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Abstract: Borrelia burgdorferi sensu lato family of spirochetes causes Lyme disease (LD) in animals
and humans. As geographic territory of ticks expands across the globe, surveillance measures are
needed to measure transmission rates and provide early risk testing of suspected bites. The current
standard testing of LD uses an indirect two-step serological assay that detects host immune reactivity.
Early detection remains a challenge because the host antibody response develops several weeks after
infection. A microneedle (MN) device was developed to sample interstitial fluid (ISF) and capture
spirochetes directly from skin. After sampling, the MN patch is easily dissolved in water or TE
buffer, and the presence of spirochete DNA is detected by PCR. Performance was tested by spiking
porcine ear skin with inactivated Borrelia burgdorferi, which had an approximate recovery of 80% of
spirochetes. With further development, this simple direct PCR method could be a transformative
approach for early detection of the causative agent of Lyme disease and enable rapid treatment to
patients when infection is early, and numbers of systemic spirochetes are low.

Keywords: Lyme disease; early detection; point-of-care; skin diagnostic

1. Introduction

Tick-borne diseases are major public and animal health issues worldwide. Ticks may
transmit diseases such as babesiosis, anaplasmosis, ehrlichiosis, Lyme disease, Crimean
Congo hemorrhagic fever, Powassan virus, and Rocky Mountain spotted fever to humans
and animals [1]. According to the Centers for Disease Control and Prevention (CDC), the
number of reported cases of all tick-borne disease has more than doubled over the past
13 years [2]. Of particular interest is Lyme disease (LD), the most common vector-borne
illness in both North America and Europe, with an estimated incidence of ~476,000 cases
per year in America alone [3]. Lyme borreliosis disease is a multisystemic infectious disease
caused by a spiral-shaped bacterium, Borrelia burgdorferi, also referred to as spirochetes,
that is transmitted to humans by the bite of infected species of Ixodes ticks [4]. Recent
studies suggest LD will expand due to climate change making the more northern areas
more temperate [5–7].

LD infection typically begins with erythema migrans (EM), an expanding skin lesion
at the site of the tick bite. If left untreated, spirochetes may disseminate from the bite site
leading to cardiac, rheumatologic and/or neurologic manifestations [8,9]. Conventional
diagnosis of LD is often based solely on the presence of EM; however, it develops in only
70–80% of patients [10]. In the absence of EM, the signs and symptoms of Lyme disease are
not specific enough to be clinically useful for diagnosis [11]. Additionally, misdiagnosis
may occur due to the high degree of variability of skin lesions and the variation of interpre-
tation [12]. Additionally, patients with darker skin often do not recognize early disease,
resulting in increased rates of late manifestations [13].
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In regions where tick-borne infections are common, any tick bite may be of concern.
One strategy to assess exposure of tick-borne disease is direct testing of a removed tick.
Tick testing centers offer polymerase chain reaction (PCR) testing of ticks, but these tests do
not inform doctors if any tick-borne disease was transmitted to the patient’s body. As ticks
fall off their host, many patients do not have the tick that bit them, so they are unable to use
these testing services. Additionally, testing ticks requires a series of DNA isolation steps
prior to PCR testing. During these several DNA isolation steps, small amounts of bacteria
may not be detectable given that many commercial DNA extraction kits lose 80–90% of the
starting material [14].

Currently, the CDC approved diagnosis procedure is a two-tiered testing method
based on spirochete host response using an enzyme-linked immunosorbent assay (ELISA)
first, and if the results are positive, another specificity test by Western blot is conducted.
This two-tiered testing features high diagnostic specificity (95–100%) with high sensitivity
(80–90%) for late stages of Lyme disease [15,16]. However, since development of host-
antibody response takes several weeks, early diagnosis remains problematic. The 2-tiered
testing suffers from just 40% sensitivity for early-stage (meaning that it misses more than
half of the cases). It also requires multiple tests and is technically laborious leading to
high costs.

After being deposited into skin, B. burgdorferi multiplies locally before migrating
through tissues [4]. There are two main laboratory methods available to detect B. burgdorferi
in human body fluids: in vitro culture of intact living bacteria, and PCR of a body fluid sam-
ple to detect bacterial DNA [17,18]. Though the culture method provides confirmation of
active infection, the bacteria grow very slowly for up to 12 weeks in culture before reaching
diagnostic concentration [2]. Cultures as a detection method are too time consuming and
not practical for routine use. PCR has been used to amplify and detect B. burgdorferi DNA
in urine, blood, and cerebrospinal fluid (CSF) [19]. However, PCR is not routinely used for
these sample types [11] because spirochetes are present in low copy number which results
in reduced PCR performance with these sample types [17]. Skin biopsies have also been
used for DNA extraction methods with quantitative PCR detection [18,20] and was found
to contain on average, 3381 + 544 spirochetes from a 2 mm skin sample [18]. In 2020, one
study found that in 75.4% of patients who presented with EM, researchers could detect one
or more B. burgdorferi genotypes in the skin using PCR [21]. However, obtaining a suitable
skin biopsy may be painful as well as suffer from lower assay performance with PCR due
to other inhibiting substances commonly used in tissue fixatives [22]. Additionally, a skin
biopsy requires a trained nurse or doctor and the use of an anesthetic to numb the skin.

An inexpensive and simple means to collect the bacteria at the site where they are most
concentrated may allow for early detection by PCR. Microneedles offer safe, affordable,
and painless collection at the tick bite that may overcome the low numbers of spirochetes
found in other sample types. The skin is the initial site of replication and persistence of
B. burgdorferi [23]. During a tick blood-meal, B. burgdorferi does not migrate away from the
feeding site until several days after the tick has detached from the host [24]. One study
found detectable levels of bacteria remained in the skin for over a month in dogs [25].
This indicates that once the spirochetes are delivered into the skin, the spirochetes will
multiply locally for several days and may still remain in the skin for longer periods of
time. Therefore, it is likely that the bacteria load is concentrated in the skin and thus, easier
to detect.

Since skin is easily accessed, sampling interstitial fluid (ISF) is an attractive alternative
to blood but has received less diagnostic focus due to lack of methods for sampling [26].
Recently, studies have reported promising methods using MN to sample ISF [27–29].
Several types of MN have been designed to improve skin analyte sampling such as solid
MN, hollow MN [30], porous MN [31], vacuum assisted MN [26], and hydrogel MNs [32,33].
Many recent MN studies have used poly(vinyl alcohol) (PVA) since it is affordable, exhibits
low toxicity, and is a highly biocompatible polymer [34,35]. Another important property
of PVA for sample collection is its swelling when immersed into a liquid sample driven
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by capillary force [36,37] which can result in absorbing up to 30% of its weight in a few
minutes [38] and up to 450% of its weight when crosslinked with polyvinylpyrrolidone [39].
Additionally, PVA does not inhibit PCR [40,41] which allows downstream detection by
PCR feasible. Crosslinked PVA hydrogels can be easily prepared by dehydration at room
temperature without the use of any other chemicals [42]. These properties suggest that
microneedles made from PVA are a promising approach for non-invasive detection of
bacteria in a skin lesion.

In this work, we hypothesize that a microneedle patch can be used to capture spiro-
chetes in skin and, with subsequent direct PCR of the collected sample, detect the causative
bacteria for LD as shown in Figure 1. The feasibility of this approach is demonstrated with
tick bite-appropriate PVA microneedle designs using in vitro and in vivo model systems.
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Figure 1. Overview of the bacteria detection method. (A) Graphic showing Ixodes tick feeding and
inserting B. burgdorferi bacteria into skin. The tick saliva provides a feeding pit where bacteria are
protected from immune cells. (B) A MN is placed onto the skin manually. (C) Illustration of MN
capture of bacteria with swellable PVA and direct PCR detection.

2. Materials and Methods
2.1. Culture of a B. burgdorferi Strain B31

Low passage B. burgdorferi wild-type strain B31 clone 5A19 was grown in BSK-II
supplemented with 6% rabbit serum (Pel-Freez Biologicals, Rogers, AR, USA) at 34 ◦C in a
trigas incubator (5% CO2, 3% air, and the remainder N2). In addition to 6% rabbit serum,
this media contained antibiotics rifampicin, 45.4 µg/mL; phosphomycin, 194 µg/mL; and
amphotericin B, 0.25 µg/mL. Spirochetes were grown to late logarithmic phase and then
pelleted at 2000× g for 30 min before inactivation. At the end of the run, the rotor was left
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to coast to minimize damage to the live spirochetes. The culture was washed twice using
PBS and was inactivated by resuspension in 4% paraformaldehyde (PFA). Next, the tube
was centrifuged at 2000 RPM for 15 min and resuspended in 1× PBS with 0.01% sodium
azide for storage at 4 ◦C until use. SEM of the bacteria are shown in Figure S1.

2.2. Design of Microneedles

The tick hypostome (mouth) has a range of sizes [43]. The length of the hypostome
varies depending upon sex and stage (nymph vs. adult) [44]. The adult female deer tick
exhibits the largest hypostome which is ~500 µm long [45] and up to ~200 µm wide, while
the males and nymphs have much smaller hypostomes [46]. Since the bacteria travel
into a new host via tick saliva, the bacteria are likely deposited approximately close to
the depth of the tick mouth. Researchers have used microscopy methods to image Ixodes
scapularis feeding in the skin and observed a restructuring of the skin into a cone-shaped
area surrounding the hypostome after 72 h of feeding, which could be filled with ISF [47].
In the skin, ISF is located beneath the stratum corneum (SC) which is ~10–200 µm thick [29].
To include the full range of tick hypostome length sizes and penetrate to a depth beyond
200 µm, we designed microneedle patches to be 300–800 µm in height, and 250 to 350 µm in
base diameter to increase stability. Specifically, the center-to-center spacing has been shown
to be a crucial factor in the penetration performance into skin [48], with more densely
packed microneedles leading to the “bed of nails” effect [49]. Therefore, we selected a
spacing of 1000 µm for our MN patch since this spacing has been studied with our range
of heights and diameters in pig skin penetration tests [48]. Four microneedle cast print
designs with different heights were created using Solidworks 2018.

2.3. Fabrication and Imaging of PVA Microneedles

Firstly, we developed a method to prepare PVA microneedle patches. Different types
of PVA were tested ranging from 13–124 kDa molecular weight and 87–99% hydrolysis.
Since a high viscosity solution cannot be pipetted with consistency for PCR, we tested
the viscosity of the three molecular weight PVAs (Table S1). We pipetted 50 µL of the
three different PVA’s onto a weigh boat on a scale four times to examine the pipetting
ability across the different molecular weight PVAs (Table S2). The PVA Mw 85–124 kDa
exhibited higher standard deviation between the pipetting and lower mass when pipetted.
Additionally, for PVA Mw 85–124 kDa all four drops showed bubbles and the pipette tip
exhibited bubbles as well which indicates the solution is too viscous for accurate pipetting.
Therefore, we did not choose higher molecular weight PVA for further testing. We pipetted
both PVA Mw 30–50 kDa and PVA Mw 13–23 kDa into microneedles silicone casts as both
solutions were easily pipetted. However, the lower molecular weight PVA did not form
rigid uniform microneedles in the same duration (one week under vacuum) as the other
PVA, so the low molecular weight was not chosen for further testing.

The various types of PVA were cast and the PVA MNs that were solid and dry after a
week were compared on a light microscope for needle shape and consistency. PVA with
30–50 kDa molecular weight and 98–99%-degree hydrolysis (Sigma-Aldrich, St. Louis MO,
USA, cat# 363138-25G) was selected for further development. Cone-shaped microneedles
were created for casting with dimensions 1000–1600 µm height, base 250–350 µm, and
spacing 1000 µm apart were created with a 3D printer (ProJet® 3510 HD plus, 3D Systems,
Rock Hill, SC, USA) (Table 1). The method of fabrication PVA MN is shown in Figure 2.
The 3D printed MNs were used to create a negative mold in silicone with a needle array
of 5 × 5 cone shapes microneedles. PVA microneedles were then fabricated using the
micromolding technique from a silicone mold (Mold Star™ 30 silicone rubber, Smooth-on,
Macungie, PA, USA). The 3D printed mold was cast in the silicone mold for 24 h to produce
a negative mold under vacuum pressure of 100 PSI. The 3D print was then removed
from the silicone mold. To make a 10% (w/v) PVA solution, PVA was dissolved in 10 mL
deionized (DI) water at 90 ◦C on a hot plate with stirring for 12–24 h. To cast the final MN
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patch, PVA solution was pipetted into the silicone mold and then placed inside a vacuum
at 100 PSI for 5–6 days to allow the formation of solid PVA microneedles.

Table 1. Parameters of the 3D printed 5 × 5 microneedle cast prints used for molding.

MN Patch ID Needle Length (µm) Base (µm) Distance between Needles (µm)

Design A 1000 250 1000

Design B 1000 350 1000

Design C 1200 350 1000

Design D 1600 350 1000
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Figure 2. Fabrication method for PVA microneedle patches. A 3D print (blue) is used to cast the
negative mold in silicone. In the final step, PVA (gray) is pipetted into the silicone mold and dried
under vacuum for up to a week.

2.4. Penetration Tests

Ideally, microneedles should penetrate the stratum corneum of the skin to allow of
extraction of ISF. Additionally, if the microneedles do not penetrate beyond 500 µm, this
enables painless collection. To investigate the penetration performance, various lengths of
microneedle arrays were created and tested with the 3D print casts shown in Table 1.

To verify that the microneedles can penetrate the depth required, we tested the pene-
tration of the microneedles in skin substitutes such as Parafilm M® (PF) (Sigma-Aldrich,
St. Louis MO, USA) [50] and 2% (w/w) gels [51,52]. PF is often used to quickly determine
the depth of MN penetration since each layer is close to 100 microns [53]. We folded the
PF into 8 layers, and we placed the MN on the top layer and pressed the MN with same
force to press an elevator button. Next, we unfolded the PF sheets to examine the layers
with holes on the microscope to visualize. If a hole was observed on the microscope, we
considered the layer penetrated.

In addition, optical coherence tomography (OCT) was also used to visualize penetra-
tion studies of a 2% (w/w) gel since this mimics the properties of human skin [51,54]. Gel
samples were imaged before and during MN penetration under OCT imaging for cross-
sectional and volumetric visualization. A Telesto series OCT imaging system (TEL220PSC2,
Thorlabs Inc., Newtown, NJ, USA) with an OCT-LK3 objective lens were used in the study.
The system has a center wavelength of 1300 nm, and a bandwidth of 170 nm. The axial
and lateral resolution of the system reported are 4.2 µm (in water) and 13 µm, respectively.
Imaging data was acquired with 2D and 3D intensity mode at a A-scan rate of 48 kHz.
From each sample, B-scans (4 mm, 1024 A-scans) and volumetric scans (4 mm × 2 mm
area, 1024 A-scans by 200 B-scans) were collected. Post-processing of acquired images were
performed with ThorImageOCT (version 5.4.9, Thorlabs Inc.). The cross-sectional imaging
capability of OCT allows evaluation of the penetration depth and structural integrity of the
MNs in the sample. We assumed a refractive index of 1.33. In this study, one layer of PF was
placed on top of the 2% (w/w) gel to mimic the skin outermost layer, the stratum corneum.
Two gels, ~250–300 µm thick were stacked to mimic epidermis layers [33] and another
sheet of PF was placed in between the two gel layers to enhance needle visualization.
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Microneedles were placed on top of gel and pressed with the same force as used to press
an elevator button.

2.5. Mechanical Tests

Compression tests are used to determine the modulus, elasticity, and malleability of
a material. A compression test was conducted on three MNs patch in to determine the
behavior of a PVA MN under a load using an Autograph AGS-J (Shimadzu, Kyoto, Japan).
The patch was supported from below by a fixed, flat surface. A second flat surface, above
and parallel to the supporting surface, was controlled to move in the direction of the lower
surface, thereby compressing the material. The testing machine lowered the compression
plate at a rate of 5 mm/min until the sample gave in. The following formulas were used to
calculate the stress and strain of the PVA MN patch:

σ = Fn/A (1)

where σ is the normal stress in N/mm2, Fn is the normal force in N given by the testing
machine, and A is the average cross section for the needles in mm2. This average cross
section was calculated by taking the average of the base diameter (350 µm) and needle tip
diameter (~10 µm). This average diameter was used to calculate the average cross section
for a needle tip and multiplied to account for the 25 needles in the patch.

ε = ∆L/L◦ (2)

where ε is the strain (unitless), ∆L is the change in height of the MN patch in mm, and L◦ is
the initial height of the microneedles (~600 µm).

2.6. Swell and Absorption Test

One method for capturing bacteria and bacterial DNA using PVA MN is to take
advantage of the material’s hydrophilic and water absorption properties. Therefore, PVA
liquid absorption is a critical property that directly relates to capture performance.

To qualitatively visualize liquid absorption performance, a 2% (w/w) gel was prepared.
A small hole was made with the tip of a 25-gauge needle and 10 µL of green dye was injected
into the hole. A sheet of PF was placed on top to ensure only the needle of the MN was
extracting and not the underside of the MN patch. A MN was placed on top of the PF
directly above the green dye spot as shown in supplemental Figure S4. The MN was
applied for 10 min and then removed. A Kim wipe was used to blot excess of green dye off
and the MN was examined for green color which indicated the MN absorbed the green dye.

To observe more detailed changes in the PVA MN swelling, scanning electron mi-
croscopy (SEM) was used to image a dry microneedle and a microneedle after 10 min with
10 µL of liquid. Each MN was sputter coated with gold and placed into the SEM Zeiss
Merlin for imaging (Zeiss, Oberkochen, Germany).

In addition to these qualitative tests, a quantitative swell test was designed. To conduct
a swell test, each individual MN patch was weighed while it was dry (mo) three times
and then placed face down (needle side facing down) onto a 40 µL droplet of water and
manually flattened briefly so that the needles were submerged in the water. After 10 min,
each MN was removed from the water droplet with tweezers, and carefully placed on
tissue paper for 10 s to remove the extra water sticking to the sides of the patch so that only
the water absorbed within the MNs was left. Then, each wet MN patch (mt) was weighed
three times. The percentage of swelling was determined by calculation from Equation (1).

% Swelling =

(
mt −m◦

m◦

)
× 100% (3)
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2.7. Time and Volume to Dissolve MN for PCR Testing

To enable direct PCR testing, it is critical to examine the volume and time needed to
completely dissolve MN patches into a solution that can be pipetted accurately (a viscous
solution is not pipetted accurately). The MN patches were inserted into 2% (w/w) gels
for 10 min and then placed in a 1.5 mL Eppendorf tube. A volume of 15–100 µL of TE
buffer was added to the tube. The tube was briefly vortexed and spun down before being
placed in an incubator at 37 ◦C for 15–30 min or onto a heat block at 115 ◦C for 10 min.
Pictures were taken after initial placement into Eppendorf tube and checked every 10 min.
We considered the microneedle to be dissolved when you could not visually see any of the
microneedles in the tube and liquid was easily pipetted.

2.8. Preparation of Pig Ear Skin and Penetration of MN in Porcine Ear Skin by OCT

Pig ears were obtained from Oak Hill Genetics from previously euthanized Yorkshire
female pigs (32 kg). The samples were washed and soaked for 30 min prior to testing.
Sterile surgical scissors were used to cut portions of the ear for testing.

OCT was used to image MN inserted into the skin of pig ears. OCT is a promising
tool to image MN in tissue since OCT is nondestructive to tissues and tissue do not need
pretreatment or chemicals for visualization [55]. In this test, we selected MN Design B
(Table 1) due to penetration performance in prior tests. We tested the MN on a pig ear skin
with hair and pig ear skin without hair to determine the effect of hair on the penetration
performance. We assumed a refractive index was 1.33.

2.9. RNAse P Assay for Extraction Control

The RNAse P Assay detects the RNAse P gene which is often used as an endogenous
control in sample specimens and is used to determine if a sample was adequate for testing
DNA from clinical samples [56,57]. For reverse transcription, samples were held at 55 ◦C
for 10 min, followed by cycling from 94 ◦C for 10 s to 60 ◦C for 10 s for 50 cycles using
a Rotor Gene Q thermal cycle (Qiagen, Germantown, MD, USA). A forward primer of
sequence 5′-GAT TTG GAC CTG CGA GCG-3′, a reverse primer of sequence 5′-AAG CGG
CGT TCT CCA CGA-3′, and a probe sequence of 5′-Cy5-TTC CGA CCT-TAO-CAA GGC
GCT GC-BHQ-3′. The Ct values from three experiments were compared in a one-way
ANOVA test to assess sampling across the MN’s used for bacteria extraction from pig ears.

2.10. Determination of Bacteria Recovery Using qPCR

To determine the number of bacteria after reconstitution, qPCR was performed using
the Luna® Universal Probe qPCR Master Mix (NEB #m3004) according to manufacturer’s
protocol. All primers, probes and targets were synthesized by Integrated DNA Technolo-
gies (Coralville, IA, USA). FlaB is a structural component of flagellin in spirochetes, and
is expressed during infection in both ticks and hosts [58–60]. The synthetic flaB target
consisted of 5′-CTC AAG CGT CCT GGA CTT TAA GAG TTC ATG TTG GAG CAA ACC
AAG ATG AAG CTA TTG CTG TAA ATA TTT ATG CAG CTA ATG TTG CAA ATC TTT
TCT CTG GTG AGG GAG CTC AAA CTG CTC AGG CTG CAC CGG TTC AAG AGG
GTG TTC AAC AGG AAG GAG CTC AAC AGC CA-3′. We used IDT Primer Quest
tool to generate 4 sets of primers specific to the synthetic flab target sequence. One set of
primers was selected for further testing due to high reaction efficiency and single product
melt analysis. A forward primer of sequence 5′-CAAGCGTCCTGGACTTTAAGA-3′, a
reverse primer of sequence 5′-AGCTCCCTCACCAGAGAAA-3′, and a probe sequence of
5′-/56-FAM/TGTTGGAGC/ZEN/AAACCAAGATGAAGCT/3IABkFQ/-3′ were used.
For the initial PCR step the samples were held at 95 ◦C for 2 min. The samples were cycled
from 95 ◦C for 15 s, to 60 ◦C for 30 s and 72 ◦C for 30 s for a total of 45 cycles in a Rotor Gene
Q thermal cycle (Qiagen, Germantown, MD, USA). In addition to a no template control,
standards were made using 6 × 108 copies/reaction of flaB target were diluted 10-fold
sequentially to 6 × 101 copies/reaction and 2 µL of each were added to each reaction for
a total volume of 20 µL per tube. After the bacteria was reconstituted and diluted with
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water to achieve desired concentration. A total of 2 µL of these tubes were used in the PCR
reaction in triplicate to determine the number of bacteria in the tube.

2.11. MN Application to Pig Ear Skin and Capture Test

To mimic a feeding pit, we designed a single cone that was 300 µm long and 200 µm
diameter at the base. We pressed the 3D printed cone into the pig skin. Then, we pipetted
5–10 µL of low passage B. burgdorferi wild-type strain B31 clone 5A19 containing a range of
bacteria into the feeding pit area intradermally. The PVA MNs were pressed onto both the
clean and infected pig ear samples for 10 min. Afterwards, they were each removed and
placed into a 2 mL Eppendorf tube with 50 µL of TE buffer followed by briefly vortexing the
tube and incubating the tubes at 115 ◦C for 10 min. We assume the bacteria are lysed during
this heat step. A positive control tube was prepared by pipetting 10 µL of the spirochete
strain into a different tube with 100 µL of TE buffer. PCR was performed in triplicate for
these samples to calculate the amount captured by the MN patches.

3. Results
3.1. Microneedle Designs

We tested various types of PVA and found that the higher molecular weight PVA
would often gel and not dissolve into water as easily as other lower molecular weight PVAs.
The 31–50 K PVA was selected because it easily dissolved in water and the MNs showed
sufficient hardness when demolded from the negative silicone mold. Less than 10% PVA
was not sturdy enough to form rigid needles. For this reason, 10% PVA was selected for
our methods for further development.

For bacterial capture, it is critical to consider the depth the bacteria will be placed by
the tick hypostome. Although the tick hypostome varies in length across species and stages,
for the Ixodes scapularis tick, the maximum length is close to 500 µm. By imaging a tick
hypostome, Figure 3A, we verified the length and approximated that the penetration was
likely not beyond 50%, which suggests the bacteria are likely deposited close to a depth of
250–300 µm during the tick feeding. Assuming the penetration would be close to 50% of the
MN length, we selected four microneedle designs to test (Table 1). Each microneedle design
was placed on the side and imaged with a light microscope. The images were imported into
ImageJ. Individual PVA microneedles were measured. The average length and standard
deviation of the needles was reported for each design (Figure 3B).
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3D printed microneedles were shorter (Figure S2) relative to the computer-aided
design (CAD) file used to create them (Table 1). A loss of ~30% decrease in 3D microneedle
height was found compared to the design, but the width maintained close approximation to
the CAD file. This is a very similar 3D printing phenomena reported in other microneedle
papers [61]. One explanation for this reduction in height but not width is due to the
scattering of UV light during the exposure of larger portions of 3D prints compared to
smaller size parts. The less material, the less light scatter to initiate photopolymerization to
cure the material. Similarly, other authors found that with more light intensity, the more
initiation of the photopolymerization. They also found an increase in size of structure
increased with light intensity [62].

3.2. Penetration Test

The penetration of a MN to a specific depth is an important characteristic. The PF
test results indicate that the shortest microneedle design (400 µm in length) is not able to
penetrate to 300 µm. Additionally, the longest microneedle (850 µm in length on average)
exhibited bending between PF layers and did not penetrate efficiently to the third layer.
Designs B and C showed efficient penetration to the third layer of PF (Figure 4A).
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Figure 4. Penetration test for MN designs. (A) PF penetration to the 3rd layer was imaged on a light
microscope for the four designs. (B) OCT 2D cross-sectional (B-scan) images were taken of each MN
design after insertion into a 2% (w/w) gel with a one sheet of PF on top of the gel, a sheet of PF below
gel 1, and another 2% (w/w) gel below the second sheet of PF (gel 2). Scale bar 1000 µm.

With MN designs from Figure 3B, we inserted the MN into a gel and visualized
penetration with OCT imaging. Results show Design A and D did not penetrate the gel
efficiently (Figure 4B). The red false coloring (Adobe Photoshop) shows the empty space
between the microneedle and the top layer of PF. Both Designs A and D show empty
space and thus, reduced penetration while Designs B and C show much less empty space.
Therefore, the results indicate the ideal length for 10% PVA microneedles appears to be
between 500–750 µm in length. A OCT 2D cross-sectional (B-scan) of 2% (w/w) gel was
imaged during application of a MN and after removal of a MN showing holes left behind
in the gel (Figure S5).

3.3. Mechanical Tests

Young’s modulus was calculated to be approximately 0.0014 MPa. The yield strength
for the patch is 0.00030 N/mm2. The deformation force was found to be 4.2 N. This is in
the range of what others have found with similar PVA microneedles [63].
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Light microscope images taken before and after weights were placed on MN patches.
The MN could withstand up to 255 g of weight added before slight bending was observed.
However, when 80 Kg was placed on the MN patch, the 90-degree bending was observed
(Figure S3).

3.4. Swell and Absorption Tests

Light microscope images taken before and after insertion of Design B MN into a gel
(Figure 5A). In Figure 5A, the left side shows a smaller microneedle compared to a more
swollen microneedle. Additionally, a dry microneedle was imaged on SEM Figure 5B (left)
compared to a SEM image of microneedle after 10 µL of liquid was added to the center and
allowed to sit for 10 min (right). Beyond 10 min, the MN did not change in mass so 10 min
was set as the saturation time point.
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Figure 5. Representative images of the swell and dye absorption test. (A) Light microscope images of
a MN before insertion into a gel (left) and after insertion (right). Scale bar 200 µm. (B) SEM images
of a dry MN (left) and a MN insertion into liquid for 10 min (right). (C) Photograph (Nikon D610) of
the microneedle patch after insertion into a gel with green dye below PF layer. (D) Light microscope
image (4×) of microneedle after insertion into a gel with green dye below PF layer. Scale bar 1000 µm.
(E) Light microscope image (4×) top view of the microneedle patch after insertion. Scale bar 1000 µm.

Microscope images show green dye in the needle tips indicating the microneedle
absorbed the green dye (Figure 5C,D). The top view of the microneedle shows the green
color was absorbed into the individual microneedle only (Figure 5E).

Results of the swell test using 40 µL of water show on average, the weight of the design
B MN patches increased by approximately 46% after being placed on a water droplet (n = 4).

3.5. Volume Needed to Dissolve PVA MN

Four volumes were tested to dissolve a PVA MN (Figure 6). Testing showed the MN
(mass ~11 mg) needed a volume 50–100 µL of TE buffer to fully dissolve. The 50 µL volume
required incubation at 115 ◦C and vigorous vortexting. Although smaller volumes were
tested, these solutions did not dissolve the MN after vortexing and 115 ◦C incubation
(Figure 6). The results suggest dissolving the PVA MNs requires full submersion of the MN
into the TE buffer.
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Figure 6. Representative images of microneedle inside tubes of TE buffer. A MN is placed into an
Eppendorf tube with 15, 25, 50, and 100 µL of TE. (n = 3). White arrows indicate an undissolved MN
in the tube after 10 min of incubation at 115 ◦C.

3.6. Penetration of MN in Porcine Ear Skin by OCT

OCT was used to confirm the penetration of MN into porcine ear skin. Results show
the MN successfully penetrated the porcine ear skin. However, for pig ear skin samples
with hair (Figure 7A,B), there was a reduction in penetration as shown in Figure 7D. Red
false coloring (Adobe Photoshop) was added to the space between the MN and the porcine
skin to show the gap. In a pig skin sample with little to no hair (Figure 7F,G), the penetration
was more successful. Results show greater penetration occurred in samples with no hair
(Figure 7I,H) than in images of the samples with hair (Figure 7C,D). This suggest that
before application of a microneedle, hair should be removed to enhance penetration depth
of the MN.
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significant difference in Ct value compared to the other three groups (F = 214 and p value 
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Figure 7. Representative OCT images from before and after penetrations of PVA MN array with
microneedle height of 500 µm (Design B) into porcine ear skin. (A) Without a MN there are no holes
in the skin with hair in 3D OCT image, (B) 2D cross-sectional (B-scan) image in skin sample with hair
(C) MN inserted into sample with hair in 3D OCT image, (D) 2D cross-sectional (B-scan) image of
MN inserted into skin sample with hair (red false coloring added to show gap between MN and skin).
Scale bar 1000 µm. (E) Porcine skin with no hair in 3D OCT image before MN application. (F) 2D
cross-sectional (B-scan) image in skin sample with no hair before MN application, (G) MN inserted
into sample with no hair in 3D OCT image, (H) 2D cross-sectional (B-scan) image of MN inserted
into skin sample with no hair. White arrows show the holes in the epidermis of the pig skin showing
penetration (n = 3). Scale bar 1000 µm.
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3.7. RNAse P Assay for Sampling Control

A one-way ANOVA was used to compare the MN collection of pig samples by using
the RNAse P assay. There was no significant difference found between collection of the MNs
applied to a porcine ear regardless of bacteria present in testing (F = 0.25, p value = 0.79).
The average Ct value of the applied MNs were found to be 27 with a standard deviation of
2 cycles (Figure 8). As a negative control, a MN was not applied to pig ear skin but directly
dissolved and tested against the three groups. The dissolved MN showed a significant
difference in Ct value compared to the other three groups (F = 214 and p value < 0.001).
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Figure 8. RNAse P Assay for extraction control results (n = 4). Samples from Figure 9 were re-run to
test for the presence pig RNase P to ensure the MNs were applied long enough to the pig skin sample
to collect RNA.
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Figure 9. PCR results of MN patches applied to porcine ear skin. (A) 103 bacteria were deposited to
the depth of 300 µm and four MN were applied to the location for 10 min and subsequently dissolved
in 50 µL of TE buffer for PCR (n = 4). A positive control was made by pipetting 103 bacteria into 50 µL
of TE buffer (n = 4). As a negative control, four microneedle patches were applied to porcine ear skin
for 10 min and dissolved in 50 µL of TE buffer before PCR (n = 4). (B) 104 bacteria were deposited to
the depth of 300 µm and four MN were applied to the location for 10 min and subsequently dissolved
in 50 µL of TE buffer for PCR (n = 4). A positive control was made by pipetting 104 bacteria into
50 µL of TE buffer (n = 4). As a negative control, four microneedle patches were applied to porcine
ear skin for 10 min and dissolved in 50 µL of TE buffer before PCR (n = 4).
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All the MNs applied to the pig skin samples were positive as shown for both the
positive MN and negative MN because each sample contained sufficient pig RNA sample.
This test is for pig RNA detection in the MN so all MNs applied to the skin should be
positive. In an assay that incorporates this control, if the MN sample is negative for RNAse
P this indicates the MN did not collect sufficient sample to test and it is invalid.

3.8. MN Capture of Inactivated B. burgdorferi

For capture testing, we measured the extraction recovery of two concentrations of
inactivated B. burgdorferi spirochetes with our MN patch placed on pig ear skin (Figure 9). A
PCR was performed in triplicate for these samples to calculate the amount captured by the
MN patches. The standard curve shows intensity of fluorescence versus cycle number with
the separation of curves in proportion to the logarithmic dilutions of target (B. burgdorferi
gene flaB) (Figure S6).

Performance of the MN patches to recover bacteria was obtained by comparing the
concentration recovered by microneedle patches with the initial concentration of bacteria
spiked into pig skin (positive control). Our results show an approximate 80% recovery of
bacteria compared to the bacteria spiked. Variation was also seen in the PCR experiments
with the microneedle’s recovery of bacteria (Figure S7). In other experiments, we found a
large variation in the positive control tubes likely due to the bacteria clumping during the
reconstitution and dilutions. For lower concentrations, variation was larger.

4. Discussion

In this report, PVA MN patches have been studied for their penetration performance,
swelling characteristics and recovery of bacteria spiked into a pig ear. Our results showed
the most successful MN was Design B, which was 500 µm in height (Table 1 and Figure 3B).
Design B showed successful penetration beyond 200 µm (Figures 4 and 5) which is the
depth that bacteria would likely be found. Additionally, ISF fluid is also at depths > 200 µm
so our MN show successful penetration into the area to collect LD biomarkers. Our results
showed 46% swelling that can further be optimized with various other cross-linking reagent
to enhance swelling [39]. After inserting into pig ear skin, the MN showed successful
capture of inactivated B. burgdorferi (Figure 9). On average, our assay was able to capture
approximately 80% of the bacteria spiked into porcine skin. Since the MN did not penetrate
far enough to be painful (500 µm), the PVA MNs herein show promise as a detection tool
that is easy to use and painless to apply.

We have developed a purification-free method to sample skin with a swellable MN
that detects inactivated bacteria. Conventional tissue biopsy or tick testing takes hours by
comparison and results in the destruction of the bacteria as well as a loss of starting material
after numerous processing steps. We show the extracted bacteria can be directly detected
by PCR without further processing steps (Figure 9). We also show 10 min is sufficient time
to recover the majority of bacteria present. Further studies should confirm the optimal time
to capture bacteria at different depths in the skin.

Our results show 50–100 µL of TE buffer is required to successfully dissolve the MN.
Additionally, it is critical to vortex and incubate at 37–115 ◦C for the MN to fully dissolve
prior to PCR testing. Future work may investigate the addition of smaller volumes of
reagents that may disrupt the cross-linking of PVA and successfully dissolve the MN
without diluting the sample. In this report, we did not test the stability of the microneedles
before dissolving, however, researchers showed 10% (w/v) PVA MNs have been shown to
be stable for up to a week after DNA extraction from plants [64]. This suggests that if PCR
cannot be performed directly after extraction, non-dissolved MNs can be tested for up to a
week after extraction. Given the ease of use and affordability, this bacteria extraction method
could be further optimized to enable direct to lab processing for suspicious arthropod bites.

Human skin is the most suitable sample to evaluate microneedle performance, but
the availability of human skin is limited by ethical, regulatory, and cost considerations [65].
Therefore, murine and porcine skin has been used as a substitute to human skin [66].
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Porcine skin is considered a closer approximation to human skin since it is histologically
and anatomically closer to human skin [67]. These similarities include the epidermal
thickness, dermal-epidermal thickness ratio, hair follicle and blood vessel density and
collagen and elastin content [65,68]. Specifically, porcine ear skin is 10 µm thick so it is
closer to human epidermis thickness and therefore is considered a closer model to human
skin [69]. Our comparison across the MN used in bacteria extraction showed each group
was applied to the porcine skin long enough to capture pig RNA and that the groups did
not differ in their extraction of pig RNA (Figure 8). In future work, a pig RNA control
could be used in a multiplexed PCR reaction to verify the MNs recovered adequate sample
regardless of bacteria present.

Although LD may present with the characteristic EM, other pathogens could still be
transmitted with B. burgdorferi in the tick bite. These co-infections of multiple tick-borne
diseases results in diagnostic challenges. Ticks may acquire and transmit many pathogens
such as parasites, bacteria and viruses [70]. In 2018, one study examined 16,080 ticks that
were mostly removed from humans and found that 88% were co-infected [71]. A MN-based
method combined with multiplex PCR would give more information to the patient and
physician about the possibility of co-infection of multiple tick-borne diseases.

There are several areas to further improve bacterial capture of this method. Although
PVA does swell, other reports have shown much greater degree swelling (up to 450%)
by using cross-linking reagents [39]. A greater amount of swelling would likely capture
more bacteria and result in higher recovery. One other limitation in our approach is the
use of inactivated bacteria. To match patient skin testing, live bacteria should be tested
to better understand our assay performance and if additional steps for bacterial lysis are
required prior to PCR. To increase live bacterial capture, one future approach is the use of a
chemoattractant. Uptake of the spirochete in blood by an uninfected tick requires chemical
signaling in the tick saliva to attract spirochete, which is the principle of xenodiagnoses
(i.e., using a vector to acquire the pathogen for further testing) [72]. Recently, researchers
have compared different motility assays to identify chemoattractants in tick saliva in order
to improve diagnosis (via skin MN patch or subdermal injection/implant) [73,74]. Tick
saliva contains many molecules that are able to be used by infectious agents to promote
transmission [75]. A microneedle patch doped with chemoattractants for the bacteria
may draw the bacteria to the patch for capture and detection while also blocking an
inflammatory response to the MN [73]. Without the tick saliva, the host’s cells may induce
an inflammatory response against the bacteria. Anti-inflammatory molecules in tick saliva
prevent attraction of dendritic cells, mast cells, macrophages, and lymphocytes [76]. Thus,
tick saliva increases the virulence and survival of B. burgdorferi by blocking the inflammatory
response [77]. With the inclusion of chemoattractants and cross-linking agents to enhance
swelling in a MN, the low levels of bacteria that remain problematic for traditional testing,
may be overcome with such a technology.

The number of spirochetes in the skin can vary widely due to the stage of the tick
attached and duration of attachment to host. We did not do a complete limit of detection in
this report. We tested two concentrations of inactivated B. burgdorferi (Figure 9) based on
what has been reported in skin biopsy reports [18], and one limitation in this report is that
this concentration may not match the number from an initial tick bite. This needs further
investigation and development. Our PCR was not reliable for detecting low amounts
of the inactivated spirochetes. Attempts to test lower ranges were limited by variability
of clumping of the fixed bacteria. Low detection of the bacteria could be overcome in a
few ways. By picking a different gene target that repeats multiple times in the spirochete
genome, a lower limit of detection could be achieved possibly. Nested PCR has shown a
lower limit of detection of just one spirochete from culture [60]. Another way is digital
PCR (dPCR) which allows individual segmentation of into wells with either none or one
target before amplification. In 2020, researchers developed a dPCR assay that was able
to detect three genome copies of B. burgdorferi [78]. By including an enrichment step to
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pre-amplify DNA prior to dPCR amplification, the authors overcame the low sensitivity in
patient blood samples that are due to low numbers of bacteria [79].

5. Conclusions

This poly(vinyl alcohol) microneedle method enables rapid detection of tick-borne
pathogens in skin models. We demonstrated the MN had sufficient stiffness to penetrate
porcine ear skin and the MN could extract inactivated Borrelia burgdorferi for direct PCR
detection. With further development, this technology could eventually achieve early
detection of the causative agent of Lyme disease.
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65. Flaten, G.E.; Palac, Z.; Engesland, A.; Filipović-Grčić, J.; Vanić, Ž.; Škalko-Basnet, N. In vitro skin models as a tool in optimization
of drug formulation. Eur. J. Pharm. Sci. 2015, 75, 10–24. [CrossRef]

66. Kim, M.; Jung, B.; Park, J.-H. Hydrogel swelling as a trigger to release biodegradable polymer microneedles in skin. Biomaterials
2012, 33, 668–678. [CrossRef]

67. Dick, I.P.; Scott, R.C. Pig Ear Skin as an In-vitro Model for Human Skin Permeability. J. Pharm. Pharmacol. 1992, 44, 640–645.
[CrossRef] [PubMed]

68. Moniz, T.; Lima, S.A.C.; Reis, S. Human skin models: From healthy to disease-mimetic systems; characteristics and applications.
Br. J. Pharmacol. 2020, 177, 4314–4329. [CrossRef] [PubMed]

69. Jacobi, U.; Kaiser, M.; Toll, R.; Mangelsdorf, S.; Audring, H.; Otberg, N.; Sterry, W.; Lademann, J. Porcine ear skin: An in vitro
model for human skin. Ski. Res. Technol. 2007, 13, 19–24. [CrossRef] [PubMed]

70. Cutler, S.J.; Vayssier-Taussat, M.; Estrada-Peña, A.; Potkonjak, A.; Mihalca, A.D.; Zeller, H. Tick-borne diseases and co-infection:
Current considerations. Ticks Tick-Borne Dis. 2021, 12, 101607. [CrossRef] [PubMed]

71. Nieto, N.C.; Porter, W.T.; Wachara, J.C.; Lowrey, T.J.; Martin, L.; Motyka, P.J.; Salkeld, D.J. Using citizen science to describe the
prevalence and distribution of tick bite and exposure to tick-borne diseases in the United States. PLoS ONE 2018, 13, e0199644.
[CrossRef] [PubMed]

72. Marques, A.; Telford, S.R.; Turk, S.-P.; Chung, E.; Williams, C.; Dardick, K.; Krause, P.J.; Brandeburg, C.; Crowder, C.D.;
Carolan, H.E.; et al. Xenodiagnosis to Detect Borrelia burgdorferi Infection: A First-in-Human Study. Clin. Infect. Dis. 2014, 58,
937–945. [CrossRef]

73. Jacobs, M.B.; Grasperge, B.J.; Doyle-Meyers, L.A.; Embers, M.E. Borrelia burgdorferi Migration Assays for Evaluation of Chemoat-
tractants in Tick Saliva. Pathogens 2022, 11, 530. [CrossRef]

74. Van Gundy, T.J.; Ullmann, A.J.; Brandt, K.S.; Gilmore, R.D. A transwell assay method to evaluate Borrelia burgdorferi sensu
stricto migratory chemoattraction toward tick saliva proteins. Ticks Tick-Borne Dis. 2021, 12, 101782. [CrossRef]

75. Nuttall, P.A. Tick saliva and its role in pathogen transmission. Wien. Klin. Wochenschr. 2019, 1–12. [CrossRef]
76. Scholl, D.C.; Embers, M.E.; Caskey, J.R.; Kaushal, D.; Mather, T.N.; Buck, W.R.; Morici, L.A.; Philipp, M.T. Immunomodulatory

effects of tick saliva on dermal cells exposed to Borrelia burgdorferi, the agent of Lyme disease. Parasites Vectors 2016, 9, 394.
[CrossRef] [PubMed]

77. Šimo, L.; Kazimirova, M.; Richardson, J.; Bonnet, S.I. The Essential Role of Tick Salivary Glands and Saliva in Tick Feeding and
Pathogen Transmission. Front. Cell. Infect. Microbiol. 2017, 7, 281. [CrossRef] [PubMed]

78. Das, S.; Hammond-McKibben, D.; Guralski, D.; Lobo, S.; Fiedler, P.N. Development of a sensitive molecular diagnostic assay
for detecting Borrelia burgdorferi DNA from the blood of Lyme disease patients by digital PCR. PLoS ONE 2020, 15, e0235372.
[CrossRef] [PubMed]

79. Liveris, D.; Schwartz, I.; Bittker, S.; Cooper, D.; Iyer, R.; Cox, M.E.; Wormser, G.P. Improving the Yield of Blood Cultures from
Patients with Early Lyme Disease. J. Clin. Microbiol. 2011, 49, 2166–2168. [CrossRef] [PubMed]

http://doi.org/10.1371/journal.pone.0162518
http://doi.org/10.1021/acsomega.2c01993
http://doi.org/10.1016/j.bios.2021.113312
http://doi.org/10.1016/j.ejps.2015.02.018
http://doi.org/10.1016/j.biomaterials.2011.09.074
http://doi.org/10.1111/j.2042-7158.1992.tb05485.x
http://www.ncbi.nlm.nih.gov/pubmed/1359086
http://doi.org/10.1111/bph.15184
http://www.ncbi.nlm.nih.gov/pubmed/32608012
http://doi.org/10.1111/j.1600-0846.2006.00179.x
http://www.ncbi.nlm.nih.gov/pubmed/17250528
http://doi.org/10.1016/j.ttbdis.2020.101607
http://www.ncbi.nlm.nih.gov/pubmed/33220628
http://doi.org/10.1371/journal.pone.0199644
http://www.ncbi.nlm.nih.gov/pubmed/30001350
http://doi.org/10.1093/cid/cit939
http://doi.org/10.3390/pathogens11050530
http://doi.org/10.1016/j.ttbdis.2021.101782
http://doi.org/10.1007/s00508-019-1500-y
http://doi.org/10.1186/s13071-016-1638-7
http://www.ncbi.nlm.nih.gov/pubmed/27391120
http://doi.org/10.3389/fcimb.2017.00281
http://www.ncbi.nlm.nih.gov/pubmed/28690983
http://doi.org/10.1371/journal.pone.0235372
http://www.ncbi.nlm.nih.gov/pubmed/33253179
http://doi.org/10.1128/JCM.00350-11
http://www.ncbi.nlm.nih.gov/pubmed/21490189

	Introduction 
	Materials and Methods 
	Culture of a B. burgdorferi Strain B31 
	Design of Microneedles 
	Fabrication and Imaging of PVA Microneedles 
	Penetration Tests 
	Mechanical Tests 
	Swell and Absorption Test 
	Time and Volume to Dissolve MN for PCR Testing 
	Preparation of Pig Ear Skin and Penetration of MN in Porcine Ear Skin by OCT 
	RNAse P Assay for Extraction Control 
	Determination of Bacteria Recovery Using qPCR 
	MN Application to Pig Ear Skin and Capture Test 

	Results 
	Microneedle Designs 
	Penetration Test 
	Mechanical Tests 
	Swell and Absorption Tests 
	Volume Needed to Dissolve PVA MN 
	Penetration of MN in Porcine Ear Skin by OCT 
	RNAse P Assay for Sampling Control 
	MN Capture of Inactivated B. burgdorferi 

	Discussion 
	Conclusions 
	References

