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Abstract: The excess of low-density lipoprotein (LDL) strongly promotes the accumulation of choles-
terol on the arterial wall, which can easily lead to the atherosclerotic cardiovascular diseases (ACDs).
It is a challenge on how to recognize and quantify the LDL with a simple and sensitive analytical
technology. Herein, β-cyclodextrins (β-CDs), acting as molecular receptors, can bind with LDL to
form stable inclusion complexes via the multiple interactions, including electrostatic, van der Waals
forces, hydrogen bonding and hydrophobic interactions. With the combination of gold nanoparticles
(Au NPs) and β-CDs, we developed an electrochemical sensor providing an excellent molecular
recognition and sensing performance towards LDL detection. The LDL dynamic adsorption behavior
on the surface of the β-CD-Au electrode was explored by electrochemical impedance spectroscopy
(EIS), displaying that the electron-transfer resistance (Ret) values were proportional to the LDL
(positively charged apolipoprotein B-100) concentrations. The β-CD-Au modified sensor exhibited a
high selectivity and sensitivity (978 kΩ·µM−1) toward LDL, especially in ultra-low concentrations
compared with the common interferers HDL and HSA. Due to its excellent molecular recognition per-
formance, β-CD-Au can be used as a sensing material to monitor LDL in human blood for preventing
ACDs in the future.

Keywords: cholesterol; low-density lipoprotein; β-cyclodextrins; multiple interactions; molecular
recognition; sensing

1. Introduction

Atherosclerotic cardiovascular disease (ACD), including coronary heart disease, cere-
bral infarction, and peripheral vascular disease, is one of the leading causes of death
worldwide [1,2]. To date, many epidemiologic studies have shown that excess low-density
lipoprotein (LDL) or oxidized modified low-density lipoprotein (OX-LDL) would promote
the accumulation of cholesterol on the arterial wall, which can easily cause the occurrence
of atherosclerosis [3,4]. LDL is a large protein composed of lipid and positively charged
apolipoprotein B-100 (apoB100), which can be recognized by negatively charged adsorption
materials via electrostatic interaction [5–8]. Fang et al. pointed out that in addition to the
charge effect, saccharides or saccharide-like structures are also an important factor for LDL
recognition [9]. Therefore, high LDL adsorption capacity contain charge effect and saccha-
rides structures, such as heparin, chitosan derivatives, sulfated dextran, cucurbit, sodium
alginate, polyacrylic acid, etc. [6,10]. Among them, β-cyclodextrins (β-CDs) are oligosaccha-
rides consisting of seven glucose units, which present a toroidal form with a hydrophobic
inner cavity and a hydrophilic outer surface [11–15]. β-CDs can act as molecular receptors
owing to the multiple interactions, including electrostatic, van der Waals forces, hydrogen
bonding, and hydrophobic interactions [16–19]. They can selectively interact with various
guest molecules, such as small molecules, cationic or anionic guests, proteins, and polymer
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chains, to form stable inclusion complex or nanostructured supramolecular assemblies in
their hydrophobic cavity, showing a high molecular recognition performance to LDL.

Currently, various analytical techniques are employed to assay protein levels, including
high-performance liquid chromatography (HPLC) [20,21], enzyme-linked immunosorbent
assay (ELISA) [22], fluorimetry [23], chromatographic methods [24], electrophoresis [25,26],
mass spectroscopy [27], and chemiluminescence [28], which are typically expensive instruments
with a long turnaround, requirement of sophisticated procedures, and well-trained operators.
Thus, it is necessary to develop a sensitive and fast analytical method for LDL quantification to
prevent and monitor atherosclerotic ACDs.

Electrochemical sensors based on β-CDs are an emerging diagnostic technology
for rapid and accurate detection for target molecules [29–35]. For example, Abbaspour
et al. designed an electrochemical sensor for simultaneous quantification of serotonin
and dopamine using β-CDs/poly(N-acetylaniline)/carbon nanotube composite modified
carbon paste electrode [30]. Xie et al. utilized host–guest interaction of β-CDs to eliminate
the excessive small molecules, and combine the single-walled carbon nanotubes and β-CDs
for excellent sensing performance for the detection of melamine [29]. Zhao et al. presented
a three-in-one nanoplatform for self-assembly, cascade catalysis, and sensing, enabled by
cyclodextrin modified gold nanoparticles (CD@AuNPs) [36]. Therefore, β-CDs are ideal
absorption materials for LDL recognition and quantification via electrochemical method,
which can convert the concentrations of LDL into measurable electrical signals timely
and quickly.

In this study, a novel electrochemical sensing strategy for sensitively and selectively
measuring LDL was designed based on the principle of multiple interactions between
β-CDs and LDL. The electrochemical sensors for LDL recognition were fabricated by gold
nanoparticles (Au NPs) electrodeposited electrode and SH-β-CD chemically self-assembled
in Au modified electrode (Figure 1). The LDL was absorbed on the β-CD surfaces via
multiple interactions and simultaneously converted the binding targets into electrochemical
change of electrode interfaces. The LDL dynamic adsorption behavior on the surface of
the β-CD-Au electrode was explored by electrochemical impedance spectroscopy (EIS),
displaying that the electron-transfer resistance (Ret) values were proportional to the LDL
(positively charged apolipoprotein B-100) concentrations from 2.5 to 25 µg·mL−1. The
optimal adsorption time and concentration were also determined by impedance responses
and faradaic impedance spectra. In addition, high selectively recognition of β-CD modified
surface electrode was investigated by comparing with other single and complex proteins
environment, including high-density lipoprotein (HDL) and human serum albumin (HSA).
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2. Materials and Methods
2.1. Chemicals and Reagents

Low density lipoprotein (LDL, 98%), high-density lipoprotein (HDL, 98%), and human
serum albumin (HSA) were purchased from Millipore (Massachusetts). Mono-(6-mercapto-
6-deoxy)-b-cyclodextrin (SH-β-CD) was obtained from Zhiyuan Biotechnology Co., Ltd.
(Shandong, China). Stainless steel substrates were purchased from Sigma-Aldrich (St. Louis,
MO, USA). Milli-Q-water was prepared via ultrafiltration of distilled water to 18.2 MΩ·cm
with an ELGA Classic UF system (Veolia Water Systems, France). All other reagents were
supplied by Aladdin Reagent Co., Ltd. (Shanghai, China) and used as received without
further purification, unless otherwise specified.

2.2. Apparatus

Morphological characterization of stainless-steel substrate, Au modified electrode,
and β-CD-Au electrode were recorded using a field-emission scanning electron microscopy
(FESEM, Hitachi S-4800, Japan) and atomic force microscope (AFM, SPI-3800N, Japan).
The elemental content was obtained by X-ray photoelectron spectroscopy (XPS, PHI 5000c,
PerkinElmer Instruments, Waltham, MA, USA). A three-electrode system was used in the
experiment, including a working electrode, Ag/AgCl reference electrode, and Pt counter
electrode. The applied potentials in all the measurements were vs. the Ag/AgCl reference
electrode. The electrochemical impedance spectroscopy (EIS) was carried out with CHI660C
electrochemical workstation (Chenhua, China) at 0.24 V, and its AC disturbance voltage
was in the frequency range between 0.1 and 105 Hz.

2.3. Fabrication of β-CD-Au Sensor for LDL Detection
2.3.1. Preparation of Au Modified Electrode

As shown in Figure 2, a 0.2 mm diameter stainless steel needle was used as the support
for the sensor. The stainless-steel needle is a promising electrode substrate for implantable
sensors, which has been used in our group for continuous glucose testing [37]. The stainless-
steel substrates were polished repeatedly with sandpaper (1500 mesh) and thoroughly
cleaned by ultrasonication in distilled water and ethanol for 5 min. Next, we used constant
potential method to electrodeposite Au NPs on needles. The electrodeposition coulomb
was controlled at approximately 2 × 10−2 C. Next, the Au needles were washed with
Milli-Q water and ethanol three times alternately. Finally, the Au modified electrodes were
blown dry with high-purity argon.
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Figure 2. The images of (a) stainless-steel substrates by and (b) stainless-steel needle.

2.3.2. Preparation of β-CD Modified Au Electrode

The 1.0 mM SH-CD was dissolved in dimethylformamide (DMF) solution and bubbled
nitrogen for about 10 min to remove dissolved oxygen. Next, the fabricated Au needles
were immersed in above SH-CD solution at 25 ◦C in the dark for 24 h. Further, the Au
needles were rinsed three times with DMF/ethanol solution (v/v = 1:1) followed by Milli-Q
water to eliminate unbound thiol molecules. After rinsing cycles, the β-CD modified Au
electrodes (β-CD-Au sensor) were dried in nitrogen and carefully preserved.
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2.3.3. Electrochemical Measurements of β-CD-Au Sensor

In order to investigate adsorption kinetics between LDL and β-CD-Au sensor, 20 µg/mL
of LDL was dissolved in PBS solution (50 mM, pH 7.0) with different time (0, 5, 10, 15, 20,
25 min), containing 0.1 M KCl and 5 mM K3[Fe(CN)6]/K4[Fe(CN)6]. The fabricated β-CD-
Au electrode and an Ag/AgCl electrode were used as the working electrode and reference
electrode, respectively, for detecting different concentrations of LDL in the frequency range
between 0.1 and 105 Hz at 0.24 V.

In order to obtain optimal adsorption concentration between LDL and β-CD-Au sensors,
different concentrations of LDL (0, 2.5, 5, 10, 15, 20, 25 µg/mL) was dispersed in PBS solution
(50 mM, pH 7.0), containing 0.1 M KCl and 5 mM K3[Fe(CN)6]/K4[Fe(CN)6], respectively.

In order to verify the selectivity and anti-interference performance of fabricated β-CD-
Au sensors, 20 µg/mL LDL and 20 µg/mL HDL was dissolved in PBS solution (50 mM,
pH 7.0), containing 0.1 M KCl and 5 mM K3[Fe(CN)6]/K4[Fe(CN)6], respectively. In
addition, different composition of mixed biproteins (HSA/LDL) were dissolved in PBS
solution (50 mM, pH 7.0), containing 0.1 M KCl and 5 mM K3[Fe(CN)6]/K4[Fe(CN)6],
respectively. All EIS measurements were carried out using β-CD-Au sensors at room
temperature. Due to the possibility of LDL protein denaturation on electrodes during the
test, the detector is used as a disposable sensor in this paper.

The limit of detection (LOD) was determined by the following Equation (1):

LOD = 3.3 σ/S (1)

where σ is the standard deviation of the noise, while the S is the slope of linear calibration
curve measured by the sensor.

3. Results and Discussion
3.1. Synthesis and Characterization of β-CD-Au Modified Electrode

The SH-β-CD was assembled on Au nanoparticles modified electrode, and the struc-
ture and morphology are shown in Figure 3. Compared with the Au modified electrode, the
O, C, and S peaks appeared (Figure 3a), and their contents were about 40.50%, 19.20%, and
5.83% (Table 1) on the surface of β-CD-Au modified electrode, displaying β-CD assembled
in Au modified electrode successfully via Au-S covalent bonding. Subsequently, mor-
phologies of Au modified surfaces, α-CD-Au, β-CD-Au, and γ-CD-Au modified surfaces
were characterized by AFM test. Compared to original Au modified surfaces, the CD-Au
modified surfaces showed smaller roughness (Figure 3b). Generally, the self-assembled
monolayers of molecules are arranged in an orderly and tight manner. The different sizes of
CDs with mercapto groups lead to the different gap sizes, so that the roughness increased
with the molecular size. The average roughness of α-CD-Au, β-CD-Au, and γ-CD-Au mod-
ified surfaces increased from 0.242 nm to 1.26, 1.33, 1.37 nm, respectively, which indicated
a successful monolayer construction of CD on the Au modified surfaces.

Table 1. Elemental analysis on the surface of Au modified electrode and β-CD-Au modified electrode.

Samples C 1s (%) O 1s (%) S 2p (%) Au 4f (%)

Au modified electrode 0.82 0.32 98.86
β-CD-Au modified electrode 40.50 19.20 5.83 34.16

The surface morphologies of bare electrode and Au modified electrode are shown
in Figure 3c. The bare electrode needs to be polished with abrasive paper during the
preparation, so the obvious scratches can be seen on the SEM images. Compared with
the surface of bare electrode, Au nanoparticles were dispersed on the surface of β-CD-Au
modified electrode.
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3.2. Kinetics of LDL Adsorption on the β-CD-Au Modified Electrode

The impedance spectrum includes a semicircle portion corresponding to the electron-
transfer-limiting process and a linear part resulting from the diffusion-limiting step of the
electrochemical process [38]. The diameter of the semicircle exhibits the electron-transfer
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resistance (Ret) of the layer, which controls the electron-transfer kinetics of the redox probe
at the electrode interface [39,40]. In Figure 4a, with the increase of the adsorption time, all
diameters of the semicircles increased, and the increased amplitudes gradually became
smaller in the time range of 15–20 min. There were many active sites on the surface of
β-CD-Au modified electrode before 15 min, the adsorption rate was mainly affected by the
diffusion rate, and the rate of adsorption was fast via monolayer absorption. In the range
of 15–20 min, the adsorption rate was slower because the adsorption sites are gradually
occupied. In the range of 20–25 min, the adsorption rate became faster again, probably due
to the multilayer adsorption of LDL on the β-CD-Au modified electrode.
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Figure 4. (a) Impedance responses with different time to the same concentration of LDL in PBS solution on the β-CD-Au
modified electrodes. Faradaic impedance spectra were recorded in PBS (50 mM, pH 7.0) solution containing 0.1 M KCl
and 5 mM K3[Fe(CN)6]/K4[Fe(CN)6]; (b) Relationship of ∆Ret with the incubation time on the response of EIS; (c) Nyquist
diagram for faradaic impedance spectra of LDL with 15 min in PBS (50 mM, pH 7.0) solution containing 0.1 M KCl
and 5 mM K3[Fe(CN)6]/K4[Fe(CN)6]: actual (red cubic), fitting (green cubic), and the related Equivalent circuit for the
impedance spectroscopy.

The impedance spectra are modeled using the equivalent circuit and the fitting analysis
was examined by Zsimpwin software, which was depicted in Figure 4c. Comparing the
actual data (red cubic) and fitting data (green cubic), the simulated data matched well with
the original data, and the Chsq value was about 3.59 × 10−4. In this equivalent circuit
(in the inset of Figure 4c), Rs represents the solution resistance, Ret represents the charge
transfer resistance of the electrode interface, Zw represents the Warbug impedance, that is,
the diffusion resistance of ions from the solution to the electrode surface, which reflects the
characteristics of the mass transfer process, and Cdl represents the electric double layer
capacitance [39]. Furthermore, Figure 4b depicted the relationship of Ret with incubation
time. With the increase of the adsorption time, LDL was continuously adsorbed to the
surface of the detector, leading to a linear increase of contact resistance in the first 20 min.
However, the contact resistance increased rapidly after 20 min, because the LDL molecules
formed a biofilm on the surface of the detector and resulting in the multilayer adsorption
in the following step. The result was consistent with Figure 4a. The electrical impedance
spectrum could reflect the performance of the surface electrode. In order to avoid the
interference of the multilayer adsorption in this experiment, all subsequent experimental
conditions were tested at 15 min.

3.3. LDL Adsorption on the β-CD-Au Modified Surface

The interaction of LDL with β-CD-Au modified electrode was investigated by EIS.
Different concentrations of LDL were added in PBS solution and the corresponding Nyquist
plots were shown in Figure 5a. The values of Ret linearly increased from 2.03 to 9.36 kΩ
with the increase of LDL from 2.5 to 20 µg·mL−1 as reflected by the increase in diameter of
the semicircle of the Nyquist plot. When the LDL level was higher than 20 µg·mL−1, the
values of Ret was not linear and tended towards saturation. In detail, a linear relationship
was extracted with a correlation efficiency of 0.988 in the range of 2.5–20 µg·mL−1 LDL
concentrations, showing a sensitivity of 978 kΩ·µM−1 (Figure 5b). Thereafter, the greatly
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increased resistance value is owing to the multilayer adsorption of LDL on the β-CD-
Au modified electrode. Furthermore, the negatively charged LDL at pH 7.0 also offers
electrostatic force of repulsion to the electrons transferring from negative redox couple
[Fe(CN)6]3− and [Fe(CN)6]4−, thereby resulting in an increase in the Ret values. The result
displayed that there was good adsorption between LDL and β-CD-Au modified electrode,
which could be expected to be used in the detection of LDL in human blood in the future.

Biosensors 2021, 11, x FOR PEER REVIEW 8 of 11 
 

    

Figure 5. (a) Faradaic impedance spectra that corresponded to the fabricated sensor at 25 °C, before and after incubating 

with different concentrations of LDL in PBS (50 mM, pH 7.0) solution containing 0.1 M KCl and 5 mM 

K3[Fe(CN)6]/K4[Fe(CN)6]; (b) Calibration curve for the relationship of ΔRet with the LDL concentration. 

3.4. Selectivity of the β-CD-Au Modified Sensor 

Selectivity is essential requirement for LDL sensor in POCT applications. There are 

various types of proteins in human blood. Among them, high-density lipoprotein (HDL) 

has a similar structure and surface chemistry to LDL but plays a opposite physiological 

role. It can transport excess cholesterol in the cells of the whole body back to the liver for 

decomposition, which is called “good cholesterol”. After the addition of HDL, the elec-

trical impedance spectrums of β-CD-Au modified sensor remained unchanged (Figure 

6a). However, when adding the same level of LDL in the same condition, the charge 

transfer resistance increased obviously (Figure 6b). Even though the size of HDL parti-

cles were (21.5 ± 6.5 nm) smaller than those of LDL (28.9 ± 9.2 nm), the adsorption capac-

ity of β-CD to HDL was far less than that of LDL (Figure 6c), indicating excellent selec-

tive LDL adsorption for β-CD. 

In addition, there are large amounts of human serum albumin (HSA) in human 

blood, with ellipsoid shapes of 36 nm in diameter. Therefore, we selected HSA-LDL 

proteins composites, to simulate and evaluate the selectivity of β-CD-Au modified nee-

dle sensor. As shown in Figure 7a,b, after adding HSA, the charge transfer resistance 

was unchanged, which was similar to HDL, because of the poor interaction between 

HAS and β-CD. With the increase of LDL levels in the mixed solution, the charge trans-

fer resistance gradually increased, indicating high sensitivity and selectivity of this novel 

β-CD-Au modified sensor. In this experiment, the HSA level (1 mg·mL−1) was much 

higher than the concentration of LDL in the mixed protein solution. Furthermore, the 

LDL levels (5–20 µg·mL−1) in the present work were far less than the physiological levels 

(0.144–0.30 μM) in real human blood. The high level of HSA and trace concentrations of 

LDL suggested high sensitivity and promising application of β-CD-Au modified sensor 

in monitoring the LDL level in the future. 

According to our previous work [9], the effect of hydrogen bond and the cavity of 

β-CD on the interaction between β-CD and LDL was particularly explored by surface 

plasmon resonance (SPR) analysis. The SPR results showed that such β-CD-modified 

surface exhibited good selectivity. The EIS data is consistent with the previous SPR test 

results of our group. 

Figure 5. (a) Faradaic impedance spectra that corresponded to the fabricated sensor at 25 ◦C, before and after incubating with
different concentrations of LDL in PBS (50 mM, pH 7.0) solution containing 0.1 M KCl and 5 mM K3[Fe(CN)6]/K4[Fe(CN)6];
(b) Calibration curve for the relationship of ∆Ret with the LDL concentration.

3.4. Selectivity of the β-CD-Au Modified Sensor

Selectivity is essential requirement for LDL sensor in POCT applications. There are
various types of proteins in human blood. Among them, high-density lipoprotein (HDL)
has a similar structure and surface chemistry to LDL but plays a opposite physiological
role. It can transport excess cholesterol in the cells of the whole body back to the liver for
decomposition, which is called “good cholesterol”. After the addition of HDL, the electri-
cal impedance spectrums of β-CD-Au modified sensor remained unchanged (Figure 6a).
However, when adding the same level of LDL in the same condition, the charge transfer
resistance increased obviously (Figure 6b). Even though the size of HDL particles were
(21.5 ± 6.5 nm) smaller than those of LDL (28.9 ± 9.2 nm), the adsorption capacity of
β-CD to HDL was far less than that of LDL (Figure 6c), indicating excellent selective LDL
adsorption for β-CD.
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Figure 6. Faradaic impedance spectra that corresponded to the fabricated sensor at 25 ◦C, before and after incubating with
same concentrations of (a) HDL, 20 µg/mL or (b) LDL, 20 µg/mL in PBS (50 mM, pH 7.0) solution containing 0.1 M KCl
and 5 mM K3[Fe(CN)6]/K4[Fe(CN)6]; (c) ∆Ret of different lipoprotein calculated to faradaic impedance spectra.

In addition, there are large amounts of human serum albumin (HSA) in human blood,
with ellipsoid shapes of 36 nm in diameter. Therefore, we selected HSA-LDL proteins
composites, to simulate and evaluate the selectivity of β-CD-Au modified needle sensor.
As shown in Figure 7a,b, after adding HSA, the charge transfer resistance was unchanged,
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which was similar to HDL, because of the poor interaction between HAS and β-CD. With
the increase of LDL levels in the mixed solution, the charge transfer resistance gradually
increased, indicating high sensitivity and selectivity of this novel β-CD-Au modified sensor.
In this experiment, the HSA level (1 mg·mL−1) was much higher than the concentration
of LDL in the mixed protein solution. Furthermore, the LDL levels (5–20 µg·mL−1) in the
present work were far less than the physiological levels (0.144–0.30 µM) in real human
blood. The high level of HSA and trace concentrations of LDL suggested high sensitivity
and promising application of β-CD-Au modified sensor in monitoring the LDL level in
the future.
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Figure 7. (a) Nyquist diagram of faradaic impedance spectra and (b) ∆Ret of binary proteins for β-CD based sensor incubat-
ing in HSA/LDL binary proteins in PBS (50 mM, pH 7.0) solution containing 0.1 M KCl and 5 mM K3[Fe(CN)6]/K4[Fe(CN)6].

According to our previous work [9], the effect of hydrogen bond and the cavity of
β-CD on the interaction between β-CD and LDL was particularly explored by surface
plasmon resonance (SPR) analysis. The SPR results showed that such β-CD-modified
surface exhibited good selectivity. The EIS data is consistent with the previous SPR test
results of our group.

4. Conclusions

In conclusion, we reported the selective adsorption and sensing towards LDL based
on β-CD via electrochemical impedance spectroscopy (EIS). The Au NPs were electrode-
posited in bare electrodes and SH-β-CD was self-assembled in Au modified electrodes for
LDL detection. LDL can be absorbed on the β-CD surfaces to form inclusion complexes via
multiple interactions and simultaneously converted the LDL concentrations into measur-
able electrical signals. Moreover, the β-CD-Au modified surface could be used as a selective
biosensor for LDL detection. The novel sensor performed high sensitivity (978 kΩ·µM−1)
when operated in PBS buffer. Comparing with HDL and HSA, the β-CD-Au modified
sensor exhibited a good selectivity toward LDL, especially in micro levels testing (2.5–20
µg·mL−1). The excellent specificity and sensitivity of β-CD opens up a new avenue to
recognize and quantify LDL in human blood for preventing ACDs in the future.
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