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Abstract: In light of the recent Coronavirus disease (COVID-19) pandemic, peripheral oxygen satura-
tion (SpO2) has shown to be amongst the vital signs most indicative of deterioration in persons with
COVID-19. To allow for the continuous monitoring of SpO2, we attempted to demonstrate accurate
SpO2 estimation using our custom chest-based wearable patch biosensor, capable of measuring
electrocardiogram (ECG) and photoplethysmogram (PPG) signals with high fidelity. Through a
breath-hold protocol, we collected physiological data with a wide dynamic range of SpO2 from
20 subjects. The ratio of ratios (R) used in pulse oximetry to estimate SpO2 was robustly extracted
from the red and infrared PPG signals during the breath-hold segments using novel feature extrac-
tion and PPGgreen-based outlier rejection algorithms. Through subject independent training, we
achieved a low root-mean-square error (RMSE) of 2.64 ± 1.14% and a Pearson correlation coefficient
(PCC) of 0.89. With subject-specific calibration, we further reduced the RMSE to 2.27 ± 0.76% and
increased the PCC to 0.91. In addition, we showed that calibration is more efficiently accomplished
by standardizing and focusing on the duration of breath-hold rather than the resulting range in SpO2.
The accurate SpO2 estimation provided by our custom biosensor and the algorithms provide research
opportunities for a wide range of disease and wellness monitoring applications.

Keywords: reflectance pulse oximetry; oxygen saturation; photoplethysmogram (PPG); continuous
monitoring; respiratory monitoring; outlier rejection

1. Introduction

Due to the novel Coronavirus disease (COVID-19) pandemic, there is a clear need
to monitor respiratory functions in outpatient settings to help assess the progression of
COVID-19 during the presymptomatic, symptomatic, and recovery stages. In a recent
effort to record and model the trajectories of several vital signs in hospitalized COVID-19
patients, Pimentel et al. showed that peripheral oxygen saturation (SpO2) is amongst
the most indicative of parameters of COVID-19 progression prior to primary outcomes,
suggesting the importance to monitor SpO2 continuously [1]. Through remote SpO2
monitoring, accurate tracking of COVID-19 progression allows for the implementation of
disease-management strategies for both timely interventions and the optimization of scarce
medical resources [2].

Unfortunately, existing SpO2 measurement devices are inconvenient for monitoring
in outpatient settings. Typically, SpO2 is measured through pulse oximeters placed at
peripheral extremities such as the fingers; however, these devices obstruct normal activities
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of daily living (ADLs) due to restriction of finger usage. In addition, finger-clip based pulse
oximeters are accordingly limited in practice to intermittent or single-point measurements.
Recently, commercial wrist-worn devices such as Apple Watch, Fitbit Sense Advanced
Smartwatch, and Garmin Vivosmart 4 have been developed that allow for more convenient
monitoring and offer continuous SpO2 measurements. Unfortunately, SpO2 measured at
the wrist is likely more susceptible to motion artifacts when compared to measurement
sites closer to the center of mass of the body, such as the forehead and ear during walking,
as shown by Longmore et al. [3]. In addition, peripheral sites such as the wrist respond
to apnea events at a slower than central sites [4,5] due to the redistribution of blood flow,
oxygen conservation [6], and their distal location to the heart.

Thus, central pulse oximeters offer a promising approach for ambulatory outpatient
monitoring and in detecting acute hypoxemia events. Furthermore, chest-based pulse
oximeters might be advantageous for their synergistic incorporation with other cardiac
monitoring methods—such as electrocardiography and seismocardiography—for a more
holistic understanding of cardiac functions [7–10]. Nevertheless, a few major challenges
such limitations to the reflectance design, the presence of respiratory artifacts, and the
malperfusion of the sternum pose difficulties to the adoption of chest-based approaches.
Despite these challenges, prior evaluations have suggested that a chest-based approach
might be feasible [3,11–15].

However, existing methods using chest-based devices are not rigorously validated,
and thus more work is needed to advance chest-worn pulse oximetry. Specifically, vali-
dating chest-based pulse oximetry for continuous monitoring would require a sufficiently
large and diverse subject population, a wide dynamic range of SpO2, a resultant root-mean-
square error (RMSE) lower than 3.5% [16], and ideally a form factor that does not interfere
with ADLs. Upon investigation, there are some clear gaps in the existing literature in these
areas that should be addressed. For example, either insufficient sample size (N = 1) in [11]
or narrow dynamic range for SpO2 (88–99%) in [12] limits the validity of the accuracy of
their approaches. Meanwhile, Näslund et al. [15] showed a strong agreement between their
estimated SpO2 and arterial oxygen saturation (SaO2); however, their device was unable to
capture the pulsatile component of the PPG signals and therefore might be susceptible to
motion artifacts and skin pigmentation [17] (p. 34). Kramer et al. [13] achieved accurate
SpO2 estimations (RMSE of 2.9%, N = 13), but their work lacks the key details necessary
for replicating their algorithm such as preprocessing and feature extraction. Finally, Vetter
et al. [14] conducted a study following the International Organization for Standardization
9919 international standard, included a moderate number of subjects (N = 10) and a wide
dynamic range of SpO2 (70–99%), and provided sufficient details of their approach. Never-
theless, the prototype appears to be cumbersome to use as it requires a chest-strap to affix
the device for sufficient contact pressure. Additionally, due to the lack of leave-one-subject-
out (LOSO) cross validation for training and testing the model, their method is susceptible
to data leakage and therefore the high accuracy attained may not be generalizable. To
the best of our knowledge, there exists no known accurate chest-based pulse oximetry
approach that has been thoroughly validated within the literature. This work attempts to
address these shortcomings and present a chest-based pulse oximeter that can estimate
SpO2 in close agreement with a commercially available, validated finger pulse oximeter.

The aim of this paper is to demonstrate the feasibility of our small, standalone chest-
based wearable patch biosensor. In this work, we collected data from 20 subjects who
underwent a breath-hold perturbation to induce hypoxia and used PPG signals from a cus-
tom chest-based biosensor to estimate SpO2. To estimate SpO2 robustly, we present a novel
algorithm to extract key PPG features to account for poor perfusion at the sternum [18] and
involuntary respiratory artifacts [19]. In addition, we developed a PPGgreen-based outlier
rejection algorithm for rejecting red and infrared (IR) PPG beats of lower quality. Finally,
we demonstrate the optimal calibration scheme for practical usage of this chest-based
pulse oximetry. These contributions pave the way for the continuous monitoring of SpO2.
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The complete study protocol and algorithmic advancements necessary to achieve accurate
chest-based pulse oximetry are described in detail below.

2. Materials and Methods
2.1. Principle of PPG

The PPG signal used in this work represents the changes in the reflected light emitting
diodes’ (LEDs) light intensity, as detected by the photodiodes (PDs). According to the
Beer–Lambert law, the intensity of the reflectance PPG measured is related to the optical
path length of light traveled from the LEDs to the PDs [17] (pp. 47–48). The changes of PPG
intensity with respect to each component (arterial blood, venous blood, tissue, bone, etc.)
have different pulsating dynamics [20]. By using appropriate filter banks, we can leverage
the cardiac pulsation of the PPG to target its arterial, pulsatile, small-signal component.
Specifically, the portion of the PPG signal that is representative of cardiac pulsation and the
periodic changes in blood volume is termed the alternating current (AC) component, and
the baseline wander of the PPG—which is slower than the cardiac frequency—is termed the
direct current (DC) component [20]. The AC and DC components of the PPG in multiple
wavelengths (i.e., red and IR PPG) can reveal the oxygenation saturation of the underlying
arteries [17]. More details are provided in Section 2.4.

2.2. Breath-Hold Study Design

The breath-hold study was designed to induce hypoxemia and sufficient changes in
SpO2. This study was conducted under a protocol approved by the Georgia Institute of
Technology Institutional Review Board (H21100). A total of 22 (16 males, 6 females) young
volunteers were recruited for the breath-hold study and written informed consent was
obtained. The number of subjects recruited exceeds that of similar studies [14,21,22]. In
this dataset, two subjects were excluded for analysis. The data of one subject suffered from
poor ECG quality—due to expired ECG electrodes that were inadvertently used. The data
of the subject exhibited an abnormal distribution of the extracted features compared to
those shown in [17] (p. 51). Specifically, the ratio of ratios (R) systematically deviates more
than three standard deviations across all SpO2 levels. Therefore, for this work, only data
of the remaining 20 subjects were used for analysis. Demographic information of these
20 subjects including age, weight, height, Fitzpatrick skin type, perfusion indices (PI), etc.
are summarized in Table 1. Note that the distribution of PI for red and infrared in this
dataset falls well below the poor perfusion threshold (0.3%) as defined by the Food and
Drug Administration (FDA) [16], suggesting this measurement site is indeed malperfused.

Table 1. Demographics and physiological responses during breath-hold of the subjects included in the analysis.

Variable Female (N = 6) Male (N = 14)

Demographics

Age (years) 28.00 (2.00) 26.15 (2.19)
Fitzpatrick skin type (I–VI) 1.83 (1.17) 2.36 (0.93)

Weight (kg) 56.35 (11.61) 76.44 (11.97)
Height (cm) 163.03 (7.46) 178.03 (7.09)

BMI (kg/m2) 21.02 (2.86) 24.05 (2.84)

Breath-hold response

Baseline SpO2 (%) 96.50 (0.84) 96.29 (1.27)
Nadir SpO2 (%) 88.80 (4.81) 80.52 (8.70)

Breath-hold duration (s) 44.07 (25.64) 55.99 (15.52)
Approximate finger SpO2

delay (s) 24.91 (8.69) 27.42 (12.49)

Perfusion index (PI)
Red PPG (%) 0.05 (0.03) 0.07 (0.04)

Infrared PPG (%) 0.08 (0.04) 0.10 (0.06)
Green PPG (%) 0.56 (0.23) 0.60 (0.40)

Note values are presented in mean (standard deviation).
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In the breath-hold study, subjects were first asked to shave their chest hair to reduce
interference. Subsequently, each subject performed 10 end-expiratory breath-holds while
sitting in an upright posture with a one-minute break between breath-holds. One minute
was found to be sufficiently long for SpO2 to return to its baseline level. Subjects were
instructed to hold their breath for as long as possible. Throughout the study, subjects wore
a nose clip and held the disposable mouthpiece (AFT36 bacteriological filter; Biopac System
Inc., Santa Barbara, CA, USA) between their lips. After the data were collected, important
oxygenation/deoxygenation events were manually labeled.

As depicted in Figure 1, we collected the following information: ECG (Biopac ECG100A;
Biopac System Inc., Santa Barbara, CA, USA), right index finger SpO2 (Biopac OXY100E,
TSD124A Finger Clip Transducer; Biopac System Inc.), and respiratory flow (TSD117A
Medium Flow Pneumotach Transducer; Biopac System Inc.) data, all sampled at 2000
Hz. The Biopac OXY100E module reports an accuracy ±2% for a SpO2 range of 70–100%.
We used the 3M™ Red Dot™ ECG electrodes (model 2660; 3M, Saint Paul, MN, USA)
throughout the study. Data outside of this SpO2 range were discarded since the accuracy
is unknown.
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Figure 1. Illustration of a subject undergoing the breath-hold study. Placements of the wearable patch
biosensor (left side) and the ground truth Biopac sensors (right side) are depicted. The relative size
of the biosensor is shown with an off-the-shelf ECG electrode and a penny. Note that the photodiode
(PD) has an area of 4.5 mm2. PD1 is on the left side and PD2 is on the right side of the subject.

In parallel, we also attached the wearable patch biosensor to the subject’s mid-sternum
and collected single-lead ECG, two sets of multiwavelength PPGs (red, infrared [IR], and
green), and triaxial seismocardiogram (SCG, not used in this study), sampled at 500, 67,
and 1000 Hz, respectively. The hardware used in the biosensor is almost identical to that
reported in our previous work [8,10,23] except for the addition of the PPG modules and
the change in form factor. The ECG analog front-end (AFE) and the accelerometer AFE (for
SCG) remain the same. Specifically, the PPG AFE used to drive the LEDs and obtain data
from the PDs is the Maxim 86170 (Maxim Integrated, San Jose, CA, USA). The multi-chip
LEDs, which has red (660 nm), and IR (950 nm), and green (526 nm) wavelengths, are
the SFH 7016 (OSRAM, Munich, Germany), and the PDs are the VEMD 8080 (Vishay
Semiconductors, Heilbronn, Baden-Württemberg, Germany). Serial Peripheral Interface
was used as the communication protocol between the microcontroller and peripheral
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sensors. This device is also equipped with wireless capabilities (i.e., Bluetooth and Wi-Fi)
for transmitting data. However, in this study, data were stored in the Secure Digital card
and later retrieved by a custom-built software application as in previous work [8,10,23].
The battery life of the device at the full sample rates of all sensors is up to 60 h. The front
and lateral views of the device are shown in Figure 2.
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Figure 2. From the frontal view, the wearable patch biosensor is attached to the sternum of the subject
using ECG electrodes. The superior end of the device starts approximately two fingers down from
the suprasternal notch. From the lateral view, the protruded part of the device that houses the LEDs
and PDs is visible. Note that light is hardly visible from the sides of the device.

2.3. Manual Labeling

In Figure 3, filtered, high-quality physiological signals acquired during breath-hold
and breathing are presented. For each subject, we selected the photodiode (PD) with
higher quality as determined by visual inspection. The discrepancy can be attributed to
the differences in LED/PD separation distance as LED/PD separation distance can affect
the quality of PPG [17] (p. 88). Further assessment may be needed since optimizing the
LED/PD separation distance is a critical factor for obtaining a good quality signal. Manual
labeling was performed using the respiratory flow and the SpO2 data. Alignment was
necessary since it has been observed that deoxygenation events do not occur simultaneously
for different body sites, and SpO2 measured at the finger is usually delayed from SpO2
measured at central sites [4,5,24]. This delay can be partially attributed to the oxygen-
conserving effect induced by breath-hold. Similar to the diving response [6], breath-hold
also leads to bradycardia and peripheral vasoconstriction to reduce oxygen consumption
in peripheries and redistribute blood flow to vital organs such as the brain and the heart [6].
The combined effect leads to a delayed deoxygenation measurement by a finger-pulse
oximeter when compared to a pulse oximeter placed closer to the heart or the brain. Davies
et al. reported a mean delay of 16.75 ± 5.88 s across subjects for their in-ear reflectance
pulse oximetry [4].

From the respiratory flow (top signal in Figure 3), breathing (the “oscillating” part,
pink) and breath-hold (the “silent” part, blue) segments can be easily distinguished. From
the ground truth SpO2 (the second signal on the left in Figure 3), three distinct times-
tamps were recorded of each deoxygenation event: start, nadir, and end. The start of
deoxygenation is defined as the point where SpO2 begins to drop drastically (rate of SpO2
decline > 0.5%/cardiac cycle for 3 consecutive cardiac cycle). The nadir of deoxygenation
is defined as the lowest SpO2 within the deoxygenation event. The end of deoxygenation
is defined as the point where SpO2 returns to the baseline level. Usually, the nadir and the
end of deoxygenation can be easily identified. To account for the delay of deoxygenation
between finger and chest deoxygenation, the nadir deoxygenation of the finger is aligned
to the end of the breath-hold, based on the assumption that chest arteries received well-
oxygenated blood immediately following the end of the breath-hold. Though our results
suggest this alignment procedure is somewhat accurate, we found that a more precise
alignment algorithm was required to achieve adequate accuracy; the updated alignment
algorithm is applied and provided in Appendix A.
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Figure 3. Biopac and biosensor signals during the fourth breath-hold (BH, blue) and during normal
breathing (pink). A 5 s window during breath-hold is shown to illustrate the quality of the signals.

2.4. Signal Processing Pipeline
2.4.1. Principle of Pulse Oximetry

To relate the aligned signals to ground truth SpO2, relevant features in the biosensor
signals need to be extracted. We followed the standard approach described in [17] (p. 131)
and tailored the algorithm to our pulse oximetry. The key feature, R, defined as the ratio of
the normalized AC component (also a ratio) of two optical wavelengths, can be extracted
from the PPG signals:

R = ACred
ACIR

/DCred
DCIR

(1)

where ACred is the AC component of the red PPG, ACIR is the AC component of the IR
PPG, DCred is the DC component of the red PPG, and DCIR is the AC component of the
IR PPG. Normalization is performed by dividing the AC component of a wavelength by
its DC component. R, along with the absorption coefficients of oxyhemoglobin (HbO2)
and deoxyhemoglobin (Hb) for different wavelengths, can be used together to derive SaO2
directly. According to [17] (p. 50), the theoretical relationship between SaO2 and R is
defined as:

SaO2 =
εHb(λred)− εHb(λIR)R

εHb(λred)− εHbO2(λred) +
[
εHbO2(λIR)− εHb(λIR)

]
R

(2)

where εHb is the absorption coefficients of Hb, εHbO2 is the absorption coefficients of HbO2,
λred is the wavelength of the red PPG, and λIR is the wavelength of the IR PPG. If further
approximated using a Taylor series expansion,
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scatter plot—demonstrating the correlation between R and SpO2—and distributions plots 
to show the skewness of R and SpO2—are depicted in Figure 4a. The skewness of R and 
SpO2 can be partially attributed to our ability to maintain oxygenation homeostasis, ena-
bled by the continuous supply of oxygen by the oxygen stores upon breath-hold [6]. Be-
fore uncovering the relationship between R and SpO2, we will first demonstrate robust 
feature extraction and the outlier rejection algorithms necessary to extract R for the chest-
based pulse oximetry. 

=
A× R + B
C× R + D

≈ m× R + b = SpO2 (3)
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emerges as an empirical model that governs the relationship between SpO2, the surrogate
of SaO2, and R. In Equation (3), A, B, C, and D replace the absorbance coefficients of the
Hb and HbO2 at the two wavelengths [17] (p. 54), m is the slope, and b is the intercept.

2.4.2. Preprocessing Overview

Figure 4a illustrates our signal-preprocessing pipeline, which we used to extract R from
the wearable patch biosensor signals. Although there are other signals in the dataset, we
only found six that are relevant to this work, namely, finger SpO2, red PPG, IR PPG, green
PPG, ECG, and respiratory flow. The Biopac and biosensor signals were first resampled
to 500 Hz and synchronized by maximizing the cross-correlation of their ECG signals.
The Biopac SpO2 was further aligned to the biosensor signals on a per breath-hold basis,
using the manual label described in Section 2.3. Due to both respiratory artifacts when
emerging from breath-hold and the lack of range in measured SpO2 values, we only target
SpO2 estimation during the breath-hold segments of the signals. Each extracted R from
the breath-hold segments was paired with the manually aligned SpO2, and both a scatter
plot—demonstrating the correlation between R and SpO2—and distributions plots to show
the skewness of R and SpO2—are depicted in Figure 4a. The skewness of R and SpO2
can be partially attributed to our ability to maintain oxygenation homeostasis, enabled
by the continuous supply of oxygen by the oxygen stores upon breath-hold [6]. Before
uncovering the relationship between R and SpO2, we will first demonstrate robust feature
extraction and the outlier rejection algorithms necessary to extract R for the chest-based
pulse oximetry.

2.4.3. Robust Feature Extraction via Linear Transformation

To compute R, it is necessary to compute AC features and DC features of each PPG
beat. Note that a feature represents a scalar value to represent the characteristic of a PPG
beat in the context of this work. In Figure 4b, the block diagram for beat segmentation and
feature extraction has been shown. To isolate the AC component, an empirically validated
bandpass filter, with a passband of 0.35 to 4 Hz was first applied. The low cutoff was
chosen to remove the baseline wander, due to involuntary respiratory movement. The
high cutoff was chosen empirically so as to reduce the dicrotic notch and preserve only the
frequency components with less variation across wavelengths. The AC component was
segmented into PPG beats using ECG R-peaks detected by a Pan-Tomkins algorithm [25],
modified for R-peak correction and further smoothed using 4-beat ensemble averaging.
Conventionally, computing AC features for red and IR PPG relies on robust peak and
valley extraction. Although we were able to minimize respiratory artifacts through the
breath-hold protocol, involuntary respiratory movements were still present and observable
in some subjects. Evidently, extracting R robustly from respiration-corrupted PPG can be
challenging [12,26]. Conventionally, the peak and valley of PPG in each cardiac cycle are
extracted to compute the AC features [17] (pp. 129–130). In a preliminary analysis, we
found that this method is not reliable as the signal can be easily distorted by the subtle—yet
still significant—involuntary respiratory movements at this low perfusion site. To address
this, we introduced a novel algorithm that does not require peak and valley extraction.
Specifically, by rearranging the terms in Equation (1), we can obtain,

R = ACred
ACIR

/DCred
DCIR

= ACred/IR/DCred
DCIR

(4)
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(a) 

 

 
(b) 

 
Figure 4. Feature extraction block diagrams. (a) Overview of the signal preprocessing and manual labeling pipeline.
Extracted pairs of ratio of ratios (R) and SpO2 were used for training and calibration of the model. Ti,j denotes the delay
found between R and SpO2 for the jth breath-hold of subject i. The aligned data were displayed in the upper right scatter
plot. The distribution of R and SpO2 are also shown above and on the right of the scatter plot, respectively. IBImean denotes
the mean of the interbeat intervals (IBI) of a subject. (b) The block diagram for PPG beats segmentation, ACred/IR extraction,
DC feature extraction, and PPGgreen-based outlier rejection.
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By computing the ACred/IR, the ratio of ACred to ACIR, we can avoid the difficulty
of extracting peaks and valleys in distorted PPG signals. To do so, we leveraged the fact
that the IR PPG beat, denoted as PPGIR, appears to have a similar morphology to the red
PPG beat, denoted as PPGred, after being bandpass filtered. Therefore, we can model the
relationship of the two PPG beats using a linear transformation method:

α?1 ,α?2 = argmin
α1, α2∈R

‖PPGred − α1PPGIR − α2‖2
2 (5)

where PPGred, PPGIR ∈ RN, N is the number of samples in the PPG beat, and α?1 ,α?2
denote the scale and the bias that will minimize the `2-norm of their differences. With the
assumption that the differences, once optimized, should be closely distributed, we rejected
beats with differences of more than five median absolute deviations from the median,
which is a more robust rejection criterion compared to the “standard deviations around the
mean” method [27]. Note we rejected only 1.79% using this method. The optimal scale, α?1 ,
represents the ratio of the AC component of the two wavelengths:

ACred/IR = α?1 (6)

In parallel, the DC component was isolated using a low-pass filter with a high cutoff
frequency at 0.1 Hz. This cutoff was based on a heuristic assumption that physiological
dynamics of faster than 0.1 Hz (e.g., involuntary respiratory movement) do not directly
relate to the deoxygenation induced by breath-hold based on data shown in [28–30]. The
DC component was similarly segmented and smoothed to ensure consistency with the
processing steps for AC extraction. Finally, DC features were computed as the mean of the
segmented DC beats.

2.4.4. PPGgreen-Based Outlier Rejection

Although we carefully selected the parameters of the preprocessing and feature
extraction pipeline, some PPG beats may still be distorted due to motion artifacts and
involuntary respiratory movements and therefore can hinder accurate SpO2 estimation.
Hence, we designed a novel outlier rejection algorithm using the green PPG beats as a signal
quality template for its robustness against noise [31], so as to reduce the contamination of
abnormal features extracted. Our signal quality assessment relied on two assumptions:
(1) reliable red or IR PPG beats in the bandwidth filtered constitute a morphology similar to
that of green PPG beats; and (2) outliers in AC ratios are defined as datapoints that deviate
by more than five median absolute deviations from the median (similar to the ACred/IR
rejection method). To determine the similarity, we consider a methodology described in [32].
First, the normalized cross-correlation (NCC) between a PPG beat with its corresponding
template is computed:

NCCk, λ =
∑N

n=1
(
PPGλ(n)− PPGλ

)(
PPGgreen(n + k)− PPGgreen

)√
∑N

n=1
(
PPGλ(n)− PPGλ

)2
∑N

n=1
(
PPGgreen(n + k)− PPGgreen

)2
(7)

where PPGλ(n) denotes the nth sample in the PPG beat of wavelength λ, PPGλ denotes
the average value of the samples in a PPG beat of wavelength λ, and NCCk, λ denotes the
correlation coefficient between PPGλ and the k-lag PPGgreen. Next, the maximal NCCλ,
NCCmax,λ, defined as

NCCmax, λ = argmax
k

NCCk,λ (8)

is selected as a measure of the SQI of the PPGλ and has a range of [0, 1]. Both assumptions
translate directly to the two upper right blocks in Figure 4b. Each signal quality index (SQI)
method has an empirically determined threshold, 0.7, and a sample is excluded if either
SQI method suggests so. The PPGgreen-based outlier rejection algorithm rejected nearly
8.07% of the beats.
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2.4.5. Computation of R

The output matrix in Figure 5b has a dimension of Nbeats × 5, where the five columns
represent the AC features (ACred/IR), two DC features (DCred, DCIR), and the two binary
SQI decisions (SQIred, SQIIR). Only features approved by the SQI algorithm were used
to compute R. Note that we also experimented with the peak and valley method, but it
would require a more aggressive outlier rejection threshold (~30% rejection ratio) to achieve
comparable SpO2 estimation accuracy. Finally, R is computed by dividing ACred/IR by
DCred
DCIR

as shown below,

R = ACred/IR/DCred
DCIR

= α?
1/DCred

DCIR
(9)

 

 

 

 

 

Figure 5. Different model training schemes, where xtrain denotes the data from the training subjects; xcalibration denotes the
first breath-hold data from the test subject; xtest denotes the data of the test subject excluding the first breath-hold; k denotes
the left-out subject. The parameters used to construct the model are in the dashed boxes. Data or parameters not used at
all were colored in light gray. (a) Globalized scheme (no subject-specific calibration). (b) Semi-globalized scheme (with
subject-specific calibration). (c) Subject-specific scheme.

In this dataset, R is a unit-less measure and generally ranges from 0.4 to 1.6 for SpO2
above 70%.

2.5. SpO2 Estimation
2.5.1. Linear Regression

The temporally aligned SpO2 and the extracted R were subsequently used to train
the parameters in Equation (3). The parameters m (slope) and b (intercept) were esti-
mated by minimizing the `2-norm of the difference between the ground truth SpO2 and
estimated SpO2:

m?, b? = argmin
m, b ∈R

‖SpO2 −mR− b‖2
2 = f(x) (10)

where x denotes pairs of SpO2 and R, and f represents an arbitrary function for determining
the optimal parameters of an objective function.

2.5.2. Training and Calibration Schemes

Since including a one-time, short calibration procedure is realistic for practical usage
of the device, we also investigated the best training and subject-specific calibration proce-
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dure. Three training and calibration schemes were considered, including a (1) globalized
scheme containing subject-independent training (see Figure 5a); (2) semi-globalized scheme
featuring global training with subject-specific calibration (see Figure 5b); (3) subject-specific
scheme (see Figure 5c). The globalized scheme is equivalent to the standard LOSO cross val-
idation. The semi-globalized scheme described herein is analogous to the semi-globalized
method discussed in [33], aside from the fact that we used duration rather than number of
points to standardize the subject-specific calibration. Particularly, in the semi-globalized
scheme the globally trained intercept b was replaced by a subject-specific calibrated b (using
the data in the first of the 10 breath-holds). The subject-specific scheme involved training
both parameters using only the first breath-hold data of the subject. Note that we also
explored calibration using m, but the results were considerably worse and therefore not
reported. In both globalized and semi-globalized schemes, LOSO cross validation was
also used to assess generalizability of the models trained. To compare model performance
fairly and to avoid data leakage, we excluded the first breath-hold of the test subjects for
evaluation of the globalized schemes to ensure identical testing data.

2.5.3. Evaluating Model Performance

To assess the performance of these three schemes, we recorded the RMSE, the param-
eters of the linear model on a per subject basis, and the Pearson correlation coefficient
(PCC) of estimated SpO2 on all subjects jointly. The mean and the standard deviation of the
subject-specific RMSEs were computed to summarize the performance of each scheme and
subsequently used as the critical metric to assess the capability of the pulse oximetry. Note
that the errors presented in this work are all absolute errors rather than relative/percentage
errors. The unit of RMSE is denoted by %, which represent the oxygen saturation level.

3. Results
3.1. Accuracy of SpO2 Estimation

In Figure 6, regression plots and Bland–Altman plots are provided to demonstrate
the estimation results. We also summarize the RMSEs across subjects, PCC, bias, and 95%
limits of agreement (LOR) in Table 2. The globalized scheme achieves lowest accuracy
(see Figure 6a,b). The semi-globalized scheme shows better accuracy (see Figure 6c,d).
The subject-specific scheme achieves the best accuracy (see Figure 6e,f). Using the semi-
globalized model, we were able to lower the mean RMSE by 0.36% and increase PCC
by 0.02 when compared to the globalized model. The semi-globalized scheme and the
subject-specific scheme have similar performance levels, both of which are superior to the
globalized scheme. From the Bland–Altman plots, both models show minimal bias.

Table 2. Comparing the results of three training schemes based on their RMSE, PCC, bias, and
95% LOR.

RMSE PCC bias 95% LOR

Globalized 2.63 ± 1.14% 0.89 −0.03% [−5.66%, 5.61%]
Semi-globalized 2.27 ± 0.76% 0.91 0.11% [−4.81%, 5.02%]
Subject-specific 2.27 ± 0.88% 0.92 0.24% [−4.84%, 5.31%]

3.2. Semi-Globalized Scheme vs. Subject-Specific Scheme

Since it has not been previously examined in the literature, we also studied which
parameters benefit the most from subject-specific calibration. This is accomplished by
comparing the semi-globalized scheme (i.e., calibrating b) to the subject-specific scheme
(i.e., calibrating both m and b) while varying the calibration duration constraints. The
duration constraint was imposed by considering data only within the said duration. Sur-
prisingly, the semi-globalized model works more efficiently at reducing RMSE, as shown in
Figure 7. Note 2 outlier subjects were excluded for better visualization. In all three duration
constraints (10 s, 20 s, and 30 s), the semi-globalized schemes achieved a lower RMSE.
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When comparing the RMSE of calibrating b, constrained by a calibration duration of 10 s,
to calibrating both parameters by a calibration duration of 30 s, we found no statistical
significance (p > 0.05) as determined by a paired sample t-test. Therefore, we determined
that the semi-globalized scheme is the best calibration strategy for this dataset as it would
require a shorter duration to achieve similar performance to the subject-specific scheme.

 

(a)  (b) 
 

 

 
(c)  (d) 

 

 
Figure 6. Cont.
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(e)  (f) 

 
Figure 6. Estimation performance of the wearable patch biosensor. The root-mean-square error (RMSE) across subjects
and Pearson correlation coefficient (PCC) are shown. Note each color represents a subject. (a) Regression analysis of the
globalized scheme. (b) Bland–Altman analysis of the globalized scheme. (c) Regression analysis of the semi-globalized
scheme. (d) Bland–Altman analysis of the semi-globalized scheme. (e) Regression analysis of the subject-specific scheme.
(f) Bland–Altman analysis of the subject-specific scheme.
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3.3. Standardizing Subject-Specific Calibration: Duration vs. SpO2 Range

To study the most efficient way to collect data for calibration, we also examined the
changes in RMSE by imposing different constraints on the calibration data, including a
duration constraint and SpO2 range constraint. Similar to the duration constraint, the SpO2
range constraint considers data only within the said SpO2 range. According to the results
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shown in Figure 8a, we found that increasing calibration duration from 1 s to 20 s while
fixing SpO2 range to 30% leads to significant (p < 0.05) reduction in mean RMSE across
the subjects. On the other hand, the results shown in Figure 8b suggest that increasing the
calibration SpO2 range from 1% to 20%, while fixing the duration to 30 s, did not lead to
a significant (p > 0.05) difference in mean RMSE. Paired sample t-tests were used for the
statistical analysis. Standardizing calibration duration appears to be the best calibration
strategy here.
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3.4. Effect of Varying Melanin Content

Since none of the subjects had nail polish on their right index finger or tattoos on their
sternum, we only considered the confounding effect of the difference in melanin content.
In this analysis, we assessed melanin levels using self-reported Fitzpatrick skin types [34]
and studied the way melanin content affects the bias between finger and sternum SpO2. In
Figure 9, the errors between different Fitzpatrick skin types are shown to be statistically
insignificant (p > 0.05), using a one-way analysis of variance (ANOVA). This implies that
our device does not introduce different bias for subjects with varying skin melanin content
when compared to the finger pulse oximeter, understandably, as both operate on the same
principles. However, it is worth noting that there are five subjects for skin type I, nine
subjects for skin type II, three subjects for skin type III, three subjects for skin type IV, and
zero subject for skin type V and VI. Due to the limited sample size and lack of data for
the darkest Fitzpatrick skin types, the results attained here may not provide meaningful
insight with a true accuracy of the proposed chest-based pulse oximetry on persons of all
melanin levels. Note that in [35,36], it was reported that melanin content leads to SpO2
overestimation at low SaO2. Further investigation is required to study the way melanin
content affects the accuracy of the chest-based pulse oximetry at various SaO2 levels.
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4. Discussion

We unified previous evaluations of central-pulse oximetry and addressed relevant
concerns while showing an accuracy that is comparable to the state-of-the-art [13]. To the
best of our knowledge, this is the first thorough evaluation of chest-based pulse oximetry
that jointly features a sufficient sample size, a wide dynamic range of SpO2, minimal
respiratory artifacts, and rigorous cross validation to avoid data leakage. Furthermore, the
study protocol, our alignment method, and key algorithmic components were described in
full detail to allow for replication. This work paves the way for realizing the simultaneous
monitoring of, in addition to SpO2, the cardiac, pulmonary, and cardiopulmonary functions
using a small, standalone wearable patch device continuously and remotely, unlocking
opportunities in personalized health intervention outside of a clinical setting.

4.1. Accurate SpO2 Estimation

We achieved low mean RMSEs for all training and calibration schemes, which were
well within the criteria (RMSE ≤ 3.5%) for reflective pulse oximetry outlined by the FDA
standard [16]. Our work addresses the challenges of the aforementioned approaches and
estimated SpO2 accurately using a novel algorithm that proves to be robust, for PPG
measured at this poorly perfused site. The breath-hold protocol successfully induced hy-
poxemia and reduced respiratory artifacts. Furthermore, the novel algorithms described in
Section 2.4.2 to derive R leverage the morphological similarity between PPGred and PPGIR.
Our method avoids peak and valley extraction for distorted PPG beat, and proves to be
less susceptible to artifacts. The PPGgreen-based outlier rejection algorithm was inspired by
the robustness of PPGgreen against motion artifacts [31]. Together, they alleviated difficulty
in feature extraction for most PPG beats and excluded undesired PPG beats robustly.

4.2. Standardization of Subject-Specific Calibration

Besides accurate SpO2 measurements, we also designed experiments to identify the
best training and calibration for this dataset for improving RMSE. More data points help
to better calibrate the model to the test subject, and they do so by reducing the noise in
the R extracted rather than capturing a wider SpO2 dynamic range, as evident from the
results in Figure 6. Subject-specific calibration of b helps to reduce the randomness in
the data. In contrast, if we were to calibrate m alone, we expect SpO2 range to have a
more important role. Ultimately, we can benefit from both longer calibration duration and
wider SpO2 range, but in a situation where hypoxemia is not preferred by the intended
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users, we have shown that limited SpO2 dynamic range with a sufficiently long calibration
duration can still efficiently improve accuracy. This finding is beneficial for the usage of the
device since it alleviates the need to induce changes in SpO2 and consequently makes the
subject-specific calibrating procedure more practical and safer. Consequently, if necessary,
breath-hold duration should be standardized instead of the SpO2 range.

When observing the data used to calibrate both m and b for test subjects, we noticed
that the first breath-hold is consistently shorter across subjects. As a direct consequence,
data of the first breath-hold generally does not have a wide SpO2 dynamic range. Further-
more, subjects seemed to be able to hold their breath longer due their adaptive tolerance to
withstand the vaguely defined “discomfort” [37]. Since estimating the slope m requires a
sufficient dynamic range of SpO2, calibrating m using just the first breath-hold is usually
not enough. Using all 10 breath-holds and adequate SpO2 dynamic range across all training
subjects offers a clear advantage to the globally trained m over the calibrated m. Hence,
when the calibration data were limited (within the duration of one breath-hold), training m
globally and calibrating b using the test subject’s data can achieve better accuracy.

4.3. Practical Use Case

The current manufacturing cost of the device is on the order of $200. However, pro-
ducing this device on a large scale can reduce the cost substantially as components would
be ordered in volume and manufacturing processes can be refined to improve manufac-
turability. We do not foresee any challenges with scalability as the devices manufactured so
far show robust functionality. The practical subject-specific calibration procedure can be de-
signed by aggregating the conclusions made thus far. We suggest a 15 s breath-hold during
which the ground truth SpO2 and biosensor data are collected from a target subject. This
breath-hold duration is selected because all breath-hold durations across the subjects in this
study exceed 15 s. Using the data from the subjects analyzed in this study, we found the
globally trained slope mglobal to be −21.54 and the intercept bglobal to be 106.69. Following
the semi-globalized scheme, bglobal can be replaced by bsubject-specific, which was calibrated
using data from the 15 s breath-hold of the target subject. The resulting subject-specific
linear model takes the form of SpO2 = mglobal × R + bsubject-specific. One potential reason for
calibration failure could be the adoption of smoking behavior. According to [38], smokers
have elevated levels of carboxyhemoglobin (COHb). As a result, assumptions (i.e., the only
hemoglobin species in the arteries are Hb and HbO2) made in Equation (2) are violated,
which can subsequently lead to the overestimation of SpO2.

4.4. Limitations

One key limitation is that we only validated the accuracy of our pulse oximetry during
segments with minimal respiratory artifacts. Kramer et al. [13] previously reported high
accuracy from subjects undergoing spontaneous breathing despite a lack of details of their
algorithm. Future work should investigate whether our proposed ACred/IR extraction and
PPGgreen outlier rejection algorithm can withstand respiratory artifacts more severe than
the involuntary respiratory movements during breath-hold and attain similar accuracy.
In addition, we noticed that the deoxygenation dynamics of R still may not be perfectly
aligned to those in SpO2, even after precise alignment. Our alignment method assumed
that the delay between the start of breath-hold and chest SaO2 deoxygenation is distributed
across the integer values in the interval [−10, 10], as described in Appendix A. However,
the delay may exceed beyond this, and therefore it is likely that we still captured an
undesired delay for some subjects. Specifically, inter-subject and intra-subject variability
in this delay may directly translate to variability in the estimated b, which explains the
importance of calibrating b. For example, consider the case where the error in alignment is
1 s in a breath-hold of a subject. The desaturation rate, of around 0.26% per second, can
be roughly estimated from Figure 3. The 1 s error in alignment can lead to a difference of
0.26% for all datapoints of that breath-hold, and therefore, systematically introduces a bias.
Besides this bias, the breath-hold study method may also lead to another shortcoming. The
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SpO2 at different measurement sites may not map to one another completely, even if the
delay has been accounted for [5]. This is understandable because the sternum and finger
have different tissue and vascularization compositions and therefore deliver and consume
oxygen at different rates as well. Finally, similar to most commercial finger pulse oximeters,
the chest-based pulse oximetry may suffer from motion artifacts, the presence of HbCO and
HbMET, venous pulsation [39], etc. However, we expect to considerably improve RMSE
further if we can induce deoxygenation slowly and compare the estimation when using the
validation protocol suggested by the FDA [16] and show improved accuracy of biosensor’s
measurements despite the above limitation.

4.5. Future Work

The results and techniques demonstrated in this work allow for the accurate mea-
surements of SpO2, which can in turn be used to better inform underlying pulmonary
dysfunctions unobtrusively, continuously, and remotely. Together, with its ability to mea-
sure cardiac function, we can next validate the wearable patch biosensor for its ability to
quantitatively and objectively assess disease progression of cardiovascular and pulmonary
diseases such as COVID-19, nocturnal hypoxia caused by sleep apnea, and high-altitude
sickness. Ultimately, tracking these health parameters may provide a better understanding
of the cardiopulmonary-related comorbidities and consequently facilitate the adoption of
longitudinal wearable monitoring devices, for detecting underlying disease when symp-
toms are subtle and unnoticeable.

5. Conclusions

Here, we demonstrated that our custom, chest-worn wearable patch biosensor was
capable of accurately estimating SpO2 while subjects underwent a 10 breath-hold protocol.
We presented that standardizing the calibration duration, rather than calibration range,
was the most important factor for optimal calibration. Finally, we found that differences
in Fitzpatrick skin types do not introduce disparities in bias. Future studies will focus
on improving the study protocol to induce gradual changes in SaO2 as per the FDA
guidelines, while measuring gold standard SaO2 simultaneously through a co-oximetry
of arterial blood samples [16], designing algorithms that mitigate respiratory artifacts
when present, and by recruiting a larger population that is demographically diverse,
especially participants with higher Fitzpatrick skin types. Together with its holistic cardiac
monitoring, this device can provide longitudinal and quantitative information of disease
progression in both cardiovascular and pulmonary diseases.
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Appendix A

The manually aligned R and SpO2 samples are still susceptible to delay due to lack of
ground truth SaO2 data at the chest. To further reduce alignment error, we used a greedy
algorithm to find the delay that will minimize the alignment error. Specifically, we first
used all R and SpO2

rough, which represent the SpO2 roughly aligned using the manual
label, to train the parameters of the linear model described in Equation (10). Next, we used

the trained linear model estimate SpO2,
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