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Abstract: Anesthesia assessment is most important during surgery. Anesthesiologists use electrocar-
diogram (ECG) signals to assess the patient’s condition and give appropriate medications. However,
it is not easy to interpret the ECG signals. Even physicians with more than 10 years of clinical experi-
ence may still misjudge. Therefore, this study uses convolutional neural networks to classify ECG
image types to assist in anesthesia assessment. The research uses Internet of Things (IoT) technology
to develop ECG signal measurement prototypes. At the same time, it classifies signal types through
deep neural networks, divided into QRS widening, sinus rhythm, ST depression, and ST elevation.
Three models, ResNet, AlexNet, and SqueezeNet, are developed with 50% of the training set and test
set. Finally, the accuracy and kappa statistics of ResNet, AlexNet, and SqueezeNet in ECG waveform
classification were (0.97, 0.96), (0.96, 0.95), and (0.75, 0.67), respectively. This research shows that it
is feasible to measure ECG in real time through IoT and then distinguish four types through deep
neural network models. In the future, more types of ECG images will be added, which can improve
the real-time classification practicality of the deep model.

Keywords: ECG; IoT; deep neural network

1. Introduction

The dangers of surgery and anesthesia have been issues of concern for both physicians
and patients for a long time. In addition to the operation itself, there are concerns about the
pain of the operation, ignorance of the anesthesiologist, and the method of anesthesia [1].
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Hence, it is essential for surgical patients or their families to understand the issues related
to surgery and anesthesia.

While we need to engage in a pre-anesthesia assessment, there are many different
methods we can choose, including the following: electrocardiogram (ECG), ultrasound
(US), a blood test, chest X-ray, and history taking in the clinic [2–4]. Except for the methods
mentioned above, the last several decades of research have given us helpful information
on automated or artificial intelligence methods to assist the pre-anesthesia assessment.

Nowadays, due to the convenience of urban life and the popularity of medical treat-
ment, people can measure their blood pressure in supermarkets and convenience stores
close to their homes. However, ECG is more important for real-time measurement of
cardiac function than blood pressure. Following the awareness of this, people could easily
apply an ECG device anywhere in the future. There must be a specific and popular way
to meet the need in terms of such medical concerns. In general, the ECG signal must be
interpreted and diagnosed by doctors with their medical expertise, even though people
can use the relative machine to obtain their ECG signal. The second reason is that people
do not have enough expertise to diagnose themselves at home and doctors cannot make
real-time diagnoses at the same time as well. This study aims to investigate whether it is
possible to obtain an ECG signal and diagnosis at any time and place. Suppose artificial
intelligence (AI) algorithms are used to distinguish pre-discriminate ECG signal patterns
measured at home through the Internet of Things (IoT), then people can directly obtain a
preliminary report of their ECG anywhere [5–7]. For the achievement mentioned above,
the main control factor is the signal from the ECG. ECG can be used to understand the
activity of the heart and whether the heartbeat is normal and regular [8]. The diseases that
doctors can detect through these waveform changes include the following: myocardial
infarction, heart displacement, cardiac cystitis, arrhythmia, coronary artery insufficiency,
electrolyte metabolism imbalance, atrium or ventricular hypertrophy, etc., [9].

In the hospital, a risk assessment before anesthesia is necessary. The ASA Physical Sta-
tus Classification System has been used for more than 60 years. It allows anesthesiologists
and clinicians to evaluate and classify the patient’s physical condition before anesthesia,
which can be helpful in predicting operative risk [10]. Later, Dripps (1961) modified the
original classification system into a simplified Dripps–ASA model [11,12]. The ASA score
is simple and easy to understand. It is a familiar system for anesthesiologists and clinicians
to follow. Although this system has been used as a physical status level that guides anes-
thesiologists through the patient’s overall physical conditions for many years, there are
still some risks of having cardiac complications after the surgery.

In cardiac diagnosis, the risk index of cardiac complications is very important. Cardiac
complications are risks that require attention when performing non-cardiac surgery. In
the literature, simple index derivation and prospective verification can predict the cardiac
risk of major non-cardiac surgery. Among stable patients undergoing non-urgent and non-
cardiac major surgery, the index can identify patients with a higher risk of complications.
The index may help identify candidates for non-invasive techniques or other management
strategies for further risk stratification [13]. Lee, et al. studied 4315 patients aged ≥ 50,
then developed and validated an index risk for cardiac complications [14]. The outcome of
the study shows that the “Receiver operating characteristic curve analysis in the validation
cohort indicated that the diagnostic performance of the Revised Cardiac Risk Index was
superior to other published risk-prediction indexes”. With the help of the index and
non-invasive technologies, anesthesiologists can identify patients with a higher risk of
complications after surgery.

ECG is a signal that records the electrical activity of the patient’s heart. It is one of the
most common non-invasive technologies used by anesthesiologists with the ECG waveform
of ventricular fibrillation (VF) to evaluate the risk before a patient has anesthesia. In the
study of “Ventricular fibrillation waveform characteristics of the surface ECG: Impact
of the left ventricular diameter and mass” [15] and “Ventricular fibrillation waveform
characteristics differ according to the presence of a previous myocardial infarction: A
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surface ECG study in ICD-patients” [16], it was shown that previous myocardial infarction
(MI) could affect the VF waveform and VF characteristics of the surface ECG are not the
main consideration of cardioplegia and metabolic status.

2. The Study’s Purpose and Methodology

According to the report by the Taiwan Ministry of Health and Welfare [17], in Taiwan,
the top three diseases that cause death are malignant tumors, heart disease, and pneumonia.
In the past, the role of the physicians could only be to stand next to a patient to observe the
vital signs by visual and general medical judgment. However, with the implementation
of the prototype concept, doctors will be able to operate active measures they have never
used before in the process of curing patients. Doctors could remotely monitor in real time
and discuss patients’ vital signs with others from multiple divisions.

The research process first obtains the ECG signal through the developed single-lead
prototype and then designs the automatic ECG signal process method. Additionally, it
finds the peaks of each signal for a single complete cycle signal cutting; the third step
transfers the cut signal as a single JPG image, then uses a deep neural network model to
classify the signal category. Therefore, doctors can adopt this device in emergencies as well,
e.g., emergency medical technicians (EMTs). Through the remote ECG device, doctors can
understand the patient’s status in real time in the process of emergencies. Moreover, during
the process of transferring patients to the operating room, anesthesiologists can monitor
and check patients’ real-time ECG data on mobile phones at the same time. This research
combines an Arduino, a heart rate monitor, and a Raspberry Pi to develop an ECG signal
measure prototype that can provide instant ECG waveforms. At the same time, combined
with deep learning technology, the waveform type can be automatically identified. The
research structure is illustrated below (Figure 1).

Figure 1. Research structure of the proposed methodology.

2.1. A Real-Time IoT ECG Monitor

In order to obtain the real-time ECG signals, the prototype was integrated with IoT
hardware devices. The hardware in this study was divided into three major components.
One of them is the AD8232 [18], which can be described as a heart rate monitor chip (power
voltage: 3.3 V DC; output: analog output). It is suitable for signal conditioning of the
cardiac electrical activity from one patient. The second major component is an Arduino
Uno, which is an open source development hardware platform. Its open source hardware
and software both enable users to develop a wide range of applications. The third one
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is a Raspberry Pi, which is a Linux-based single-chip computer board. The Raspberry Pi
Foundation developed it in the United Kingdom for facilitating basic computer science
education with low-priced hardware and free software. The board is characterized by its
very light weight, only 42 g, making it ideal for incorporation into portable devices. The
tool can be used as a micro-computer that can be plugged into any monitor and accordingly
be turned into a fully functioning computer [19]. As mentioned above, its light weight
and full function will allow doctors or developers to record data easily. The data could be
delivered and accessed by adopting a Wi-Fi schema and cloud storage, then one can obtain
analytic results by utilizing a mobile device (iPad, cell phone, etc.).

The overall operation process is as follows: (1) Following a 10 min rest, ECG electrode
pads were applied to three locations of a volunteer (the right arm, left arm, and left leg) in
a sitting position. The volunteer did not have any history of heart disease. (2) To acquire
about a 9600 baud ECG signal in 600 s, the sampling rate was 360 Hz and the bandwidth
was 0.5–40 Hz. (3) The signal flowed from the ECG through the Arduino Uno. In the
process, Arduino Uno translated the signal to be analyzed and sent it to the Raspberry
3B+. Furthermore, the combination of the Arduino Uno and Raspberry 3B+ will allow
users who are using a remote desktop client to connect to the Raspberry Pi 3B+ and see
the data to be analyzed. (4) A total of about 12,000 analog signals were obtained through
the process described. Next, the signals were compressed by the fast Fourier transform
(FFT) technique. Using FFT removed low-frequency components and an inverse FFT was
performed to recover the signal (the noise was defined for a maximum FFT signal × 0.2).
(5) The validation of the AD8232 was performed and compared with a clinical ECG by
simultaneously measuring 600 s for one individual. We compared the Philips IntelliVue
MP70 with the RR interval estimates by the AD8232.

After obtaining the ECG signal through IoT, in order to automate analysis of the ECG
signal, AI identification and analysis technology were combined with the present device.
First, the ECG signal was synchronized to the cloud database. Then, the analysis machine
was used to download the ECG signal, which provided analysis automatically. Next, the
data were input into the AI model (through a deep convolutional network) for classification
analysis. Finally, the analysis result was output and uploaded to the database storage.
Users can view the results in real time on their smart devices. The whole process is shown
in Figure 2. The next section will introduce the establishment process of the AI model.

Figure 2. The workflow with combined AI and IoT.

2.2. ECG Classified by Deep Learning

In order to build a robust classification model, for model training, the ECG data came
from publicly available resources in an open database (MIT-BIH Arrhythmia Database) [20,21].
The database contains 48 recordings, each of which has a duration of 30 min and includes
two leads. Before training the model, image pre-processing of the ECG signal was per-
formed. First, the peak of the R wave was confirmed, and then the time of the RR interval
was calculated. Second, the ECG of the RR interval of one half before and after the interval
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was cut out (Figure 3). The ECG was composed of a series of wave groups, and each
wave group represented every cardiac cycle. The above process was implemented through
Waveform Database (WFDB) software. It was suitable for use in the MIT Database. The
WFDB could be used for ECG signal processing and analysis, and the software could
also be used for viewing, annotation, and interactive analysis of waveform data [21]. A
wave group includes a P wave, QRS wave group (QRS complex), and T wave. (1) P wave:
The excitement of the heart originates from the sinus node and then moves to the atrium.
The P wave is generated by the depolarization of the atria. It was the first wave in each
wave group. It reflects the depolarization process of the left and right atria. The first half
represents the right atrium, and the second half represents the left atrium. (2) QRS complex:
A typical QRS complex consists of three connected waves. The first downward wave is
called the Q wave, a high-pointed upright wave after Q wave is called the R wave, and
the downward wave after the R wave is called S wave. As they are intricately connected
and reflect the ventricular electrical activation process, they are collectively referred to as
QRS complexes. This wave group reflects the depolarization process of the left and right
ventricles. (3) T wave: The T wave is located after the S-T segment. It is a relatively low
and long wave, which is produced by ventricular repolarization.

Figure 3. The pre-processing of the ECG signal. On the left is the input signal with automatically
found peaks of the R wave. On the right is the segment of each period of the ECG wave.

According to the MIT-BIH Arrhythmia Database, the four patterns of the signal of
an ECG involved in this study include the sinus rhythm (n = 19,751), QRS widening
(n = 21,377), ST depression (n = 7163), and ST elevation (n = 5899) (Figure 4). The four
patterns of the ECG were made into 2D images, and these 2D images were used for building
the convolution neural network (CNN) models. The classifier was split with fifty percent
each as training and testing datasets. For example, the ST elevation signal had 5899 images.
The training versus testing sets had 2950 and 2949 images, respectively. The classification
model is trained by the training set and tested by the testing set. These models were created
by pre-trained CNNs, which were ResNet [22], AlexNet [23], and SqueezeNet [24]. The
numbers of 2D ECG images of the four patterns are shown in Table 1.
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Figure 4. The patterns of QRS widening, sinus rhythm, ST depression, and ST elevation automatically
extracted from sequence ECG signals.

Table 1. The numbers of 2D images of four patterns of ECG.

Label Number of 2D ECG Images

QRS Widening 21,377
Sinus Rhythm 19,751
ST Depression 7163
ST Elevation 5899

2.3. The Deep Neural Network (DNN)

For human beings, image-based information is the most intuitive. Therefore, a need
for image interpretation has quickly risen in the scientific community. A computer with
intelligence capable of interpreting image information is required. Image information
has opened many doors and has led us to the field of deep learning. Deep learning is an
artificial intelligence function that imitates the workings of the human brain in processing
data and creating patterns for use in decision making [25,26]. Deep learning is a subset
of machine learning in artificial intelligence (AI) that has networks capable of learning
unsupervised from data that is unstructured or unlabeled. Additionally, it is known as
deep neural learning or deep neural networks. Convolution neural networks (CNNs) are
a subset of deep neural networks, and have attracted a lot of attention in recent years
and are used in image recognition [27–29]. They are often used to extract features and
identify the surrounding environment to build a deep network. As the convolutional
neural network structure has more convolution and pooling layers than traditional neural
networks, instead of simply extracting data for calculation, it can handle translation,
rotation, and distortion. Furthermore, it also retains shape and spatial information to
enable image processing. The advantage of this is that it is more convenient and faster than
traditional neural networks. In addition, it can reduce the risk of overfitting and neural
training parameters [30]. Its feature processing ability has an important application value
in the fields of image classification and computer recognition.

The architecture of a common CNN includes an input layer, a convolution layer, a
rectification linear unit layer (ReLU layer), a pooling layer, a fully connected layer, a softmax
layer, and a classification layer. In this study, transfer learning technology was utilized
to modify the pre-trained CNN models. Transfer learning refers to the use of pre-trained
models to modify and train new samples [31,32]. In the training process of convolutional
neural networks, a large number of samples are needed to avoid the problem of overfitting;
however, in the medical field, few large datasets can be used, so there is a bottleneck in
training. The training model can solve the problem of limited datasets. The parameters
of the pre-trained model were trained through a large database. The model only needs to
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fine-tune the parameters for new samples and does not need to retrain the entire model
using random initialization parameters.

This study utilized pre-trained ResNet, AlexNet, and SqueezeNet models. All of
them are popular for image classification in CNNs. In ResNet, the input image dimension
was 256 × 256. It has fifty-three convolution layers, one max-pooling layer, and one fully
connected layer, followed by a softmax output layer. In AlexNet, the input image dimension
was 256 × 256. It has five convolution layers, three max-pooling layers, seven ReLU layers
and two fully connected layers, followed by a softmax output layer. In SqueezeNet, the
input image dimension was 256 × 256. It has twenty-six convolution layers, three max-
pooling layers, and twenty-six ReLU layers.

3. Results

The presented prototype machine was used and compared with routine ECG in a
hospital. It simultaneously measured 600 s and yielded 722 RR intervals for one individual.
The ECG signal between our prototype and routine ECG was verified by a Wilcoxon
signed-rank test. The results were not significantly different (p = 0.058, the threshold for
significance was 0.05). In addition, an MA plot was adopted to investigate the difference in
RR intervals. It showed the RR intervals between our prototype and routine ECG within
±0.1 s.

In the deep neural network, the MIT-BIH database was used to establish the classi-
fication model. It could achieve this study’s main aim, which was real-time remote ECG
monitoring and classification of ECG patterns by DNN models. The experimental result
is shown below (Table 2 shows the predicted confusion table). The designed framework
of using ResNet, AlexNet, and SqueezeNet included 50% of the dataset for the training
model and 50% of the dataset for the testing model. The ST elevation set had the smallest
number of images (i.e., each set was used, with 5899 images). The training and testing sets
had 4 × 2950 and 4 × 2949 images, respectively. The DNN classification result is shown in
Tables 3 and 4. Table 3 presents the metrics of each class between the three frameworks.
Additionally, Table 4 presents each framework’s detailed result.

Table 2. The confusion table with true positives, true negatives, false positives, and false negatives in four categories
predicted from ResNet, AlexNet, and SqueezwNet.

Label
(True Condition)

Predicted by ResNet/AlexNet/SqueezeNet

QRS Widening Sinus Rhythm ST Depression ST Elevation

QRS Widening 2803/2754/2187 30/56/128 47/95/276 69/44/358
Sinus Rhythm 39/64/626 2904/2855/2122 3/26/86 3/4/115
ST Depression 54/43/311 61/44/183 2827/2857/2034 7/5/421
ST Elevation 29/76/197 6/6/75 5/21/126 2909/2846/2551

Table 3. The metrics for each class and three different models.

Categories
Classifying Model: ResNet/AlexNet/SqueezeNet

Recall Precision F1-Score

QRS Widening 0.950/0.934/0.742 0.958/0.938/0.659 0.954/0.936/0.698

Sinus Rhythm 0.985/0.968/0.720 0.968/0.964/0.846 0.976/0.966/0.778

ST Depression 0.959/0.969/0.690 0.981/0.953/0.807 0.970/0.961/0.744

ST Elevation 0.986/0.965/0.865 0.974/0.982/0.740 0.980/0.973/0.798
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Table 4. The framework of Resnet, AlexNet, and SqueezeNet with transfer learning results.

Index ResNet AlexNet SqueezeNet

Image Dimensions 256 × 256 256 × 256 256 × 256
Deep Layers 177 25 68

Accuracy 0.97008 0.95897 0.75398
Recall 0.97008 0.95897 0.75398

Precision 0.97011 0.95907 0.76291
F1-Score 0.97009 0.95902 0.75842
Kappa 0.96010 0.94529 0.67198

The results provided by the testing set (n = 2949) are shown in Table 4. The best
accuracy, recall, precision, F1-score, and kappa statistics were 0.97, 0.97, 0.97, 0.97, and
0.96 with, respectively, by using the ResNet model. The testing results among ResNet,
AlexNet, and SqueezeNet showed high accuracy and agreement when using ResNet for
classifying the 2D signal of the ECG. The histogram of validation values between ResNet,
AlexNet, and SqueezeNet is shown in Figure 5. In this study, the accuracy was defined
as the correct rate of the overall judgment of the model. The precision was defined as the
proportion of actual positives in the case of positive predictions. The recall was defined
as how many positives are correctly judged under the condition of actual positives. The
F1-score was defined as a comprehensive evaluation index used when both precision and
recall are important (F1-score = (2 × precision × recall)/(precision + recall)). The kappa
statistic was defined as the consistency of the classification results and actual results.

Figure 5. The classification results by different DNN models.

To compare between the evaluation metrics of the proposed model and recent studies
on automated detection and classification [33], the results are presented in Table 5. The
proposed method can focus on rhythm, QRS widening, ST depression, and ST elevation
categories with an accuracy of 0.97.
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Table 5. Comparison of proposed scheme with existing methods.

Author Category Sample Size Method Accuracy

B. Pourbabaee et al. [34] 2 classes 200
CNN +

K-nearest
neighbor

85.33

A. Hannun et al. [35] 12 classes 91,232 DNN 97.00

M. Javadi et al. [36] 3 classes 15,566
Negative

correlation
learning method

96.02

Y. Li et al. [37] 1 classes 129 CNN 94.30

Q. Zhang et al. [38] 2 classes 220 CNN 93.50

P. Georgios et al. [39] 5 classes 8528 CNN + BiLSTM 95.90

Presented Method 4 classes 5899 DNN 97.00

4. Discussion

This study indicated that with the employment of an Arduino Uno, Raspberry Pi,
AD8232 heart rate monitor, and deep neural network, it is possible to carry out the real-
time remote monitoring of variation in patients’ ECGs. Currently, cell phones are an
indispensable tool for everyone. A lot of things used to only be done by computers, and
now can be accomplished via smartphones. Therefore, if doctors can take advantage of
mobile devices to monitor patients’ vital signs, there is no doubt that it will benefit both
patients and doctors.

This created prototype was low cost, operated in real time, and reliable. It is available
for both experimental research and ECG data collection. Lowering the cost can speed up
and promote research. The device realizes the concept of IoT. Health care specialists can
control all kinds of instruments via cell phones. Additionally, the real-time vital signs from
the instruments can be sent back to specialists concurrently. Hence, this allows doctors to
administer the corresponding treatment in time. The presented device can be applied to a
patient with a resting heart rate of 60–100 bpm, but it may not be accurate with arrhythmia
or tachycardia.

Such a prototype may not replace the current laboratory or hospital equipment, but
the IoT concept we proposed is aimed at enabling doctors to discuss and analyze the same
patient’s condition in real time. Moreover, the application can be promoted in medical
colleges or senior high schools, so students can experience and learn the ECG principles.
Meanwhile, ECG is always an important signal for humans. ECG is a transthoracic tech-
nique that records the electrophysiological activity of the heart in units of time. In addition,
ECG captures and records it through electrodes on the skin. This is a non-invasive way of
recording and could diagnose heart rhythms.

With the increase in long-term ECG records, the demand for ECG analysis has rel-
atively increased. This prototype can extract the ECG signals in the time domain and
frequency domain of important information. The post-processing algorithm provides
extracted data that are compatible with a clinical ECG monitor. Such a prototype cannot
replace the current hospital equipment, but the IoT concept we proposed is aimed at
enabling doctors or researchers to discuss and analyze ECG data at a lower cost.

5. Conclusions

ECG is the best method to measure and diagnose abnormal heart rhythms. There are
two conditions used to diagnose abnormal heart rhythms. First, when the electrocardio-
graphic conduction tissue is damaged. Second, when the heart rhythm changes due to
electrolyte imbalance. In the diagnosis of myocardial infarction, it can specifically identify
the area of myocardial infarction. In this study, the obtained classification results show
that the proposed DNN model can be used to classify four categories of disease from ECG
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images. Meanwhile, the classification results of normal and abnormal ECGs can be used as
one of the indicators of risk assessment for anesthesia.

The study created a prototype machine to enable real-time IoT monitoring. It will allow
physicians to obtain data to identify cardiac disease from ECG images. The presented device
can be applied to a patient with a resting heart rate of 60–100 bpm. This is a protocol and
conceptual device for monitoring possible arrhythmia. Consequently, additional different
samples will generate a more accurate conclusion and general concepts. Meanwhile,
arrhythmia in both different heart rates and different morphologies will be studied to test
the presented device in future work. In conclusion, this prototype machine may allow
real-time remote monitoring and automatic recognition of the different rhythm classes. It
may assist physicians in long-term monitoring or urgent situations. This may be a subject
for further study.

In the future, a complete system is to be built up according to the achievements
mentioned above. Doctors can monitor the ECG in real time through IoT and mobile
devices with the complete system. This immediate and effective information can provide
medical staff with the most effective information to facilitate subsequent relevant diagnosis
and treatment. Moreover, it can also apply to the fields of home health care (HHC) and long-
term care (LTC) to provide medical information generated by IoT devices at home. LTC
supports a range of services for patients with chronic illnesses. Physicians from multiple
divisions can monitor the important information in real time and provide appropriate
advice to the patients’ family.
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