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Abstract: Glycated hemoglobin (HbA1c) is a product of the spontaneous reaction between hemoglobin
and elevated glucose levels in the blood. It is included among the so-called advanced glycation end
products, of which is the most important for the clinical diagnosis of diabetes mellitus, and it can
serve as an alternative to glycemia measurement. Compared to the diagnosis of diabetes mellitus by
glycemia, the HbA1c level is less influenced by a short-term problem with diabetes compensation.
Mass spectroscopy and chromatographic techniques are among the standard methods of HbA1c level
measurement. Compared to glycemia measurement, there is lack of simple methods for diabetes
mellitus diagnosis by means of the HbA1c assay using a point-of-care test. This review article is
focused on the surveying of facts about HbA1c and its importance in diabetes mellitus diagnosis, and
surveying standard methods and new methods suitable for the HbA1c assay under point-of-care
conditions. Various bioassays and biosensors are mentioned and their specifications are discussed.

Keywords: advanced glycation end products; analysis; bioanalysis; biosensor; chromatography;
diabetes; diagnosis; glucose; hand held assay; lateral flow test; mass spectrometry

1. Introduction

Point-of-care testing has become a relevant part and aim of analytical and bioanalytical
chemistry, and various target markers can be determined by these tests [1–8]. Although
standard instrumental analyses, such as chromatography, mass spectrometric and elec-
trophoretic analyses, have good potential to be used for the routine detection of biochemical,
immunochemical and other markers, they are predetermined for laboratory use due to their
complexity and costs. Simple methods for point-of-care diagnoses are available as well but
they are typically suitable for simple markers and parameters (e.g., colorimetric clinical
urine tests, electrochemical glucose tests). Some markers can be examined by colorimetric
tests in the lateral flow immunochromatographic assay (e.g., pregnancy tests). In view
of their complexity, many pathological processes and related diseases are not covered by
adequate tests that are suitable for performance outside laboratories.

Glycated hemoglobin (HbA1c) is an additional marker, besides the standard glucose
and glycemia analyses, that has become a relevant marker in new analytical methods.
As discussed below, the determination of HbA1c is substantial for diabetes diagnosis
and provides substantial results compared to the simple measurement of glycemia [9–11].
Point-of-care testing of HbA1c appears to be a suitable approach to timely and accurately
revealing diabetes mellitus and it demonstrates a better quality of diagnosis compared to
the standard determination of glycemia [12–14].

In this study, simple methods like biosensors and hand-held bioassays are reviewed
and their practical relevance considering analytical parameters is discussed in the context
of the standard analytical approaches. The analytical methods are discussed in view of
their applicability in point-of-care testing. A survey of the current literature is provided
as well.
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2. Glycated Hemoglobin and Other Advanced Glycation End-Products

HbA1c is a glucose-modified hemoglobin created during the spontaneous reaction
between glucose and N-terminal valine residues on β chains of hemoglobin-creating β-
N-1-deoxy fructosyl [15]. The exact chemical mechanism of glycosylation is based on
the formation of a Schiff base then shifting into rearrangement by means of Maillard
reactions, eventually providing the final molecule with covalently bound glucose, called
the Amadori product, or an advanced glycation end-product [16,17]. The principles of
this chemical reaction are depicted in Figure 1. Once HbA1c is formed, it remains in the
blood circulation for quite a long time, typically from two to three months, because of the
lifespan of erythrocytes, which is approximately 120 days [18]. The blood level of HbA1c
is quite stable and not sensitive to time of day, fasting or recently taken food [19]. All
the aforementioned facts make HbA1c a good marker for diabetes mellitus, with minimal
misdiagnosis due to temporary and non-pathological changes in glycemia [20,21]. Though
the measuring of HbA1c is commonly considered a good way to diagnose diabetes mellitus,
some pathologies like hemolytic anemia, which affects the lifespan of erythrocytes, or the
presence of an abnormal chain in the hemoglobin molecule, can cause the distortion of
results [22].
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Hemoglobin is not the only protein providing advanced glycation end-products. The
same mechanism happens for the other proteins located in the blood system, but their
diagnostic meaning is less significant compared to the HbA1c. Glycated albumin may be
mentioned as an important example. The blood or plasma level of glycated albumin is
influenced by a time span of approximately two to three weeks [23], corresponding with the
expected half-life of albumin, 15–20 days [18]. The glycosylation of albumin is dominantly
made through lysine or less commonly by arginine [24]. The diagnostic meaning of glycated
albumin is nearly the same as that of HbA1c [25,26]. Although the glycated albumin level is
not influenced by hemoglobin disorders, there can be changes in its blood concentration due
to disorders in albumin metabolism like nephrotic syndrome, hyper- or hypothyroidism
or liver cirrhosis [27]. When proteins become glycated, they also change in terms of their
conformation and surface hydrophobicity compared to non-glycated structures [28–30].
The molecular weight of hemoglobin—64.5 kDa with one bound glucose at the most—can
rise to 68 kDa when up to 15 glucose moieties are attached [31,32]. Fluorescence intensity
can rise as well, from 34% for non-glycated hemoglobin up to 45% for HbA1c [30]. Therefore,
fluorescence can serve as an assay for the identification of hemoglobin types [33]. Raman
spectroscopy can distinguish the types of hemoglobin as well [34]. The changes in surface
hydrophobicity can be studied by reagents like 6-p-toluidinylnaphtalene-2-sulfonate and
8-anilinonaphtalene-1-sulfonate, providing fluorescence depending on the polarity of the
solvent, developing low fluorescence in polar solvents (like water) and high fluorescence
in low-polarity solvents [35,36]. Glycation of hemoglobin make HbA1c less polar than the
non-glycated hemoglobin, which can be visualized by 8-anilinonaphtalene-1-sulfonate [30].
Glycation of albumin leads to a slight increase in polarity, making it visible by the addition
of a 6-p-toluidinylnaphtalene-2-sulfonate molecule [35]. The surface hydrophobic areas
can serve for retention of the whole molecule during chromatographic isolation. For



Biosensors 2021, 11, 70 3 of 12

instance, hemoglobin was separated in a polar-phase system and showed a high value
of the partition coefficient in a more hydrophobic environment such as polyethylene
glycol polymer enriched with oleate [37]. Normal and elevated glycated hemoglobin were
distinguished between phases composed of various amounts of PEG 600, Dextran 500 or
polyvinylpyrrolidone. Researchers used polar phases and successfully distinguished levels
of glycated hemoglobin indicated by the polar character of the surface [38,39].

The ratio of HbA1c vs. the non-glycated hemoglobin serves for the diagnosis of di-
abetes mellitus. Healthy people have less than approximately 42 mmol/mol of HbA1c
compared to the total hemoglobin, representing 6.0%. Suspected diabetes mellitus (pre-
diabetes) lies in the range of 42–47 mmol/mol, respectively, representing 6.0% to 6.4%.
The presence of HbA1c above the value of 48 mmol/mol, representing 6.5% and over, is
typical for people suffering from diabetes mellitus [40,41]. The comparison of non-glycated
hemoglobin and HbA1c is presented in Table 1.

Table 1. Basic specifications of non-glycated hemoglobin and HbA1c.

Specification Non-Glycated
Hemoglobin HbA1c References

Number of glycated sites/molecular weight 1/64.5 kDa 15/68 kDa [31,32]
Florescence intensity 34% 45% [30]

Hydrophobicity high low [38,39]
Percentage in blood of health people above 94% under 6.0% [40,41]

Percentage in blood of people
with prediabetes 94.0–93.5% 6.0–6.5% [40,41]

Percentage in blood of people with
diabetes mellitus under 93.5% above 6.5% [40,41]

3. Standard Methods for Glycated Hemoglobin Assay

Instrumental analytical methods serve as the standard tools for both recognizing
new cases of diabetes mellitus and controlling whether the diagnosed diabetes mellitus is
adequately compensated for [42]. In general, assays should be focused on distinguishing
the standard hemoglobin and HbA1c. Physical and chemical differences between the two
molecules serve the assay’s purpose. Interaction with antibodies creates the opportunity to
distinguish the both types of hemoglobin by means of an immunoassay, different physical
properties of the molecule surface (mainly due to surface polarity) allow isolation and
determination by means of chromatography and the different weights of molecules and
their fragments are the premise of mass spectrometry (MS). The general principles of the
HbA1c assay in the presence of standard hemoglobin are summarized in Figure 2.
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Various chromatographic methods, spectrometric methods and their combination are
common in the clinical praxis. High-performance liquid chromatography (HPLC) [43,44],
cation exchange HPLC [45], Liquid chromatography (LC) tandem MS [46–48], matrix-
assisted laser desorption ionization time-of-flight MS [49], capillary electrophoresis [50,51]
and capillary zone electrophoresis tandem MS [52,53] can be mentioned as suitable for dis-
tinguishing between hemoglobin types. Immunochemical methods like the precipitation–
turbidimetric method [50], fluorometric immunoassays [54] and the enzyme-linked im-
munosorbent assay (ELISA) [55–57] are also suitable for HbA1c measurement.

The aforementioned instrumental analyses provide robust data about HbA1c respec-
tively to non-glycated hemoglobin. Though the analytical properties of the described
methods are good enough to cover the expected ranges of HbA1c compared to non-glycated
hemoglobin, they are not suitable for performance outside equipped laboratories and their
use requires educated laboratory staff. Apart from instrumental analyses, no fully applica-
ble assay is available for point-of-care testing, despite the fact that such methods are highly
desired and would improve the effectiveness of care for diabetes mellitus suffering patients.
On the other hand, the instrumental analyses have become smaller and cheaper in recent
years. Despite their limited application potential for point-of-care testing, better availability
of instrumental analyses could be relevant for small laboratories, mobile hospitals, etc.
Nevertheless, future research is expected to examine both directions: standard instrumental
analyses and point-of-care tests.

4. Biosensors and Bioassays Measuring HbA1c

Handheld assays and tests, like various biosensors, hand-held bioassay test kits and
similar analytical devices, could allow clinicians to make a diagnosis of diabetes mellitus
in home conditions or conditions of small laboratories and private medical practices. They
are not considered to be a replacement of the standard instrumental analytical methods,
but biosensors and bioassays should be considered as a replenishment of the available
set of methods, creating the opportunity to perform point-of-care tests. It is expected
that biosensors and hand-held bioassays will be cheaper that the standard instrumental
methods, will be applicable without expensive measuring or sample-processing devices
and will require neither elaborative sample or reagents processing nor demands on staff
training or education. Currently, there are methods and biosensors available for the rapid
detection of glucose and glycemia level determination, and these devices exert good
analytical parameters, simplicity and low costs, and noninvasive methods for measuring
glucose have even been developed [58–66]. Though the methods for measuring glucose are
promising and many of them are currently available in the market, they have limitations in
the interpretation of glucose level, as discussed in the previous chapter.

Lateral flow immunochromatographic assays, also known as lateral flow tests, can
be mentioned as a bioassay platform that would be applicable in point-of-care conditions.
This assay works on the principle of analyte interaction with labeled (colored nanoparti-
cles, fluorescence reagent, etc.) antibodies compared to other molecules exerting specific
affinity. The analyte migrates by means of lateral flow and visible zones are formed by
capturing either the analyte or the unreacted antibody by other recognition molecules
(antibodies) that are immobilized on the thin-layer chromatography matrix. The general
principle of the assay for HbA1c is depicted in Figure 3. Various analytes including human
chorionic gonadotropin (pregnancy test) and various antibodies and antigen markers can
be measured by the lateral flow immunochromatographic assay and pregnancy tests can
be mentioned as a common example of the actual use of these tests [67–69]. On the other
hand, the lateral flow immunochromatographic assay provides a semiquantitative signal
only and it is not fully applicable for the quantification of a marker, though there have
been promising experiments aiming to make the assay suitable for the determination of
exact concentrations [70]. The improved versions of lateral flow immunochromatographic
assays can provide fully or partially quantified signals; on the other hand, instrumentation
for color density, fluorescence intensity, Raman spectroscopy or other instrumentation is
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necessary in this case [71–75]. The use of instrumentation would make the lateral flow
immunochromatographic assay more applicable for diabetes mellitus, but this also cre-
ates material demands on equipment and limits the ability to perform the lateral flow
immunochromatographic assay in point-of-care conditions. In addition to the standard
lateral flow tests, various microfluidic devices have become popular and applicable in
practice [76–79].
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In recent years, there has been great progress in the construction of biosensors and
similar methods for the HbA1c assay [80–90]. Various optical and electro-optical sensor
methods have been developed in the past few years. A biosensor for the detection of
HbA1c was developed by Sun and coworkers using a surface plasmon resonance plat-
form [91]. The researchers used an aptamer as the recognition part of the biosensor and
were able to detect HbA1c with a limit of detection of 2.55 nmol/L and a sensitivity of
1.06 × 10−3 RU/nmol/L. In another work, surface plasmon resonance with an immobi-
lized aptamer served for the measurement of HbA1c with a limit of detection of 1 nmol/L
and a linear dynamic range of 18–147 nmol/L [92]. An aptamer was also used in the work
by Lin and coworkers [93]. The authors immobilized the aptamer on a bacteriorhodopsin-
embedded purple membrane as a physico-chemical transducer. The aptamer was specific
against either HbA1c or non-glycated hemoglobin. The interaction of aptamer with the
HbA1c or non-glycated hemoglobin reduced the detected photocurrent because of partial
light absorption by the captured analyte. The assay exerted equal limits of detection for
both types, under 0.1 µg/mL, and a dynamic range of 0.1–100 µg/mL in a 15-min mea-
suring cycle. An electrochemiluminescence sensor was constructed for the measuring of
HbA1c using Tris(2,2′-bipyridyl)dichlororuthenium(II)-doped mesoporous polydopamine
nanoparticles covered with an aptamer specific to HbA1c [94]. Interaction of the prepared
nanoparticles with HbA1c caused quenching of ruthenium complex electrochemilumi-
nescence. The authors declared the limit of detection to be 0.015% HbA1c from the total
hemoglobin, and the linear range was 0.1–18.5%. Further improvements in optical and
electro-optical analytical devices may be based on colorimetric plasmonic sensors [95–97].

Bioanalytical methods and biosensors can work on voltametric principles, as seen in
the following cited papers. Shahbazmohammadi and coworkers immobilized fructosyl
peptide oxidase with graphene oxide and gold nanoparticles on working electrodes [98].
Fructosyl valyl histidine served as a mimetic of HbA1c and was oxidized by the immobilized
enzyme. The amperometric detection provided response in the calibration range 0.1
to 2 mmol/L with a limit of detection for fructosyl valyl histidine of 0.3 µmol/L. In
another work, fructosyl amine oxidase immobilized on gold and platinum composite
nanoparticles served for HbA1c oxidation and amperometric detection [85]. In another
work, a piezoelectric quartz crystal microbalance biosensor was made using iron oxide
nanoparticles and a polyclonal antibody specific to HbA1c [99]. The oscillation frequency
of the biosensor dropped when HbA1c was caught by the immobilized antibody. The
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assay exerted a limit of detection of 0.045 mg/mL and it fully correlated to the standard
ELISA. The fact that the assay can be finalized in a single step, consisting of the sample
application, is a major advantage. A voltametric biosensor-based graphite sheet electrode
was constructed by Jaberi and coworkers [100]. The researchers covered the graphite
sheet with a nanocomposite composed of reduced graphene oxide and gold and further
with a DNA aptamer specific to HbA1c. The interaction with HbA1c caused a change in
voltametric sensitivity to Prussian blue presented in the ambient solution, and differential
pulse voltammetry served for the response measurement. The biosensor had a linear range
of 1 nmol/L–13.8 µmol/L, a sensitivity of 269 µA/cm2 and a limit of detection of 1 nmol/L
for the HbA1c assay.

Affinity interactions with HbA1c can be based on simpler molecules than the aforemen-
tioned antibodies and aptamers. Derivatives of boronic acid appear to be suitable reagents
for this interaction [101–104]. An electrochemical sensor system for HbA1c detection using
boronic acid was proposed in the work of Wang and coworkers [105]. The researchers
prepared gold nano-flowers modified by 4-mercaptophenylboronic acid and the whole
complex was located on graphite screen-printed electrodes. HbA1c was caught on the
4-mercaptophenylboronic acid and then catalyzed the reduction of hydrogen peroxide,
which was recorded by cyclic voltammetry. Gold nanoflowers improved the transport of
electrons from the reaction to the electrode. The assay exerted a linear dynamic range of
5–1000 µg/mL representing 2–20% of HbA1c for an assay lasting 65 min. Boronic acid can
serve as a matrix for the imprinting of HbA1c relative to non-glycated hemoglobin and for
making a molecularly-imprinted polymer, as described in the work by Pandey and cowork-
ers [106]. A molecularly imprinted polymer was made from aminophenylboronic acid with
poly-rhodamine b nanocubes and deposited on carbon paste-coated aluminum foil by elec-
tropolymerization. The interaction of HbA1c (relative to non-glycated hemoglobin) with
the sensor changed the voltametric properties of the electrode, which was measured. The
sensor provided a limit of detection equal to 0.08 ng/mL for the non-glycated hemoglobin
and 0.09 ng/mL for the HbA1c. A survey of selected aforementioned methods is presented
in Table 2.

Table 2. Biosensors and bioassays for HbA1c measurement.

Principle of Assay Recognition Parts in
the Assay Specifications Limit of Detection References

Surface plasmon resonance aptamer sensitivity 1.06 × 10−3

RU/nmol/L
limit of detection

2.55 nmol/L [91]

Surface plasmon resonance aptamer linear dynamic range
18–147 nmol/L

limit of detection
1 nmol/L [92]

Measuring of photocurrent
using bacteriorhodopsin and

aptamer embedded membrane,
interaction with analyte causes

reduction of photocurrent

aptamer
dynamic range

0.1–100 µg/mL in a
15 min measuring cycle

limit of detection under
0.1 µg/mL [93]

Quenching of ruthenium
complex containing

nanoparticles
electrochemiluminescence in

the presence of HbA1c

aptamer linear range 0.1–18.5%
limit of detection

0.015% HbA1c from the
total hemoglobin

[94]

Enzyme catalyzed oxidation of
fructosyl valyl histidine as a

mimetic of HbA1c,
amperometric

detection followed

fructosyl peptide oxidase calibration range 0.1 to
2 mmol/L

limit of detection
0.3 µmol/L [98]
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Table 2. Cont.

Principle of Assay Recognition Parts in
the Assay Specifications Limit of Detection References

Quartz crystal microbalance
biosensor with immobilized
antibody directly interacted

with HbA1c, drop in oscillation
frequency followed

polyclonal antibody - limit of detection 0.045
mg/mL [99]

Voltametric biosensor with
immobilized aptamer,

interaction with HbA1c caused
change in sensitivity to

Prussian blue in
ambient solution

aptamer
linear range

1 nmol/L–13.8 µmol/L,
sensitivity 269 µA/cm2

limit of detection
1 nmol/L [100]

HbA1c was caught by boronic
acid and then catalyzed
reduction of hydrogen

peroxide, which was recorded
by cyclic voltammetry

gold nanoparticles
covered with 4-

mercaptophenylboronic
acid

linear dynamic range
5–1000 µg/mL

respective 2–20%, assay
lasting 65 min

- [105]

Interaction of non-glycated
hemoglobin respective to
HbA1c with molecularly

imprinted polymer caused
change in voltametric

characteristics

molecularly imprinted
polymer based on

boronic acid
-

limit of detection equal
0.08 ng/mL for the

non-glycated
hemoglobin,

0.09 ng/mL for the
HbA1c

[106]

Real point-of-care assays for the detection HbA1c by small portable devices appear
to be a possibility in the coming years. The current research on biosensors and similar
bioassays appears to be promising. Even though many of the assays proposed in the
literature are not suitable for mass commercial production because their parts (specific
nanoparticles or handmade aptamers, for instance) are not available in the market, this
situation may change in the future. Research and development on HbA1c point-of-care
tests can be further intensified when their marketing is supported by health insurance
companies, as with standard glucose tests, which are provided or paid out to diabetic
patients in some countries.

5. Conclusions

Glycated hemoglobin is an important biochemical marker that provides more reliable
clues for diabetes mellitus diagnosis than glucose and glycemia measurements. Compared
to the glucose assay, the point-of-care determination of HbA1c has not been successfully
commercialized and new measuring devices are being extensively investigated. The
practical impact of the current research is expected to be seen in the future, when the
point-of-care assays for HbA1c may become a relevant analytical tool, making the accurate
diagnosis of diabetes mellitus more available in future clinical practice. Future research
should be focused on the development of simple methods for HbA1c quantitative assays
based on portable detectors.
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