
LDR of 3.11–93.2 µM. The authors described the sensor as reliable for determining DA due
to its exceptional qualities, including good stability, repeatability and reproducibility, high
sensitivity, and selectivity.

A summary of the analytes detected with CoPc-MWCNT-modified electrodes with
the techniques employed, LOD, and LDR is given in Table 1 below.

Table 1. Detection of ascorbic acid, dopamine, and paracetamol with CoPc-MWCNTs modified
electrodes.

Electrode Analyte Technique LOD LDR Ref
µM µM

CoNPs/MWCNT/GCE Dopamine SWV 0.015 0.015–3 [50]
Paracetamol SWV 0.001 0.005–0.45 [50]

CoPc-MWCNTs/GCE Ascorbic acid CV 1 10–2600 [51]
MWCNT-CoTMBANAPc/GCE Ascorbic acid AP 6.6 7.5 × 10−3–0.07 [52]

Dopamine DPV 0.33 7.5 × 10−3–0.07 [52]
CoTBPCAPc/MWCNTs/GCE Dopamine CA 0.017 0.05–0.75 [53]

Paracetamol CA 0.019 0.05–0.75 [53]
CoPcMWCNTs/GCE Dopamine DPV 0.256 3.11–93.2 [54]
Pt-CoPc-MWCNTs/GCE Dopamine SWV 2.6 5–170 [55]

2.2. Detection of Hydrogen Peroxide, Nitrite, and Heavy Metals

Mounesh and Reddy [56] accomplished the fabrication of CoPcMWCNTs/GCE for the
detection of heavy metals (Pb2+ and Cd2+) in water. Electro-spraying was specifically used
to modify the CoTEIndCAPc/MWCNTs on the GCE since it forms particles with a sizable
specific surface area that can potentially provide a fast electron transfer and ultra-high
sensitivity for Cd2+ and Pb2+ detection. The modified CoPc-MWCNTs/GCE detected both
Pb2+ and Cd2+ with very low LOD of 9 and 10 nM in PBS at a pH of 7.0 via DPV and
CA techniques. The electrocatalytic property of the CoPc-MWCNTs/GCE electrode was
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characterized by high reproducibility and repeatability. This sensor displayed an excellent
selectivity for both Cd2+ and Pb2+ in the presence of other similar ions (Al3+, Ca2+, Cu2+,
Mg2+, Mn2+, Zn2+, As3+, Cr3+, and Fe3+). The sensor’s excellent selectivity for Cd2+ and
Pb2+ ions is attributed to the selective movement of the analyte ions from the buffer solution
to the electrode surface owing to the stronger affinity of the CoTEIndCAPc/MWCNTs/GCE
electrode for Cd2+ and Pb2+ ions. The electrode was also applied to determine Pb2+ and
Cd2+ in river water.

Mounesh and Reddy [26] fabricated another CoPc-MWCNTs/GCE to simultaneously
detect hydrogen peroxide (H2O2) and nitrite using CV, CA, and DPV techniques. The best
electrocatalytic oxidation of CoPc-MWCNTs/GCE was achieved in PBS solution (pH 7.0)
with high stability, repeatability, reproducibility, and sensitivity. The mechanism of NO2
and H2O2 oxidation at the CoTL-MethPc/MWCNTs/GCE are given in Equations (3)–(5).

CoPc(II)→ CoPc(III) + e− + H+ (3)

2CoPc(III) + NO2 + H2O→ 2CoPc(II) + NO3 + 2H+ (4)

2CoPc(III) + H2O2 → 2CoPc(II) + 2H2O + 2H+ (5)

The authors found that the electrocatalytic oxidation of CoPc-MWCNTs/GCE towards
nitrite and hydrogen peroxide was diffusion controlled with specific adsorption of electro-
redox process and intermediates products. The electrode offered a good linear concentration
between 0.1 and 0.8 µM and low LOD of 10 nM and 30 nM for H2O2 and nitrite via CV. The
developed sensor utilized the advantage of simple preparation, low cost, high selectivity,
and real sample application (in beetroot vegetable).

Lu et al. [57] presented a nitrite sensor using a CoPcMWCNTs nanocomposite GCE-
modified electrode. Using the DPV technique, the developed CoPcMWCNTs/GCE elec-
trode detected nitrite in 0.1 M PBS at a pH of 7.4 in a linear dynamic range (LDR) from
0.01 to 1050 mM and a detection limit of 2.11 µM. Thus, the electrode is said to be a facile,
sensitive, and rapid electrochemical technique for detecting nitrite. Aside from this, it also
offers good stability, sensitivity, and reproducibility. The outstanding performance of the
fabricated sensor is attributed to the synergistic interaction of MWCNT and CoPc, thereby
demonstrating the potential applications of CoPcMWCNTs/GCE in real-life biosensing
analysis. The sensor’s selectivity investigation showed that nitrite detection was unaffected
by the presence of these interferents (CH3COONa, NaCl, NaNO3, Na2SO4, KCl, ascorbic
acid, and glucose).

Table 2 below summarizes the analytes detected with CoPc-MWCNT-modified elec-
trodes with the techniques employed, LOD, and LDR.

Table 2. Detection of hydrogen peroxide, nitrite, and heavy metals with CoPc-MWCNTs modified
electrodes.

Electrode Analyte Technique LOD LDR Ref
µM µM

CoPc-MWCNTs/GCE H2O2 CV 0.01 0.1–0.8 [26]
Nitrite CV 0.03 0.05–0.75 [26]

CoPc-MWCNTs/GCE Cd2+ CV 0.01 0.1–1 [56]
DPV 0.006 0.1–1 [56]
CA 0.005 0.1–1 [56]

Pb2+ CV 0.009 0.1–1 [56]
DPV 0.005 0.1–1 [56]
CA 0.01 0.1–1 [56]

CoPcMWCNTs/GCE Nitrite DPV 2.11 10–1.1 × 106 [57]
CoTPEG2BAPc-MWCNTs/GCE H2O2 CV 1.5 5–25 [58]

DPV 5 2–22 [58]
CA 10 5–50 [58]
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2.3. Detection of Carbaryl, Acetaminophen, Epinephrine, and Procalcitonin

Moraes and his research group [59] fabricated a sensor by modifying GCE with
MWCNTs/CoPc nanocomposites, which was prepared through ultrasonic impregnation
of CoPc onto the MWCNTs. The fabrication and modification process of CoPcMWCNTs
nanocomposite with GCE is shown in Figure 2. The fabricated MWCNTs/CoPc/GCE film
electrode was employed to detect carbaryl in acetate buffer solution (pH 4.0) via SWV. The
sensor gave an LDR and LOD of 0.33–6.61 µM and 5.46 ± 0.02 nM, respectively. The sensor
was proven suitable in carbaryl-spiked water samples.
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Aragao and his research group [60] developed an electrochemical sensor for diethyl-
stilbestrol (DES) detection by modifying GCE with gold (Au) nanoparticles and CoPcMWC-
NTs nanocomposites via electrodeposition. Prior to this, the synthesis of the nanocompos-
ites was achieved through an ultrasonication method. The mechanism of the oxidation of
DES molecules on the CoPcMWCNTs/AuNPTs/GCE (which was mainly an adsorption-
controlled process) involves two-step processes with one electron each. The first step
is the oxidation of neutral DES molecule to phenoxy ion, while the second step is the
formation of phenoxonium anion. The developed CoPc-fMWCNTs/Au/GCE catalyzed
diethylstilbestrol’s electrochemical oxidation and enhanced its sensitivity compared with
the unmodified electrode. Through the SWV technique, DES was determined in Britton–
Robinson (BR) buffer solution (pH 10) with an LOD of 0.199 µM and quantification limits
of 0.664 µM. An interference study showed that most ions and molecules (K+, Na+, Ca2+,
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Mg2+, Zn2+, Pb2+, Al3+, Cl−, NO3
−, SO4

−, H2PO4
−, ascorbic acid, citric acid, glucose, uric

acid, dopamine, and urea) did not interfere with the detection of DES, indicating the good
anti-interference ability of the electrode. Good reproducibility and repeatability exhibited
by the developed electrode indicates the suitability of the electrode modification for DES
detection. The proposed sensor was successfully employed to determine DES in meat and
water with satisfying outcomes, indicating that the developed sensor is reliable for DES
detection in complex samples.

To present a sensing platform for acetaminophen detection, Kantize et al. [46] ultra-
sonically fabricated CoPc/MWCNTs nanocomposites which were then modified on a GCE
using a drop-dry method. The CoPcMWCNTs/GCE electrode exhibited good stability
and sensitivity in CV experiments. The best electrocatalytic behavior of the electrode for
acetaminophen detection was achieved in 0.1 M PBS at a pH of 7.4, giving an LOD of 1 µM
and LDR of 0.975–1000 µM. The fabricated electrodes also showed excellent selectivity
when tested in various pharmaceutical interferent species.

Furthermore, Holanda and his research group [61] used functionalized multiwalled
carbon nanotubes, gold nanoparticles, cobalt (II) phthalocyanine, and GCE for fabricating
a sensor for acetaminophen detection. The preparation involves ultrasonic mixing of
fMWCNT and CoPc in dimethylformamide (DMF) followed by drop-drying the fMWCNT-
CoPc suspension on the AuNPs/GCE to obtain the fMWCNT-CoPc/AuNPs/GCE. A very
low charge transfer resistance (Rct) value obtained for the fMWCNT-CoPc/AuNPs/GCE
modified electrode via an EIS experiment confirms that the modification of fMWCNT-CoPc
and AuNPs onto the GCE significantly enhanced the electron transfer, predominantly due
to the high conductivity of AuNPs and the improved catalytic activity from the synergy
effect between CoPc and fMWCNTs since the CoPc acts as a charge transfer mediator. The
mechanism oxidation of acetaminophen on the fabricated fMWCNT-CoPc/AuNPs/GCE
is illustrated in Scheme 3 below. The fMWCNT-CoPc/AuNPs/GCE was used to detect
acetaminophen in McIlvaine buffer solution (pH 5) by SWV. The fabricated sensor reached
a detection limit of 0.135 µM within an LDR from 1.49 to 47.6 µM. To assess the usefulness
of the fabricated sensor, acetaminophen was detected in four various sample matrices of
commercial pharmaceuticals with good recovery.
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Scheme 3. Chemical oxidation of acetaminophen.

Another electrochemical sensor was produced by Moraes and his research team [62]
for the detection of epinephrine (EP) in urine using a paraffin composite electrode PCE
modified with cobalt phthalocyanine and multiwalled carbon nanotubes. The mecha-
nism of EP oxidation on the CoPcMWCNT/PCE electrode is illustrated in Scheme 4
below. In 0.1 M PBS at a pH of 6.0, the CoPcMWCNT/PCE electrode successfully detected
epinephrine via DPV with an LOD of 15.6 nM and a wide LDR of 1.33–5.50 µM. The authors
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established that the sensor is reliable for determining epinephrine due to its good stability,
repeatability and reproducibility, sensitivity, and selectivity.
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Agboola and his research team [63] constructed another sensing platform for epinephrine
detection by modifying edge-plane pyrolytic graphite (PG) electrodes with CoPc and acid-
functionalized SWCNTs. The modification process involves the drop-dry method and elec-
trodeposition. SWCNTs were first modified on the PG electrode by the drop-dry method,
followed by the electrodeposition of the CoPc complex on the PG containing SWCNT. The
mechanism oxidation of EP on the PG/SWCNTs-CoPc electrode as illustrated in Scheme 5
below involves the oxidation of epinephrine to epinephrinequinone via removal of the two
protons of the enol end of epinephrine. The edge-plane PG/SWCNTs-CoPc electrode dis-
played suitable electrocatalytic properties towards epinephrine oxidation with enhanced peak
currents. At a pH of 7.4 in 0.1 M PBS, the fabricated sensor detected epinephrine with high
sensitivity, low LOD, and good LOQ of 8.71± 0.31 A.M−1, 0.04 µM, and 1.31 µM, respectively.
Good reproducibility, high stability, high selectivity, and sensitivity are the attributes of the
electrode. It was also found that ascorbic acid did not interfere with epinephrine analysis. The
sensor was employed to determine epinephrine in epinephrine tartaric acid injection solution
with good recovery.
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Yang and his research group [64] constructed an immunosensor using nanoCoPc-
fMWCNTs/GCE to detect procalcitonin (PCT). Figure 3 illustrates the stepwise preparation
of the nanoCoPc-fMWCNTs. The electrochemical study was performed via CV, while the
PCT detection was performed in 0.1 M PBS at a pH of 7.4 using DPV. CoPc-MWCNTs/GCE
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produced electrochemical signals without needing additional redox mediators or labeling.
Additionally, a pseudobienzyme system based on the catalytic properties of choline oxidase
(ChOx) and CoPc was made to improve the sensor’s sensitivity. The authors found that
the fabricated immunosensor demonstrated good performance for PCT with a low LOD
of 1.23 pg mL−1 and a wide LDR of 0.01–100 ng mL−1. The fabricated immunosensor
is a promising sensor for electrochemical detection of PCT in real biological samples
(human serum).

Biosensors 2022, 12, 850 10 of 20 
 

Yang and his research group [64] constructed an immunosensor using nanoCoPc-
fMWCNTs/GCE to detect procalcitonin (PCT). Figure 3 illustrates the stepwise 
preparation of the nanoCoPc-fMWCNTs. The electrochemical study was performed via 
CV, while the PCT detection was performed in 0.1 M PBS at a pH of 7.4 using DPV. CoPc-
MWCNTs/GCE produced electrochemical signals without needing additional redox 
mediators or labeling. Additionally, a pseudobienzyme system based on the catalytic 
properties of choline oxidase (ChOx) and CoPc was made to improve the sensor’s 
sensitivity. The authors found that the fabricated immunosensor demonstrated good 
performance for PCT with a low LOD of 1.23 pg mL−1 and a wide LDR of 0.01–100 ng mL−1. 
The fabricated immunosensor is a promising sensor for electrochemical detection of PCT 
in real biological samples (human serum). 

 
Figure 3. Stepwise preparation of the nanoCoPc-fMWCNTs. Reprinted with permission from ref. 
[64]. Copyright 2022, Elsevier. 

The determination of nevirapine in the drug sample was performed by Kantize et al. 
[65] using a polymeric CoPc-nafion-CNTs composite modified on a platinum electrode. 
This was accomplished by consecutive drop-casting of a nanocomposite consisting of 
fMWCNTs and tetra-substituted coumarin CoPc (CoPc-cou), followed by immobilizing 
5% Nafion perfluorinated resin solution (Naf-5). The CoPc-cou-f-MWCNTs/Naf-5/Pt 
electrode was used to determine antiretroviral drug nevirapine (NVP) in PBS (pH 12) via 
linear sweep voltammetry (LSV) and chronoamperometry. The LSV revealed an LOD and 
LDR of 0.2 nM and 0.6 nM to 30 μM, whereas the CA offered an LOD and LDR of 0.21 nM 
and 2.5 to 30 μM. This sensor demonstrated a better selectivity for NVP in the presence of 
interferents (uric acid, ascorbic acid, cysteine, dopamine, metronidazole) with very good 
recovery in spiked river water sample analysis. 

In Table 3 below, the summary of the analytes detected with CoPc-MWCNT-
modified electrodes with the techniques employed, LOD, and LDR is given. 
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The determination of nevirapine in the drug sample was performed by Kantize et al. [65]
using a polymeric CoPc-nafion-CNTs composite modified on a platinum electrode. This was
accomplished by consecutive drop-casting of a nanocomposite consisting of fMWCNTs and
tetra-substituted coumarin CoPc (CoPc-cou), followed by immobilizing 5% Nafion perflu-
orinated resin solution (Naf-5). The CoPc-cou-f-MWCNTs/Naf-5/Pt electrode was used to
determine antiretroviral drug nevirapine (NVP) in PBS (pH 12) via linear sweep voltammetry
(LSV) and chronoamperometry. The LSV revealed an LOD and LDR of 0.2 nM and 0.6 nM to
30 µM, whereas the CA offered an LOD and LDR of 0.21 nM and 2.5 to 30 µM. This sensor
demonstrated a better selectivity for NVP in the presence of interferents (uric acid, ascorbic
acid, cysteine, dopamine, metronidazole) with very good recovery in spiked river water
sample analysis.

In Table 3 below, the summary of the analytes detected with CoPc-MWCNT-modified
electrodes with the techniques employed, LOD, and LDR is given.
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Table 3. Detection of acetaminophen, carbaryl, DES, and epinephrine with CoPc-MWCNT-modified
electrodes.

Electrode Analyte Technique LOD LDR Ref
µM µM

CoPc-fMWCNTs/Au/GCE DES SWV 0.199 0.7–5.66 [60]
CoPcMWCNTs/GCE Acetaminophen CV 1 1–1000 [46]
MWCNTs/CoPc/GCE Carbaryl SWV 0.006 0.33–6.61 [59]
fMWCNT-CoPc/AuNPs/GCE Acetaminophen SWV 0.135 1.49–47.6 [61]
CoPcMWCNT/PCE Epinephrine DPV 0.016 1.33–5.50 [62]
SWCNTs-CoPc/PG Epinephrine CA 0.04 [63]
CoPc-MWCNTs/GCE Procalcitonin DPV [64]
CoPc-cou-fMWCNTs/Naf-5/Pt Nevirapine LSV 0.0002 0.0006–30 [65]

CA 0.00021 2.5–30 [65]

2.4. Detection of Uric Acid, Glutathione, and Cysteine

Pari and Reddy [66] developed a simple and sensitive method for uric acid (UA) de-
termination by modifying GCE with 2,4-dibromo-6-aniline-tetra (DBCMAT) substituted on
CoPcMWCNTs via drop casting. Under optimum conditions, UA was determined in 0.1 M PBS
at a pH of 7 via three techniques—CV, CA, and DPV. The DBCMAT-CoPc/MWCNTs/GCE-
modified electrode demonstrated enhanced electrocatalytic activity and a lower potential for
UA oxidation. The electrode delivered an LOD of 0.03 (CV), 0.066 (DPV), and 0.016µM(CA) and
an LDR of 0.1–1.8 (CV), 0.2–2.8 (DPV), and 0.05–0.8 µM(CA) with a sensitivity of 131.85 (CV),
22.634 (DPV), and 2.509 µAµM−1cm−2 (CA). The developed sensor demonstrated unique
benefits, including low operating potential, good stability, high sensitivity, and remarkable
repeatability and reproducibility for uric acid detection. In the presence of these molecules—
cysteine, glucose, glycine, H2O2, and L-tyrosine—it was discovered that the sensor was highly
selective for UA. The fabricated electrode was expediently applied for UA and DA determina-
tion in urine samples with good results. This electrode offers a lower LOD compared to the
obtained result in [67].

Giarola and Pereira [67] further developed a voltammetric sensor to detect uric acid
using CoPc-MWCNTs/GCE. Before this, the CoPc-MWCNTs composites were prepared
by ultrasonic agitation of CoPc and MWCNTs in DMSO. The electrochemical behavior of
UA at the CoPc-MWCNTs/GCE was investigated in 0.1 M PBS at a pH of 7 via CV. Under
optimal conditions, the sensor delivered a wide LDR of 125–4000 µM with LOD and limit of
quantitation (LOQ) of 260 and 860 µM, respectively, via the SWV technique. The electrode
is characterized by good stability, sensitivity, and reproducibility. The presence of DA and
AA do not interfere with UA detection, portraying good selectivity of the sensor. The
fabricated sensor was successfully employed to determine UA in human urine samples.

Wang and his research group [55] investigated the fabrication of Pt-CoPc-MWCNTs/GCE
to detect UA and DA simultaneously. The modified electrode was made by immobilizing GCE
with MWCNTs covered with CoPc composite and platinum nanoparticles via in situ synthesis.
The electrocatalyst displayed good electrochemical activity for uric acid (UA) and dopamine
(DA). The LOD obtained for UA and DA were 1.4 and 2.6 µM, while the linear responses
ranged from 5 to 100 µM and 5 to 170 µM, respectively. Notably, AA has no interference while
simultaneously detecting UA and DA.

Gutierrez et al. [68] presented a GCE modified with pyrrole (Ppy), CoPc, and MWCNTs
via electropolymerization to determine glutathione and cysteine. The mechanism oxidation
of thiols in alkaline media as illustrated in Equations (6)–(9) involves the formation of a
bond between the metal center in the phthalocyanine and the sulfur atom in the thiolate.
The best electrocatalytic activity of the CoPc-MWCNTs-PPy/GCE electrode towards the
analytes was obtained in 5 mM ferrocyanide solution in 0.5 M NaOH. The sensor delivered
a sensitivity, LOD, and limit of quantification of 2.930 µA/mM, 0.03 mM, and 0.10 mM,
respectively, for cysteine. For glutathione, the sensor offered 1.15 µA/mM, 0.02 mM, and
0.66 mM for sensitivity, LOD, and limit of quantification, respectively. Despite the low
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sensitivity of the electrode, it offered a low LOD and limit of quantification. Hence, they
are good candidates as voltammetric sensors for biological samples.

RSHsol + OH−� RS−sol + H2O (6)

[M(II)Pc]film + RS−sol → [R-S-M(I)Pc]−film (7)

[R-S-M(I)Pc]−film → [M(II)Pc]film + RS−sol + e− (8)

RS−sol + RS−sol → RS-RSsol (9)

where RSH represents thiol, MPc denotes metallophthalocyanine, and “film” and “sol” rep-
resent the film on the electrode and species in solution, respectively. Step 4 is rapid and
irreversible. Step 2 is the most important, which involves Co-S bond formation, with a partial
oxidation of the bound thiol molecule and a partial reduction of the metal center in the catalyst.

A similar electrochemical sensor for glutathione and l-cysteine detection was also
fabricated by Argote et al. [69] by immobilizing CoPc and MWCNTs on GCE via electropoly-
merization of the pyrrole surfactant. The hybrid sensor displayed a good electrocatalytic
behavior towards the oxidation of glutathione and l-cysteine in 0.1 M NaOH. The hy-
brid PyC10MIM+Br−-CoPc-MWCNT/GCE electrode offered a sensitivity of 5.240 and
6.733 µA/mM for glutathione and l-cysteine, respectively. The LOD and LOQ obtained
for glutathione were 0.013 and 0.040 mM, respectively, while 0.014 and 0.043 mM were
obtained for l-cysteine. The authors established that the pyrrole surfactant-derived hybrid
electrodes have substantially smaller values, making them better suited for fabricating
electrochemical thiols sensors in aqueous solutions. A low LOD obtained by this sensor is
proof of its reliability for detecting thiols in biological samples. This hybrid sensor delivered
a higher sensitivity with a better LOD than the results obtained in [68].

Sun and his research team [70] utilized the synergistic effect between CoPc and fMWC-
NTs to develop an aptasensor for kanamycin detection. The aptasensor was made by
modifying a gold electrode (GE) surface with CoPc-MWCNTs nanocomposites. Under
optimal conditions, in 0.1 M PBS at a pH of 7.4 via DPV, the CoPc-fMWCNTs/GE electrode
displayed excellent stability, good reproducibility and repeatability, high sensitivity, high
specificity, an LDR of 0.15–10 µM and a low detection limit (0.0058 µM). The fabricated
sensor demonstrated a good selectivity for kanamycin amidst interferents such as chlorte-
tracycline, chloromycetin, neomycin sulfate, and oxytetracycline. The aptasensor was
successfully employed to detect kanamycin in the spiked milk sample.

A summary of the analytes detected with CoPc-MWCNTs modified electrodes with
the techniques employed, LOD, and LDR is given in Table 4 below.

Table 4. Detection of cysteine, glutathione, uric acid, and kanamycin with CoPc-MWCNT-modified
electrodes.

Electrode Analyte Technique LOD LDR Ref
µM µM

Pt-CoPc-MWCNTs/GCE Uric acid SWV 1.4 5–100 [55]
DBCMAT-CoPc/MWCNTs/GCE Uric acid CV 0.03 0.1–1.8 [66]

DPV 0.066 0.2–2.8 [66]
CA 0.016 0.05–0.8 [66]

CoPc-MWCNTs/GCE Uric acid SWV 260 125 to 4000 [67]
CoPc-MWCNTs-PPy/GCE Glutathione CV 20 1–5 × 103 [68]

Cysteine CV 30 1–5 × 103 [68]
PyC10MIM+Br−-CoPc-MWCNT/GCE Glutathione CV 13 [69]

Cysteine CV 14 [69]
CoPc-fMWCNTs/GE Kanamycin DPV 0.0058 0.01–0.15 [70]
TPLLCA-CoPc/MWCNTs/GCE Cysteine CV 1.3 × 10−3 2–10 × 10−3 [71]

DPV 1 × 10−3 1–10 × 10−3 [71]
CA 3.3 × 10−3 5–50 × 10−3 [71]
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2.5. Detection of lactic Acid, Glucose, and Hydrazine

In an attempt to detect lactic acid, Shao and group [19] fabricated a novel sensor by
modifying GCE with cobalt polyphthalocyanine (CoPPc) nanocomposite and MWCNTs-
COOH. The reduction mechanism of lactic acid on the CoPPc/MWCNTs-COOH/GCE surface
is illustrated in Scheme 6 below. The electrocatalytic activities of the CoPPc/fMWCNTs/GCE
towards lactic acid detection was assessed via CV in 0.1 M PBS at a pH of 4. The fabricated
electrode exhibited outstanding electrochemical performance for lactic acid reduction over a
wide LDR of 10–240 µM and a low LOD of 2 µM. It also displayed a high selectivity against
common interfering molecules (glucose, ascorbic acid, sodium chloride, dopamine, hydrogen
peroxide, and uric acid). Notably, the sensor was effectively used for lactic acid determination
in rice wine samples, demonstrating the excellent potential for quick monitoring applications.
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Porto and his group [72] developed a sensor to determine pyridoxine by modifying a
pyrolytic graphite electrode (PGE) with CoPcMWCNTs composite. The mechanism of the
pyridoxine oxidation on the surface of the CoPcMWCNT/PGE is illustrated in Scheme 7
below. Under optimum conditions of 0.3 M PBS at a pH of 5.5, the CoPcMWCNT/PGE
was employed to detect pyridoxine (vitamin B6) via the DPV technique. The LOD, LOQ,
and LDR obtained were 0.50 µM, 1.67 µM, and 10–400 µM, respectively. It also offers the
benefits of a quick response, low cost, and a sensitivity of 0.037 µAL µmol−1, testifying to
the technique’s excellent sensitivity. The sensor was conveniently applied for pyridoxine
determination in real samples of pharmaceutical formulations (RSD < 5%), indicating the
suitability of the developed electrode for accurate pyridoxine detection in pharmaceutical
formulations containing pyridoxine.
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Mounesh and his research team [73] developed an amperometric sensor for glucose
by modifying tetracinnamide cobalt phthalocyanine (TCIDCoPc) and MWCNTs on GCE.
The modified TCIDCoPc-MWCNTs/GCE exhibited excellent electrocatalytic properties
and reduced potential for glucose oxidation. Under optimized conditions, at a pH of 7
in 0.1 M PBS, the developed sensor gave a wide LDR from 2 to 20 (CV); 2 to 12 (DPV);
5 to 50 (CA) mM/L, detection limit of 0.9 (CV); 5.33 (DPV); 6 (CA) mM, and sensitivity
of 1.905 (CV); 3.483 (DPV); and 1.035 (CA) mA mM−1 cm−2. The fabricated sensor was
characterized by quick response time, good sensitivity, reduced working potential, and
good reproducibility and repeatability. The developed sensor also demonstrated a better
selectivity for glucose amidst interfering biological species such as UA, DA, and AA.

In another study conducted by Devasenathipathy and his team [74], an amperometric
biosensor based on MWCNT cobalt tetrasulfonated phthalocyanine (CoTsPc-MWCNT)
nanocomposite-modified GCE was fabricated for glucose detection. The fabricated elec-
trode tagged MWCNT–CoTsPc/GCE displayed an excellent electrocatalytic activity to-
wards detecting glucose in 0.1 M NaOH using an amperometry technique. A reasonable
sensitivity (122.5 µA mM−1 cm−2), a wide LDR (10 µM–6.34 mM), along with an LOD
of 0.14 µM were reported for this sensor. The proposed sensor is characterized by high
stability, good sensitivity, low working potential, repeatability, reproducibility, and quick
response time (2 s). Amperometry study established that the fabricated sensor has high se-
lectivity for detecting glucose amidst interfering molecules such as AA, DA, UA, galactose,
fructose, lactose, and sucrose. The sensor was practically employed to detect glucose in
serum samples from human blood.

Mounesh and Reddy [58] developed another amperometric sensor for hydrogen per-
oxide (H2O2) and glucose by modifying GCE with synthesized tetra-cobalt(II) carboxamide-
PEG2-biotin phthalocyanine composite (CoTPEG2BAPc) and MWCNTs via drop-casting.
Under optimized conditions of pH 7 in 0.1 M PBS, the developed biosensor delivered a wide
LDR of (CA: 5–50, DPV: 2–22; CV: 5–25 µmol) and (CA: 5–50, DPV: 2–22; CV: 2–16 µmol)
for H2O2 and glucose, respectively, LOD of (CA: 12.5; DPV: 2; CV: 0.33 µM) and (CV: 1.5;
DPV: 5; CA: 10 µM) for glucose and H2O2, and a good sensitivity of (CA: 0.101; DPV:
1.978; CV: 0.947 µA µM−1 cm−2) and (CA: 0.162; DPV: 1.888; CV: 1.250 µA µM−1 cm−2)
for glucose and H2O2. The biosensor is characterized by a rapid response time, good
sensitivity, repeatability, and reproducibility. It also demonstrated a high selectivity for
glucose and H2O2 amidst interfering molecules such as L-cysteine, glycine, DA, UA, and
AA. The remarkable selectivity of the fabricated sensor is attributed to the comparatively
low potential for detection, which greatly minimizes the responses of typical electroactive
interference. Likewise, the addition of MWCNTs to the modified electrode also helped
to reduce interference since their neutral charge prevented interfering molecules from
penetrating the electrode’s surface. The practicability of the electrode was demonstrated
by the successful detection of H2O2 and glucose in human blood samples and contact lens
care solution, respectively.

Again, Mounesh et al. [71] fabricated a sensor to detect hydrazine and L-cysteine by
modification of GCE with a poly (L-lactide)-carboxamide-cobalt phthalocyanine composite
(TPLLCA-CoPc) and MWCNTs. Under optimized conditions of pH 7 in 0.1 M PBS, the mod-
ified TPLLCA-CoPc/MWCNTs/GCE detected L-cysteine and hydrazine in the nanomolar.
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The modified electrode offered a linear range of (CA: 5–50, DPV: 1–10, CV: 2–10 nmol L−1)
for L-cysteine and hydrazine, a low LOD of (CA: 3.33, DPV: 1, CV: 1.33 nmol) and (CA:
6, DPV: 0.033, CV: 0.33 nmol) for L-cysteine and hydrazine, respectively, and high sensi-
tivity of (CA: 0.945, DPV: 4.325, CV: 1.299 µA nM−1 cm−2) and (CA: 0.770, DPV: 4.193,
CV: 1.719 µA nM−1 cm−2) for hydrazine and L-cysteine, respectively. The TPLLCA-
CoPc/MWCNTs/GCE exhibits high stability and sensitivity, good reproducibility, and
repeatability. The authors reported that these molecules (dopamine, glucose, ascorbic acid,
glycine, uric acid, and hydrogen peroxide) do not interfere with the detection of L-cysteine
and hydrazine.

Table 5 below summarizes the analytes detected with CoPc-MWCNT-modified elec-
trodes with the techniques employed, LOD, and LDR.

Table 5. Detection of glucose, hydrazine, lactic acid, and pyridoxine with CoPc-MWCNTs modified
electrodes.

Electrode Analyte Technique LOD LDR Ref
µM µM

CoPPc/f MWCNTs/GCE Lactic acid CV 2 10–240 [19]
CoPcMWCNT/PGE Pyridoxine DPV 0.5 10 to 400 [72]
TCIDCoPc-MWCNTs/GCE Glucose CV 900 2–20 × 103 [73]

DPV 5330 2–12 × 103 [73]
CA 6000 5–50 × 103 [73]

MWCNT–CoTsPc/GCE Glucose AP 0.14 10–6340 [74]
CoTPEG2BAPc-MWCNTs/GCE Glucose CV 0.33 2–16 [58]

DPV 2 2–22 [58]
CA 12.5 5–50 [58]

TPLLCA-CoPc/MWCNTs/GCE Hydrazine CV 3.3 × 10−4 2–10 × 10−3 [71]
DPV 3.3 × 10−5 1–10 × 10−3 [71]
CA 6 × 10−3 5–50 × 10−3 [71]

Aside from these, CoPcMWCNTs nanocomposite have been utilized in various other
processes such as oxidation of styrene to benzaldehyde [7,75,76], catalytic oxidation of
benzyl alcohol to benzaldehyde [6,25], electrochemical reduction of oxygen [77–81], elec-
trochemical conversion of CO2 to CO [82], removal of mercaptan from natural gas [83],
photocatalytic oxidation of butan-2-ol [84], a catalyst for microbial fuel cell [85], catalyst
in glucose/O2 fuel cells [86], and electrochemical reduction of carbon dioxide and carbon
monoxide to methanol [87]. The conversion rate and selectivity recorded in these processes
were satisfactory.

The use of cobalt phthalocyanine (CoPc) has been favored over other MPcs owing to
its greater advantages such as high charge transfer capabilities [88], stability, high catalytic
current density [89], reduced overpotential, diversify preparation methods, and high water-
solubility [41–43]. It is also important to note the challenges researchers [75,90] encountered
while using CoPc-MWCNTs nanocomposite as a sensing material. CoPc suffers from
aggregation and hydrophobicity due to huge π-π-conjugated systems. This involves the
aggregation of MPc inside the reaction medium to form either a polymer or an inactive
dimer due to the structural characteristics of the metal Pc itself. The dimers’ formation
reduces the axial ligand’s active point; meanwhile, the majority of the catalytic process takes
place at the axial position, thereby leading to a significant reduction in catalytic activity [7].
A single dispersed molecule in the reaction medium was employed to overcome this setback
and improve the catalytic activity of the MPc. The MPc aggregation between molecules can
be effectively prevented by immobilizing it on a solid carrier [90]. Silica, carbon nanotubes,
activated carbon, zeolites, and graphene are the most used carriers. The addition of the
carrier enables the Pc molecules to be evenly distributed on its surface, exposing more
active sites that can increase the contact possibility of the catalyst with the target substrate
and speed up the reaction [7]. Alternatively, Pc aggregation can be prevented by uniformly
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loading Pc onto MWCNTs using an ultrasonic approach. As a result, the agglomeration
impact of Pcs is significantly diminished, allowing for an increase in the catalytic surface
area and an improvement in catalytic efficiency [75].

Going by Tables 1–5, the CoPc-MWCNT-nanocomposite-modified electrodes have
been successfully employed to detect a large variety of analytes such as ascorbic acid,
acetaminophen, carbaryl, cysteine, epinephrine, diethylstilbestrol, dopamine, glucose,
glutathione, hydrazine, hydrogen peroxide, kanamycin, nevirapine, nitrite, lactic acid,
paracetamol, procalcitonin, pyridoxine, uric acid, Cd2+, and Pb2+. These CoPc-MWCNT-
nanocomposite-modified electrodes achieved a very low LOD, wide LDR, high sensitivity,
and selectivity required for analyzing trace amounts of these analytes. The lowest LOD
(0.033 nM) detected by this modified electrode was obtained from the detection of hydrazine
using the DPV technique, followed by nevirapine (0.2 nM) using the CA technique.

3. Conclusions

In this review, we extensively summarized the efforts made in fabricating electrochem-
ical sensors using CoPc-MWCNTs nanocomposite along with the various analytes detected
by this sensing material. This nanocomposite was modified with various electrodes such
as GCE, gold electrode, screen-printed electrode, platinum electrode, pyrolytic graphite
electrode, and paraffin composite electrode, as shown in Table 1, with GCE being mostly
used. Emphasis was also made on the different fabrication methods and the detection
techniques used with their supporting electrolytes/pH, LOD, and LDR. Owing to these
extraordinary properties of CoPc-MWCNTs nanocomposite, more studies are expected in
the future to determine other analytes that this sensing material has not determined.
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