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Abstract: Exosomes, powerful extracellular nanovesicles released from almost all types of living cells,
are considered the communication engines (messengers) that control and reprogram physiological
pathways inside target cells within a community or between different communities. The cell-like
structure of these extracellular vesicles provides a protective environment for their proteins and
DNA/RNA cargos, which serve as biomarkers for many malicious diseases, including infectious
diseases and cancers. Cancer-derived exosomes control cancer metastasis, prognosis, and devel-
opment. In addition to the unique structure of exosomes, their nanometer size and tendency of
interacting with cells makes them a viable novel drug delivery solution. In recent years, numerous
research efforts have been made to quantify and characterize disease-derived exosomes for diagnosis,
monitoring, and therapeutic purposes. This review aims to (1) relate exosome biomarkers to their
origins, (2) focus on current isolation and detection methods, (3) discuss and evaluate the proposed
technologies deriving from exosome research for cancer treatment, and (4) form a conclusion about
the prospects of the current exosome research.
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1. Introduction

There are two types of extracellular vesicles released from cells: exosomes and ec-
tosomes. Exosomes have smaller diameter sizes than ectosomes [1] and are released via
the fusion of multivesicular bodies with the plasma membrane, whereas ectosomes are
shed directly from the plasma membrane [2]. Exosomes are endosome-derived membrane
vesicles with a size range of 20–150 nm [3–12] and are derived naturally from nearly all
cell types [1,13–15]. When exosomes were first discovered in 1981 in mammalian cells,
they were believed to act as discharged vesicles of obsolete molecules [16,17]. After their
roles in communication were revealed, they were thought to communicate only within one
species, but they were later found to engage in interkingdom communication [10]. Due
to their roles in cellular communications, exosomes are carriers for vital biomarkers that
originate from parental cells. These biomarkers include nucleic acids, e.g., miR-21, which
is considered a reference biomarker for ovarian [18], prostate [19], and breast cancers [20].
As a result, exosomes are considered unique biomarkers for the diagnosis and prognosis of
various malicious diseases, such as cancer.

Cancer is one of the deadliest diseases worldwide. Prostate cancer ranks as the most
widespread cancer, and it causes a significant percentage of death [21]. Lung cancer, the
second-most deadly cancer, causes 25% of cancer deaths with either small cell carcinoma
or non-small-cell carcinoma [22]. Cortical cancer is the second-most fatal cancer and the
third-most widespread one [23], and breast cancer is a hostile tumor among women over
40 [24,25]. Due to the high fatality of cancers and complicated treatment procedures, it is
highly desired to find a reliable cancer biomarker to improve cancer detection for early
diagnosis and treatment [24–26]. Since cancer-derived exosomes are involved in both the
development and metastasis of cancer through intracellular communication [27,28], are
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stable with small size phenotypes, and are accessible in most biological fluids [29,30], they
are considered excellent candidates for early cancer diagnosis and vehicles for cell-based
therapy and drug delivery [10].

This review will start with a brief description of exosome structure, release, and
biogenesis mechanisms, followed by a description of the known techniques for isolation
and detection. The exosome applications for cancer will be specified. The multiple roles of
exosomes, such as (1) biomarkers, (2) diagnostic agents, and (3) signal transduction factors,
will be included. Finally, future research efforts to address the technical challenges related
to exosome study will be discussed.

2. Exosome Structure, Release, and Biogenesis
2.1. Exosome Structure

In this section, we will emphasize the structure of exosomes in mammalian popu-
lations. Exosomes derived from mammalian populations contain a lipid bilayer mem-
brane [31], intracellular components, and extracellular components bound to the outer
membrane (Figure 1).
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Figure 1. The exosome structure in mammalian cells.

The lipid bilayer membrane consists of two layers of phospholipids, each of which
contains lipids in a head and tail form. The head is hydrophilic, and the tail is hydrophobic.
With this polarity characteristic, the lipid bilayer is a continuous barrier surrounding the
intracellular components.

The intracellular components include (1) amino acids, e.g., DNA, messenger RNA
(mRNA), microRNA (miRNA), and circular RNA (cirRNA); (2) proteins, e.g., growth
factor receptors, heat shock proteins, enzymes, and biogenesis proteins; and (3) lipids, e.g.,
lipid-related proteins and phospholipases [32–38].

The extracellular components include (1) lipids, e.g., phosphoglycerides with long
and saturated fatty-acyl chains, cholesterol, and sphingolipids (to provide structure rigid-
ity) [39,40]; (2) ceramide a differentiated component between exosomes and lysosomes [41,42];
(3) saccharide chains, e.g., mannose, polylactosamine, alpha-2,6 sialic acid, and N-linked
glycans; and (4) proteins, e.g., lactadherin and membrane transport and fusion proteins such
as annexins, flotillins, GTPases, and tetraspanins.

To conclude, mammalian cells secrete exosomes with a lipid bilayer membrane to
protect the intracellular components, which are considered the messages that exosomes
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carry and transfer between parent and recipient cells. The extracellular components are
the signals used for specific cell receptors to facilitate cellular communication between
exosomes and receiving cells.

2.2. Exosome Biogenesis

Exosome biogenesis was first discovered in 1983, when Harding, Heuser, and Stahl
imaged the process in rat reticulocytes using gold transferrin temperature-dependent label
methodology [43]. As transferrin uptake is a temperature-dependent process [44], their
method started at 4 ◦C to enhance its binding with the plasma membrane, then increased
the temperature to 37 ◦C to facilitate intracellular vesicle production. These intracellu-
lar vesicles were found to be labeled after engulfing the gold transferrin. Finally, these
multivesicular bodies fused with the plasma membrane and released the gold transferrin
outside the cells by exocytosis. These studies [43,44] suggested that exosome biogenesis in
mammalian cells starts when cells engulf intracellular fluids and that tube-shaped early
endosomes are formed and develop to have intraluminal vesicles by engulfing cytosolic
components such as transmembrane and peripheral proteins; then, spherical mature endo-
somes are located close to the nucleus. Afterwards, these mature endosomes (also called
multivesicular bodies (MVBs)) fuse with the plasma membrane to secrete exosomes into
the outer membrane environment (Figure 2) [4,45]. Most mammalian cells, e.g., dendritic
cells, epithelial cells, mesenchymal stem cells, and cancer cells, secrete exosomes in healthy
and unhealthy conditions. In addition, body fluids, e.g., serum, saliva, urine, and breast
milk, contain exosomes [46–48].
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2.3. Exosome Release

The exosome release process starts when the MVBs fuse with the plasma membrane.
Several mechanisms were proposed to understand the exosome release process. Under nor-
mal conditions, the endosomal sorting complex required for transport (ESCRT) machinery
is critical for exosome release [49]. The ESCRT machinery consists of four protein com-
plexes, numbered as 0, I, II, and III, associated with the AAA ATPase Vps4 complex [50]. It
was found that the depletion and/or knocking down of certain proteins in the ESCRT ma-
chinery affected the rate of exosome release. For example, the exosome secretion increased
because of knocking down ESCRT-III, CHMP4C, VPS4B, VTA1, and ALIX, whereas the
secretion decreased when ESCRT-0 proteins, e.g., Hrs and TSG101, and ESCRT-I protein,
e.g., STAM1, were depleted [51].
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In addition, ESCRT-independent mechanisms were proposed for exosome release in
the case of ESCRT machinery being knocked down [52]. Tetraspanin proteins, e.g., CD9,
CD63, and CD82, enhanced the exosome secretion of β-catenin from HEK293 cells [53–55].
In addition, targeting specific lipid enzymes such as neutral sphingomyelinase 2 to modify
the plasma membrane lipid configuration (size of the headgroup, length, and saturation of
the acyl chains) inhibited exosome secretion [41]. Exosome release is also regulated and
stimulated by multiple factors, such as Ca2+ [56], ceramide synthesis [41], and acidosis [57].

The p53-based mechanism was proposed to operate under stress conditions. It was
found that the production of exosomes under stress conditions was regulated by the p53
protein to communicate to other cells to respond to stress in a phenomenon called the
“bystander effect” [58,59]. TSAP6 is upregulated and transcribed in response to stress [60].
TSAP6 is a p53-regulated gene. Then, p53 induces cells to secrete specific proteins within
exosomes to migrate to other cells, communicate, and face the stress [61]. Yu and col-
leagues [62] examined the protein secretion in exosomes after a p53-mediated stress re-
sponse to lung cancer cells in culture. They tested cells containing a wild-type p53 gene
(H460) and mutated cells (having a mutant p53 allele). The cells were irradiated with
gamma irradiation to induce p53 and apoptosis. They observed a dramatic increase in
exosome production as a response to the p53-regulated mechanism due to irradiation.
Exosomes were not detected in the cases of the mutant p53 allele or nonirradiated cells.

The other mechanisms involved a variety of stress stimuli. For example, researchers
at the School of Medicine at Flinders University showed the enhancement effect of hypoxia
on a percentage of cancer-derived exosomes. In their study, after hypoxia exposure,
the exosomes were isolated and quantified using a nanoparticle tracking analysis and
immunoblotting for the CD63 and miRNA-210 assays by RT-PCR. They demonstrated
that hypoxia enhanced the release of breast cancer-derived exosomes [63]. Additionally,
Németh’s research team investigated the effect of the antibiotic ciprofloxacin on exosome
release and showed that a low concentration of ciprofloxacin caused the release of DNA
proteins on exosome surfaces and blocked them from further cellular processes [64]. Finally,
Rab proteins, e.g., Rab 11, Rab 27a,b, and Rab 35, were found to play key regulatory roles
in exosomes released in mammalian cells [56,65,66].

These mechanistic studies strongly suggest that exosome release is a stimuli-based
process. Further research studies are needed for verification. Once these mechanisms are
verified, it will be a starting point for maximizing the production of the desired exosomes
and improving the exosome applications.

3. General Techniques for Exosome Isolation, Characterization, and Detection

Exosome isolation and detection are a challenge because of the low concentrations and cell
line-dependent heterogeneity of the exosomes [67–69]. Accordingly, developing and improving
reliable methods to prepare, detect, and analyze exosomes is critical for exosome research
and will have a great impact on the development of exosome-based disease diagnoses and
therapeutics. Figure 3 summarizes the general methods for exosome isolation and detection.

3.1. Isolation Techniques

The isolation of exosomes from a cell culture depends mainly on the physical and
chemical properties of the exosomes. Ultracentrifugation and ultrafiltration target the size
and density of exosomes, and chemical precipitation and immune affinity target specific
extracellular proteins. To choose the suitable isolation technique, the number and volume of
the samples, the available instruments, and the aim of the analysis must be considered [70].
Here, we will discuss the isolation methods and the advantages and disadvantages associated
with each method (Table 1). The isolation methods are classified according to (1) specificity,
as specific or nonspecific, and (2) sample volume, as high-throughput or low-throughput.
All methods of isolation are considered nonspecific, except for the immune affinity-based
techniques. The immune affinity-based techniques and microfluidics are considered low-
throughput methods because of their small sample volumes.
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Table 1. Isolation techniques for exosomes.

Technique Mechanism Merits Demerits References

Ultracentrifugation
Isolation is dependent on the physical properties of
the particles, and the density and viscosity of the
solvent.

• 56% exosome isolation
• Easy to use
• Little or no sample pretreatment

• Moderately time-consuming.
• Contamination and exosome losses [12]

Ultrafiltration Exosome isolation is depending on size fractions
using specific membrane filters.

• Fast
• No special equipment is needed
• Highest exosomal RNA yield.
• Automation, and scalability

• Structure deformation and breakdown due
to filtration force.

• Membrane lifetime because of clogging and
vesicle trapping

• Errors due to exosome membrane
attachment.

• Size exclusion limits

[71]

Size exclusion chromatography
(SEC)

Sorting molecules according to their size on a
porous stationary phase

• Yields highly purified exosomes
• The structure, integrity, and biological activity are

preserved
• Reproducibility

• Special equipment is needed
• No scale up [72]

Hydrostatic filtration dialysis
(HFD)

Samples are forced through a dialysis tube using a
low hydrostatic pressure.

• Simple
• Effective
• Labor and cost-saving
• Scalable for large sample sizes

• Time-consuming
• Size exclusion limits [73]

Immunoaffinity capture–
magneto-immuno-capture

This strategy to isolate culture-derived exosomes is
based on magneto-immuno-capture

• Fast,
• Easy
• Compatible with bench equipment
• The yield achieved was 10 to 15 times higher than

that obtained by ultracentrifugation
• High capture efficiency
• Sensitivity
• Scalable for large sample sizes

• Depending on sample concentration.
• Requires pretreatments [74]

Mass spectrometric
immunoassay CD9 used as a general biomarker for that method

• Highly specific techniques
• High RNA yield
• Requires smaller sample volumes (as little as 100

µL of sample compared to 2.5 mL used by
ultracentrifugation)

• Expensive equipment [75]

Precipitation

Two-step process, incubation of the sample with the
precipitation solution overnight at 4 ◦C, then
isolation of the exosomes from the precipitate by
either filtration or low-speed centrifugation

• Easy
• No specialized equipment is needed
• Scalable for large sample sizes

• Pretreatment is needed to remove cells and
cellular debris.

• Contamination with molecules such as
proteins and polymeric materials

[8]

Microfluidics
Different chips were designed to isolate exosomes
according to their size and electromagnetic
properties.

• Rapidly and efficiently isolate exosomes
• Labor-saving

• Scalability.
• Standardization.
• Some are time-consuming
• Some have low isolation efficiency.

[9]

3.1.1. Ultracentrifugation

Ultracentrifugation is considered the gold standard for exosome isolation [8,31]. It
depends on the size of the particles and the viscosity of the solution. It is always done
as a series of centrifugation steps, starting with low-speed centrifugation to remove the
cell debris, then high-speed centrifugation up to 100,000× g for the precipitation of ex-
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osomes [31], as illustrated in Figure 4 pathway no. 1. The isolation efficiency of this
technique depends on the g force, the rotor rotation, the angle of the sedimentation force,
and the sample viscosity [76]. While this method is simple and easy to follow, with no need
for pretreatments, it is time-consuming, and ultrapowerful centrifugation could affect the
exosome structure and function [63,76,77]. Exosomes isolated with ultracentrifugation are
highly pure with low yields (5–40%) [8,70,78].
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3.1.2. Ultrafiltration

The isolation of exosomes by ultrafiltration is based on the exosome size. Membrane
filters are used in a series of steps: first, normal filtration to eliminate large components;
second, tangential filtration using a molecular weight cutoff membrane to separate proteins
from all other contaminants; and lastly, ultrafiltration using a 100-nm track-etched filter
to isolate exosomes [74,79], as illustrated in Figure 4 pathway no. 2. The advantages
of this method are that (1) it is fast, (2) it does not require special equipment, (3) it is
scalable, and (4) it produces a high yield. The challenges associated with this method are
the deformation and breaking up of large vesicles due to the force and errors resulting
from the unavailability of the exosomes if they attach themselves to the membrane [80].

Ultracentrifugation can be combined with filtration with a commercially available
nanomembrane concentrator with a uniform size of 13 mm at 3000× g. The orientation of
the membrane within the receptacle minimizes the shearing force. The weakness of this
method is the difficulty of recovering the proteins from the membrane [81].

3.1.3. Size Exclusion Chromatography

Size exclusion chromatography (SEC) isolates exosomes based on particle size in a
porous stationary phase. Thus, particles with small hydrodynamic radii will pass through
the pores, and exosomes with large hydrodynamic radii will not, as illustrated in Figure 4
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pathway no. 3. Early research was done by Baranyai et al. to isolate exosomes from rates
and human plasma samples using SEC [82]. Plasma samples were diluted and loaded onto
the system. The authors tested various column matrices, e.g., Sepharose 2B, Sepharose CL-
4B, and Sephacryl S-400. Their results indicated that the Sepharose CL-4B and Sephacryl
S-400 columns were sufficient for significantly reducing the albumin contamination. Their
protocol helps to isolate highly purified exosomes with preserved biological activities.
Research efforts such as combining SEC with ultracentrifugation to enrich the yield [83]
and combining it with ultrafiltration to enhance its efficacy and speed [84] have been done
to overcome SEC challenges such as slowness, the need for dedicated equipment, low yield,
and difficulty in scaling up [72].

3.1.4. Hydrostatic Filtration Dialysis

Exosomes have been isolated according to their size using a hydrostatic filtration
dialysis (HFD) system forced with a low hydrostatic pressure. In 2014, Musante et al. effi-
ciently isolated diabetic nephropathy biomarker-based exosomes from urine samples using
a dialysis system [85]. Their dialysis system consisted of a defined 1000-kDa cutoff dialysis
membrane connected to a funnel with a long, sheer column that created a hydrostatic
pressure to push the solution through the dialysis membrane, as illustrated in Figure 4
pathway no. 4. The system was refilled with pure water until all the pigments were washed
out from the dialysis part. This method was found to be simple, fast, and effective: It
reduced the labor, maintained the protein pattern, and was capable of processing large
sample volumes: 10 mL–1 L with a rate of 75 mL/h.

3.1.5. Immunoaffinity

Antigen–antibody linkage is the main mechanism for the immunoaffinity method, in
which specific antigens are used to target specific extracellular proteins on exosome mem-
branes. Technically, the immunoaffinity method can be considered an upgrade of the main
enzyme-linked immunosorbent assay (ELISA) mechanism, in which two antibodies are
used to detect a specific antigen, as illustrated in Figure 4 pathway no. 5. The first antibody
is the antigen-trapping molecule, and the second antibody is the fluorescence-detecting
molecule. To enhance the proficiency of this method, two techniques were proposed: the
microplate-based immunocapture technique and the immunoaffinity capture/magneto-
immunocapture technique. These techniques are further illustrated in the next subsections.

Microplate-Based Immunocapture Technique

Briefly, in the microplate-based immunocapture technique, the exosomes are attached
directly to a microplate surface. The surface of this microplate is immobilized with the
required antibodies to capture exosomes, leading to the exosomes precipitating from
the culture [86]. However, the samples must be prepared before treatment, and it is
required that there be at least 20 µg of protein content in the exosomes. This technique
is highly specific and yields a high RNA content from a low sample volume, as little as
100 µL of sample, compared to the 2.5 mL needed for ultracentrifugation [87]. A novel
dendrimer–PEG antibody dual-layer platform was proposed to significantly capture and
isolate tumor exosomes from serum samples. This platform was assembled as a sandwich
with two layers of carboxylated generation 7 poly amidoamine dendrimers and was
stuffed with polyethylene glycol (PEG) (2, 5, and 20 kDa) conjugated with dendrimers.
The dendrimers for the bottom layer coated an epoxide-functionalized glass slide. This
structure facilitated the multivalent capture ability by applying multiple antibodies and
minimizing the nonspecific bindings. This platform possesses high avidity, specificity,
antibody orientation flexibility, and tumor-derived exosome yield [88].

Immunoaffinity Capture/Magneto-Immunocapture

To add value to the microplate-based technique, magnetic beads, such as latex beads and
nano-sized beads, have been conjugated with antibodies [5,35]. One example is Dynabeads.
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Dynabeads® are superparamagnetic polystyrene beads with a diameter of 1–4.5 µm. These
beads are specified to conjugates with the anti-human CD63 antibody, either directly or via
a secondary linker such as anti-mouse IgG [8]. Using this new combination of antibody and
magnetic particles increases the capture affinity and sensitivity and makes it easy and rapid
to proceed. The efficiency of this method depends on the interaction between the antigen and
antibody, temperature, concentration of exosomes, and incubation time [5]. Sample volumes could
be scaled up or down without any restriction. The isolation yield is 15 times higher than with
ultracentrifugation [12]. Although this method is considered the superior strategy for isolating
exosomes from cell culture media, it depends on the quality of the pre-enriched exosomes [5].

An ideal example is T-cell Immunoglobulin Mucin Protein (Tim4) binding with phos-
phatidylserine molecules on the surfaces of exosomes. Tim4 immobilized on magnetic
beads has Ca2+-dependent binding to phosphatidylserine. Moreover, exosomes can be re-
leased from the Tim4 surface by adding a complexing agent to remove Ca2+ [89]. Greening
and coworkers (2015) [12] evaluated the efficacy of three isolation techniques: ultracen-
trifugation (UC-Exos), OptiPrep™ density gradient centrifugation (DG-Exos), and immune
isolation using EpCAM (CD326) antibodies coupled to magnetic beads (IAC-Exos) target-
ing markers Alix, TSG101, and HSP70 to enrich exosomes released from LIM1863 human
colon cancer cells. The isolated exosomes had a uniform size of 40–150 nm, and they
verified that the IAC method was the most efficient for exosome isolation.

3.1.6. Precipitation

Based on the chemical properties of exosomes: (1) a water-excluding polymer, e.g.,
polyethylene glycol (PEG); (2) dextran derivatives, e.g., dextran sulfate and dextran acetate;
and (3) hydrophilic polymers such as polyvinyl alcohol, polyvinyl acetate, and polyvinyl
sulfate were used to chemically precipitate exosomes from the culture [8]. After a mixed
sample was incubated at 4 ◦C overnight with the precipitation solution, exosomes could be
isolated from the precipitate either by low-speed centrifugation or filtration, as illustrated
in Figure 4 pathway no. 6. This method is easy-to-handle, does not require specific
equipment, and can be scalable for large sample volumes. However, if the samples are not
precleaned of cells and cellular debris, proteins and polymeric materials will be found as
coprecipitates [8].

A modified protocol was proposed by Alvarez et al. 2012 [70]. The authors used
ExoQuick-TC to precipitate exosomes [63]. Their protocol is perfect for proceeding with
multiple samples in the absence of an ultracentrifuge and for targeting RNAs and mRNAs
for biomarker identification [70].

3.1.7. Microfluidics

Multiple microfluidic chips have been designed to isolate exosomes rapidly and effi-
ciently with significant reductions in the sample volume, reagent consumption, and isolation
time, as illustrated in Figure 4 pathway no. 7. However, scalability, validation, sample
pretreatments, and standardization are considered disadvantages for these devices [90].

Wang and colleagues (2017) [9] fabricated an acoustofluidics device to isolate exosomes
directly from undiluted blood samples based on their size and density using ultrasound
standing waves. With respect to the channel orientation, particles are subjected to acoustic
force and pushed toward the pressure node. The device consists of two modules. The
first separates larger components, >1 µm in diameter, such as red and white blood cells,
and platelets with 99% efficiency. The second module isolates exosomes to 98.4% purity.
This device offers continuous flow exosome isolation while maintaining the structures,
characteristics, and functions of the exosomes. Additionally, it enables short processing
times with decreasing human intervention.

In another device, exosomes with diameters of 40–100 nm were preferentially trapped
on a ciliated micropillar with a porous silicon nanowire. Proteins and other cellular debris
were filtered out. Exosomes were released from the porous silicon nanowires by dissolving
them in a phosphate buffer solution. ExoChip is a commercial immune-microfluidics
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chip that is functionalized with a commonly expressed antigen, CD63 (a member of the
tetraspanin family). The specific interaction between the CD63 and antibodies immobilized
on the chip allowed the isolation of exosomes from mixed cultures. While, in the integrated
microfluidic exosome device, the sample was mixed with antibody-labeled magnetic
beads; then, a lysis buffer was added, and detection reagents were introduced in a separate
chamber. To improve the scalability of the integrated device, in-line ultraviolet and dynamic
light scattering detectors were coupled with the field–flow fraction system to isolate and
characterize exosomes rapidly [91].

Dr. Chang’s research group fabricated microfluidics chips to isolate exosomes from
plasma and cell culture samples based on an ionic exchange property. In 2017, they
fabricated an integrated platform to isolate exosomes using an ion-selective membrane [92].
One year later, they upgraded their system by adding a pressure-driven flow force to filter
out unwanted debris before concentrating exosomes on the ion-selective membrane [93].
This system was fast and sensitive and recovered 60–80% of the exosomes from the serum
and cell culture compared to 25% for other systems.

To summarize this section, multiple techniques have been recognized for isolating
exosomes from the culture, e.g., ultracentrifugation, ultrafiltration, size exclusion chro-
matography, hydrostatic filtration dialysis, immunoaffinity, precipitation, and microfluidics.
These techniques have been modified and/or combined to improve the isolation procedure.

3.2. Characterization and Detection Techniques

Generally, analyses of the characteristics of purified exosomes fall into four basic cat-
egories: size, concentration, purity, and content. For size and purity, transmission electron
microscopy (TEM) is the standard, with a very low-throughput method for taking and analyz-
ing data [81]. More recently, the NanoSight system [94] has been used to image and determine
particle sizes and concentrations. A promising approach to assessing the purity is combining
NanoSight with a protein assay [95], but this is a source-dependent method. Exosome contents
can be examined using the “-omics” methods, such as proteomics, transcriptomics (miRNA or
mRNA), lipidomics, and glycomics (glycoproteins), or analyzed using more focused methods,
such as Western blot, RT-qPCR, and GC-MS [76]. Recently, protein and/or lipid concentration
assays using simple spectrophotometer protocols have been considered promising methods
for characterizing the protein and lipids contents of exosomes [96].

The method of characterization is chosen according to the purpose of the analysis. If
the purpose is to identify the morphology and confirm the sample purity, then TEM is the
standard method to follow. If the purpose is to determine the size and morphology of the
particles, then a nanoparticle tracking analysis is sufficient. Western blot and ELISA can
be used to detect and identify proteins with respect to their role (up- or downregulation).
Spectrophotometry is a standard method for determining the concentrations of the particles.
Table 2 details these methods with respect to their targets, advantages, and disadvantages.

Table 2. Physical and chemical characterization techniques for exosomal samples.

Technique Target Merits Demerits References

Transmission electron microscopy Phenotype as shape and
dimension

• Direct method
• Requires a small sample amount

• Expensive
• Sample preparation may lead to shape modifications [97]

Nanoparticle tracking analysis Size distribution and
concentration • Fast

• No preparation steps

• Inaccurate if samples are aggregated and/or have different size
distributions, or the same instruments are in different geographical areas.

• Non specificity

[98]

Dynamic light scattering Size distribution [17,98]

Tunable resistive pulse sensing Size distribution, concentration,
and surface charge

• Hard to select the appropriate nanopore setup [99,100]

Atomic force microscopy 3-D topography
• No fixation or staining steps
• Requires a small sample amount • Sample dehydration may lead to topography modifications [101]

ELISA/Western Blot Protein profile
• Simple
• Specific
• Low sample volume

• Sample preparation
• Time-consuming
• Inaccurate if detecting non-exosomal contents

[75]

Spectrophotometer Protein and/or lipid
concentration

• Simple
• Fast
• No fixation or staining steps
• Requires a small sample amount

• Sample preparation
• Inaccurate if detecting non-exosomal contents [102]
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Recently, several individual approaches and combined methods, such as surface
plasmonic biosensors [29,103,104], microchip-based technologies [14,105], electrochemical
techniques [106], fluorescence [107], and colorimetry [108], have been proposed for exosome
detection; some of them have been upgraded over time to reach the high-throughput, high
sensitivity, and real-time detection and quantification of disease-based exosomes. These
methods are summarized in Table 3.

Table 3. Detection techniques for exosomal samples.

Method Approach
Type

Target
Component Mechanism Merits Demerits References

Surface
plasmonic
biosensor

Quantitative Biomarkers

The electromagnetic
field of surface
plasmon, and the
optical waves
originate from the
mass oscillations of
electronic charge
density of thin
(nanoscale) metallic
films

Integration,
miniaturization,
multiparameter,
real-time, and
label-free detection,
Sensitivity

Not capable of
identifying the
post-
transcriptional
modifications of
miRNA

[29,103,104]

Microchips-based
Techniques Quantitative Various

Various designs
according to the
purpose and target

High-throughput for
nonpurified samples
Fast detection
Easy to use,
reagent-saving, and
possessing high
efficacy

Low mass
transfer scale and
interference with
exosomal binding

[105,109–111]

Specific Raman
Scattering

Techniques
Quantitative miRNA

Detection of captured
exosomes with
identified hairpins

Ultra-sensitive
Low background
noise.

Contamination
issue [112,113]

Electrochemical
Techniques Quantitative Biomarkers

Decrease of the
electrochemical signal
because of the release
of the pre-labeled
stands from the
functionalized surface
of a gold electrode
when the exosomes
were captured by the
anti-marker beads.

Reliable, fast
Cost-effective
Low sample
concentration
Sensitivity
Easy to handle
Saves time
Nontoxic materials
Low background, and
simple
instrumentation

Indict
measurements [75]

Fluorescent and
Colorimetric
Techniques

Qualitative/
quantitative miRNA

Label captured
exosomes with stain
e.g., Cy3

Fast, simple
Needs high
sample
concentration

[114]

Examining all this information on the characterization and detection techniques used
for exosome samples indicates that visualizing the procedure with respect to the chemical
composition of the particles and preparing the samples are the main factors in choosing
the suitable technique. However, it is better to combine two or more techniques to confirm
the results.

4. Tumor Exosomes for Cancer Detections

Exosomes are found to promote cancer angiogenesis, generate the premetastatic niche,
and modulate the host immune system [49]. In the next few sections, we will summarize
the cases in which exosomes have been used for diagnosis and for monitoring cancer
agents.

4.1. Exosomes as Disease Biomarkers with Diagnostic Potential

With respect to cancer, exosomes have potential effects on cancer development and
tissue reprogramming [115]. Exosome nucleic acids pool and proteins act as the primary
biomarkers for early cancer early detection and diagnosis [1,116,117].
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Exosomes have a cell line-based structure that suggests a subpopulation distribution
on a cell line basis. The role of these subpopulations is likely related to the normal
and cancer cells and helps in diagnostic purposes. Exosomes released from normal and
cancer cell lines have different (1) nucleic acid contents and (2) membrane structures in
accordance with their cholesterol contents, surface proteins, and cholesterol: phospholipid
ratios [67,118].

Exosomes contain functional components, e.g., RNA, DNA, and proteins, which can
be used as biomarkers for diagnostic and monitoring purposes and can be easily transferred
to recipient cells. Exosomes derived from infected cells mimic special elements spanning
the normal cells that provide a blueprint of tumor cells for medical purposes [119].

The miRNA is one of the critical intracellular components in exosomes. It is a class of
noncoding RNA with 18–25 nucleotides that plays vital roles in cell-to-cell communication
pathways in carcinogenesis [120]. These noncoding RNAs can facilitate metastasis by enhanc-
ing the molecular pathways associated with cancer [121]. Systemically, miRNAs are the most
abundant species, with around 42.3% of the exosome RNA pool [122]. Other RNA fractions
include rRNA, tRNA, noncoding RNA, piwi-interacting RNA, small nuclear RNA, and small
nucleolar RNA. The common miRNAs are miR-22-3p, miR-99a-5p, miR-99b-5p, miR-124-3p,
and miR-128 [13]. It was suggested that miRNAs play vital roles in physiological processes
such as RNA splicing, protein phosphorylation, chromosomal abnormality, and angiogene-
sis [13,122]. The exosomal miRNA profiles can potentially be used as cancer biomarkers, e.g.,
miRNA-141, miRNA-200a, and miRNA-200c [18,40,123,124].

Deoxy ribonucleic acid (DNA) is another critical component of exosome structures.
ExoDNA is poorly studied compared to ExoRNA. Previously, it was believed that mi-
crovesicles have intracellular single-stranded DNA (ssDNA) and mitochondrial DNA [125].
Thakur et al. 2014 found evidence that exosomes have intra- and extracellular double-
stranded DNA (ddDNA) as a whole genomic material [126]. They compared the types and
concentrations of the DNA loops in pretreated exosome samples with dsDNase and un-
treated samples. They observed a significant reduction in the concentration of the DNA loop
in the treated samples, which means that exosomes carry high concentrations of ddDNA.
They also found that the circulating exosomal ddDNA was a promising tumor-based
mutation biomarker that could be used to validate cancer diagnostics and prognostics by
identifying multiple genes, such as EGFR, BRAF, RAS, IDH, and HER2, because (1) it is sta-
ble, (2) it is biocompatible, and (3) its functional group can be modified [127,128]. ExoDNA
is a key regulator for tumor immunity [128]. Cancer cells secrete harmful fragmented
DNA through their exosomes to avoid senescence (cell death) and avoid the stimulator
of interferon genes (STING) and cyclic GMP–AMP synthase (cGAS) resulting from DNA
accumulation [129]. STING and cGAS are two machineries that are activated by DNA
accumulating in the cytoplasm. These DNA machineries act against tumorigenesis [130].
The therapeutic efficacy of the tumor is based on the STING mechanism [131]. The loops
of DNA fragments that have accumulated in the cytoplasm because of radiotherapy and
chemotherapy induce the antitumor response and STING activation in dendritic cells to
prevent further tumor growth and promote inflammation. The mechanism of packing the
DNA inside the exosomes is still unclear. Exosome biogenesis is enhanced in infected cells
because of the hypoxia and the low pH [132].

The third critical diagnostic biomarker component of the exosomes is their proteins,
as they are protected from the proteinases and stable in plasma and serum circulation.
There are specific types of exosomal proteins that act to discriminate between different cell
types; for example, the epithelial cell adhesion molecule (EpCAM) differentiates between
cancer cells and normal cells. Other types of proteins that differentiate exosomes from
other vesicles are secreted by all cell types. These biomarkers include CD9; CD63; CD81;
LAMP1; heat shock proteins (Hsp25, Hsp60, Hsp70, and Hsp90); synthenins; endosomes;
and calnexin [5,12,133–136].

To conclude this section, lists of specific biomarkers according to either the disease or
the cell type is given in Tables 4 and 5 [137,138]. Interestingly, it was found that the same
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biomarker could be used as a reference for several diseases—for example, miR-21 is used
for ovarian cancer [18], prostate cancer [19], and breast cancer [20]—and that exosomes
released from different cell lines could include identical biomarkers [139].

Table 4. Biomarkers of specific proteins in exosomes according to disease type.

Disease Name Exosome-Based Biomarkers References

Colorectal cancer A33, EpCAM [108]

Leukemia
CD34 [140]

miR-16 [141]
CD63 and nucleolin [142]

Ovarian cancer

CD24 and EpCAM
FRalpha [143]

CA-125 [110,143,144]
CA-125, EpCAM, CD24 [110]

claudin proteins [145]
miR-21, miR-141, miR-200a, miR-200c, miR-200b, miR-203,

miR-205, and miR-214) EpCAM- [18]

phosphatidylserine (PS)-positive exosomes [146]

Prostate cancer

miR-21 [147,148]
Survivin [149]

miR-1290 and miR-375 [122]
PSA and PSMA [150]

PSMA [151]
miR-21, miR-574-3p, EpCAM, and epidermal growth factor

receptor (EGFR) [19]

miR-17, miR-18a, miR-20a, miR-93, miR-106b and thelet-7family
members [152]

PCA-3 and TMPRSS2:ERG [153]
Prostate and breast cells miR-183 family, which includes miRs-96, -182 and -183. [154]

Breast cancer

CD24, CD44, CD54,CD326 and CD340 [155]
mucin 1 (MUC1) protein [107,156]

HER2+ [157–160]
miR-128 [161]
miR-21 [20,162]
CD47 [6]
CD63 [69]

CD24, CD63, and EGFR [163]
miR-1246 [24]

CD63 aptamer and EpCAM aptamer [164]
miR-210 [63]

2 exosome markers; CD9, CD63, 4 caner markers; CD24, CD44,
EpCAM, and the human epidermal Growth factor receptor 2

(HER2)
[27]

CD44 [165]
CD44 and CD47 [6]

miR-21, miR-27a and miR-375 [166]
Liver and breast cancer miR-122 [167]

Hepatic carsinoma AFP proteins [168]
(SMMC-7721) [169]

Pancreatic cancer
sialylated Lewis (a) blood group antigen CA19-9 [170]

hsa-miR-550 [171]
MicroRNA-10b [120,172]

Glioblastoma, (GBM), i
one of the most fatal tumors in the brain

human epidermal growth factor receptor (EGFR) and EGFR
variant (v) III mutation (EGFRvIII) [173]

CD63, and epidermal growth factor receptor variant-III [174]
Gastric-cancer-derived exosomes CD63 [175]

Lung cancer

miRNA-210 [176]
EGFR, CEA, CYFRA 21-1, ENO1, NSE, CA 19-9, CA 125 and

VEGF [22]

epidermal growth factor receptor (EGFR) [29]
miRNA-21 [113]

Invasive ductal carcinoma microRNA-223-3p [177]

Melanoma
CD63 and caveolin-1 [178]

CD9 and CD81, detecting CD63 [179]
melanocyte antigen A (MelanA) [180,181]

Human epithelial colon cancer cells Glycoprotein A33+
EpCAM+ [35,182]

Dendritic cells MHC II+ [183]
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Table 5. Biomarkers of specific proteins in exosomes according to cell type.

Cell Type Biomarker Specific Protein References

Human urine

ALIX (apoptosis-linked gene
2–interacting protein X) and
TSG101 (tumor susceptibility

gene 101 protein)

[184]

Human epithelial colon cancer cells Glycoprotein A33+
EpCAM+ [35,182]

Dendritic cells MHC II+ [183]
BT-474 breast cancer cells HER2+ [157]

Jurkat and supt1/CCR5 cells CD45+ [185]

Melanoma exosomes melanocyte antigen A
(MelanA) [180,181]

4.2. Exosome-Based Technologies for Cancer Detection and Identification

Much research has been done on the detection and quantification of exosomes derived
from prostate, breast, lung, colorectal, and ovarian cancers. Cancer-derived exosomes can
be extracted from plasma, serum, cell lines, and urine. Urine is the most significant source
for cancer-derived exosomes, as it is safe, easy to manipulate, and cost-effective [147].
Researchers at the School of Medicine at Cardiff University investigated the possibility
of using urinary exosome biomarkers as tools for monitoring therapy. They found that
PSA, PSMA, and 5T4 biomarkers could be quantified from exosomes derived from urine
prostate cancer [150]. Sampling of the cancer-derived exosomes is a challenge, because
they are tiny and are present in low concentrations. In the following section, we will briefly
discuss these research efforts based on their techniques.

4.2.1. Surface Plasmonic Biosensor Technology

Surface plasmonic biosensor (SPB) technology uses optical base devices as label-free
detectors to monitor and quantify protein interactions. It is considered a promising tech-
nique for detecting biomarkers in cancer-derived exosomes. This technology includes a
versatile visual toolbox for sorting various tightly packed biological species (Figure 5).
Both the electromagnetic field of the surface plasmon and the optical waves originating
from the mass oscillations of the electronics are responsible for the charge density of thin
(nanoscale) metallic films. This technology offers labor savings, label-free miniaturization,
and sensitivity [29,103,104]. Zhu fabricated a biosensor based on detecting exosome surface
proteins using SPB technology with antibody microarrays with no need for enrichment
or purification methods for cancer diagnosis purposes [116]. Another surface plasmon
biosensor chip was developed to monitor exosomes derived from pancreatic cancer by
detecting microRNA-10b. It is composed of a synthesized nano-Au prism attached to a
single-nucleotide miRNA sensor on the surface of the plasmon resonance biosensor. This
is an ultrasensitive device that provides specificity and sensitivity, but exosomes must be
highly purified in order to be quantified using this platform [120]. Researchers in Switzer-
land focused on using multiple antigens to instantly capture and identify exosomes derived
from breast cancer from three cell lines and characterize their disease development [27].
They developed an immunosensor with antibody-functionalized surface plasmon reso-
nance biosensing, in which multiple antigens are combined in a gold-coated layer for
the kinetics label-free monitoring of molecular interactions. They used their biosensor to
screen two exosome biomarkers (CD9 and CD63) and four cancer biomarkers (CD24, CD44,
EpCAM, and human epidermal growth factor receptor 2 (HER2)). Several advantages are
associated with this methodology, such as clinical applicability, flexibility, usability, and
sensitivity for detecting low sample concentrations.
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Liu updated a similar platform to detect exosomes derived from lung cancer and
overcome the high cost associated with the fabrication process. His platform is composed
of an Au-coated glass layer conjugated with a prism and a NeutrAvidin–polyethylene
glycol (PEG)–thiol–biotin PEG mixture. Exosomes are captured on the surface of that
mixture, and then, the laser signals are reflected through the prism. This platform offers
high sensitivity and simplicity, but the detection of biomarkers differs according to the
sample origin for the same disease, e.g., the signals of the exosomal epidermal growth
factor receptor (EGFR) were not the same in human serum as in the cell lines [30]. Another
surface plasmon biosensor chip was developed with a nonfactionalized nanogold layer
to distinguish between exosomes and extracellular macrovesicles associated with lung
cancer in mice, which revealed the importance of surface [29] exosome properties [186]. A
surface biotinylated antibody-functionalized titanium nitride plasmon resonance biosensor
was fabricated to detect glioma-derived exosomes (glioma is a brain cancer that starts
in the glial cells of the brain or the spine). The titanium nitride biosensor was able to
detect both CD63 and epidermal growth factor receptor variant-III with detection limits
of 10−3 µg mL−1 and 2.75 × 10−3 µg mL−1, respectively. In addition, it had excellent
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performance, stability level, and biocompatibility with titanium nitride [174]. Research
groups in Australia and Singapore have developed a real-time-functionalized ani-HER2
surface plasmon biosensor to detect breast cancer cells. Their platform is simple, label-free,
and sensitive, with a detection limit of 8.2 × 10−3 particles/µL [159].

In 2020, Portela created an upgraded nanoplasmonic biosensor featuring nanogap
antennas by employing the colloidal lithography process. Gaps that had a size of ~11.6–
4.7 nm formed between gold nano-disk pairs. This antenna biosensor detected lung
cancer biomarker miRNA-210 via a hybridization assay of DNA/miRNA. Several advan-
tages were reported for this platform, including (1) high performance, (2) high sensitivity,
(3) simplicity, (4) cost-effectiveness, (5) a low detection limit (5.1 ng mL−1), and (6) the
direct detection of miRNAs [176]. Recently, a simple plasmonic surface polydopamine-
functionalized Au nanobiosensor with two aptamers was invented. The DNA tetrahedron
probes were immobilized on the gold nanoparticle samples under alkaline pH. Afterwards,
a covalent bond between aptamer 1 and aptamer 2 was structured as a NH2–COOH bond.
In the first step, SMMC-7721 exosomes were captured on the surface of the first aptamer,
which was complementary to the DNA tetrahedron probes. Then, the second aptamer rec-
ognized the SMMC-7721 on the captured exosomes and enhanced the signal amplification.
Consequently, signal amplification improved when the first aptamer reduced the HAuCl4.
This platform offers specificity, a low detection limit of 5.6 × 105 particles/mL, and no
need for pretreatments [169].

Exosome–antibody kinetics were studied and described as the hit–stay–run reaction
by Yang and coauthors [187]. They created an interferometric plasmonic microscopy with
which they were able to image single exosomes, monitor the adsorption of exosomes
onto Au surfaces, and determine the exosomal size distribution. This offers the ability
to distinguish between exosomes and liposomes [187]. A second real-time detection
protocol was designed to detect circulating proteins on exosome surfaces. This mechanism
starts with antibodies capturing exosomes on the surface of a plasmonic sensor, which
causes a change in the refractive index between the central aperture and nanogroove rings,
which changes the intensity of the transmitted light. This technique can detect a sample
concentration of 3.86 × 108 exosomes/mL, providing the opportunity to monitor and
analyze biomolecular binding kinetics. It can be coupled to a smartphone as a healthcare
device [188]. Recently, a smartphone-based sensor was applied to detect single exosomes
directly based on their physical and biomolecular structures. This plasmonic biosensor
is structured with gold nanoshells at which the same exosomes will be captured and
identified by their dimensions and biomolecular structures, such as miRNAs and proteins.
This platform is fast, sensitive, and wash-free [189].

4.2.2. Microchip-Based Technology

Microchip-based technology is used for circulating, capturing, and detecting exo-
somes, because it is (1) easy to use, (2) reagent-saving, and (3) highly efficacious [105].
Microchip-based technology has all these advantages, but it also has operating challenges,
such as a low-mass transfer scale and interference with exosomal binding [143] (Figure 6).
Starting in the USA in 2014, a group of researchers fabricated a multiple-channel chip based
on sample transmission through antibody-functionalized arrays with periodic holes and as
imaging setup for simultaneous density detection. By applying the fabricated microfluidics
chip, they were able to detect CD24 and EpCAM in 20 ovarian cancer patient samples
compared to 10 noncancer samples [144]. Their chip provides (1) quantitative analyses
of specific exosomes, (2) high sensitivity, (3) retrievability for further analysis, and (4) a
one-step process. A research group at the Australian Institute for Bioengineering and
Nanotechnology fabricated a multichannel device for multiplexed simultaneous naked
eye readouts and UV spectrophotometer quantifications of cancer-derived exosomes [190].
Their methodology was based on generating a shear force on functionalized-antibody
surfaces of nanoelectrodes, which improved the specificity to capture targeted exosomes
without interfering with other types of similar-sized vesicles. One year later, two mi-
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crofluidic chips were fabricated and connected by a third independent research group
(taller research group). These were based on surface acoustic wave and ion exchange
concepts. First, exosomes were lysed at a rate of 38% using the surface acoustic wave;
then, hsa-miR-550 was detected in pancreatic cancer cell lines to a limit of two picomolars
using ion-exchange sensing. These connected chips were time- and sample-saving [171].
Ramshani and coauthors improved on Taller′s device in 2019. Their device had an elec-
trokinetic membrane sensor based on nonequilibrium ionic currents [74], and they detected
and quantified miRNA-21 in generated liver cancer plasma within 30 min. Their device
was (1) reproducible for other biomarkers and (2) did not require sample pretreatments.
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Daaboul and coauthors (2016) presented a new method for characterizing exosome
phenotypes based on their sizes. Their microarray chip allows the automatic quantification
of the sizes of individual exosomes >50 nm using an interferometric reflectance imaging
sensor [14]. Their chip was simple and had a high sensitivity for low sample volumes
(20 µL). In the same year, Etayash and his research team reported a cantilever array for
simultaneously detecting overexpressed membrane proteins CD24, CD63, and EGFR in
exosomes derived from breast cancer [163]. Zhao and his team introduced an additional
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chip to offer a continuous-flow ExoSearch platform for exosomes derived from ovarian
cancer. The ExoSearch chip performs a continuous quantification of exosomes in blood
plasma sample volumes from 10 µL to 10 mL using immune-magnetic beads to detect three
biomarkers: CA-125, EpCAM, andCD24 [110].

To overcome the challenges of exosome-based methods for cancer diagnosis, such
as (1) low density, (2) tiny size, (3) difficulty of isolation from plasma, (4) lab-consuming
steps, and (5) enrichment and purification issues [116,191], an electrokinetic microarray
chip was fabricated [192]. This chip provides several advantages, such as (1) a low sample
volume (30−50 µL), (2) time savings—the process takes less than 30 min, (2) enablement
of subsequent on-chip immunofluorescence detection of exosomal proteins, and (3) pro-
vision of viable mRNA for RT-PCR analysis [192]. A simultaneous readout device was
fabricated. This device was based on peroxidase substrate 3,3′,5,5′-tetramethylbenzidine
(TMB) oxidation catalyzed by an exosome–antibody complex [193]. This device exhibited
(1) a high-throughput analysis, (2) a low detection limit—2.7 × 103 particles/µL, and (3)
rapid detection without sophisticated instruments [193].

Additionally, a droplet-based enzyme-linked immunosorbent assay (ELISA) chip was
fabricated to quantify cancer-derived exosomes in low sample volumes with low concentra-
tions [194]. First, the exosomes were captured on magnetic beads through enzymatic ELISA
complexes; then, the bead/exosome complexes were encapsulated inside the droplets and
counted [194]. This improved the isolation, detection, and quantification methodology. A
well-organized 16 × 20 × 20 pillar brush-like organized structure was fabricated for real-
time accommodating, imaging, and detecting of single exosomes. Each pillar was capped
with an 80-nm gold cap conjugated with anti-CD63. This amazing chip was fabricated to
detect breast cancer cells (MCF7) [69]. Zhang and coauthors presented a developed chip
integrated with 3D herringbone structures to detect exosomes at concentrations as low as 10
particles/µL, which were undetectable by standard microfluidics. They detected exosomes
derived from ovarian cancer and normal exosomes in 20 and 10 samples, respectively.
CD24, EpCAM, and FRalpha proteins were used as biomarkers. Their chip boasts (1) a
large surface area and (2) high exosome-binding efficiency [143].

In 2019, a label-free microarray was developed to detect exosomes released from
macrophages to evaluate the immune response. The chip had seven exosomal-specific
antibodies fabricated on a photonic crystal biosensor surface. This chip (1) was cost-
effective, (2) fast, and (3) required a low sample volume of 1 µL [111].

4.2.3. Specific Raman Scattering Technology

Specific Raman scattering (SRS) technology has received a great deal of attention
because of its ultra-sensitivity in the detection of a variety of small biological fractions
with low background noise [112] (Figure 7). The Ma research group proposed using
miRNA-mediated gold–silver nanoparticles with internal nanogaps to detect miRNA-21 in
non-small-cell lung cancer (NSCLC). First, an Au-rhodamine 6 G (R6G)–AuAg complex
with internal nanogaps was prepared, which was then attached with silicon microbeads to
the 3′- and 5′-ends of the capture probe. The capture probe targeted miRNA-21 exosomes.
A duplex-specific nuclease cleaved the exosomal miRNA to release SRS signals from the
surface of the Au complex. However, the miRNA-21 was still in contact and cycling
the amplification to release more Au complexes. The solution intensity was directly
proportional to the concentration of exosomal miRNA. This method introduced a new
technique for quantifying specific exosomal miRNA in low sample volumes (5.0 µL) for
clinical purposes [113].
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A similar approach using a different functionalized gold (Au) surface to target and
quantify exosome MicroRNA-10b as a biomarker for pancreatic cells was reported. The iron
(III) oxide/silver/DNA/Au–silver/ DTNB (5,5-dithio-bis-(2-nitrobenzoic acid) complex
was able to detect miRNA-10b in blood samples and differentiate among pancreatic cancer,
chronic pancreatitis, and healthy samples [172]. Another method for the reliable detection
of miRNA was proposed in 2019. Chen and his research group invented a specific Raman
scattering (SERS) platform to detect the presence of miRNA-21 where miRNA-21 was a
key to triggering the allosteric effects of mismatched catalytic hairpin assembly (CHA)
amplification. The hairpin H1 probe opened and hybridized with the hairpin H2 probe to
form a H1–H2 complex. This complex combined with DNA on the enzyme-free surface
of the platform and signals were recorded. 4-aminothiophenol was the internal standard,
coupled with CHA. Their platform exhibited a sensitivity range from 10 fM to 100 nM [195].

Coupling the magnetic nanobead capturing technology with SRS, a developed SRS
was investigated for recognizing and detecting CD63 as a general cancer biomarker. The
developed SRS was composed of modified gold shell magnetic nanobeads for capturing
purposes, three different gold nanoparticle probes for the instant detection of most kinds
of exosomes, and a Raman reporter for signal amplification. In a solution with a target
exosome, an exosome/magnetic beads-appropriate probe complex was formed, and the
signal indicated the presence of target exosomes [158].

http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/


Biosensors 2021, 11, 518 19 of 37

Another Raman scattering platform for quantifying the exosomal miRNA derived
from breast cancer cells was developed by Lee and coauthors [196]. It was characterized by
multiple spots on gold-coated nanopillars and a capability for hybridization between small
oligonucleotides, e.g., miRNAs, and locked nucleic acid probes. The design offers (1) a low
detection limit, 1 am–100 nm, (2) miRNA recovery, and (3) multisensing opportunities [196].
One year later, an enhanced hetero-structured (2D-0D) Raman scattering spectroscopy was
proposed for tracking exosomal HER2+ derived from breast cancer cells [160]. The authors
applied physical and chemical enhancement mechanisms. Physical enhancement was
applied via the electromagnetic field produced by the plasmonic gold nanostar. Chemical
enhancement was applied via the presence of 2D graphene oxide material. This platform
was able to track exosomes to a limited concentration of 4.4 × 102 particles/mL [160].

As mentioned above, the Ma research group [113] proposed using miRNA-mediated
gold–silver nanoparticles with internal nanogaps to identify NSCLC-derived exosomes us-
ing miRNA21. Pang et al. [197] used exosomal PD-L1 in a 40-min test for the same purpose,
with 96% efficiency. First, the hydrophilic heads of the exosome bilayer phospholipids bind
to the TiO2—Fe3O4 complex and are directly separated from the serum. Afterwards, the
exosomal PD-L1 is labeled when binding to the anti-PD-L1 antibody-modified silver–gold
mercaptobenzoic acid (MBA) SRS tags [197]. Ning et al. [198] developed a gold–silver
bimetallic nanotrepang-based SRS biosensor for monitoring cancer-derived exosomes. The
probes were composed of core nanorod gold–silver shell/silver shell active nanotags deco-
rated with DNA linkers. Three probes with modified magnetic beads were used to capture
exosomes with PSMA, HER2+, and AFP biomarkers to identify prostate cancer, breast
cancer, and hepatic cancer cell lines, respectively. After capturing target exosomes, the
nanotags released them inside the solution, and the appropriate signals were detected on
the magnetic bead surfaces. This biosensor offers reliability with multi-biomarker exosome
detection [198].

4.2.4. Electrochemical Techniques

Electrochemical systems have emerged as a solution to the challenges of miRNA:
(1) miRNA has short base pairs (19–25 base pairs), (2) it is naturally occurring in very
low concentrations, (3) it has sequence similarity, (4) it is labor-intensive, (5) it has an
amplification bias, and 6) it is expensive to manipulate [19,30,199,200]. Several electrochem-
ical systems were designed to detect cancer-derived exosomal biomarkers derived from
human samples [121] (Figure 8). All electrochemical methods possess certain characteristic
advantages: (1) high sensitivity, (2) ease of handling, (3) time savings, (4) use of nontoxic
materials, (5) low background, and (6) simple instrumentation [199,201,202].

In 2016, Zhou et al. developed an aptamer-based electrochemical microfluidic chip
to detect and quantify CD63, the cancer biomarker [7]. Their system relies on the electro-
chemical potential signal decreasing because of prelabeled strands from the functionalized
surface of a gold electrode being released when the exosomes are captured by anti-CD63
beads. Their system offers (1) a low detection limit, 106 particles/mL, which is 100-fold
less than those of known commercial kits at this time, and (2) direct detection with no
need for pretreatments. In 2017, Smith et al., researchers in the UK, reported a pioneering
electrochemical biosensor with a functionalized glass carbon electrode for specifically
identifying miR-21 in urine for prostate and bladder malignancy patients. This pioneering
system offers a much lower detection limit, 20× 10−15 molar [147]. Tavallaie and coauthors
designed a novel reconfigurable DNA–Au@MNP electrical network for the direct detection
of miRNA concentrations of 10 aM–1 nM in untreated blood samples [203].



Biosensors 2021, 11, 518 20 of 37
Biosensors 2021, 11, x FOR PEER REVIEW 22 of 40 
 

 
Figure 8. Examples of electrochemical platforms for exosome detection and quantification. The figure permissions are as 
follows: (A) license ID 1147246-1, license date 13 September 2021, licensed content publisher ELSEVIER BV. Licensed con-
tent publication of “A ratiometric electrochemical DNA biosensor for detection of exosomal MicroRNA”. Copyright Clear-
ance Center, Inc. (CCC) grants licenses on behalf of the rightsholder (Royal Society of Chemistry). (B) License ID 1120257-
1, license date 13 September 2021, licensed content publisher Pergamon. Licensed content publication of “A catalytic mol-
ecule machine-driven biosensing method for amplified electrochemical detection of exosomes”. Copyright Clearance Cen-
ter, Inc. (CCC) grants licenses on behalf of the rightsholder (Royal Society of Chemistry). 

In 2016, Zhou et al. developed an aptamer-based electrochemical microfluidic chip 
to detect and quantify CD63, the cancer biomarker [7]. Their system relies on the electro-
chemical potential signal decreasing because of prelabeled strands from the functional-
ized surface of a gold electrode being released when the exosomes are captured by anti-
CD63 beads. Their system offers (1) a low detection limit, 106 particles/mL, which is 100-
fold less than those of known commercial kits at this time, and (2) direct detection with 
no need for pretreatments. In 2017, Smith et al., researchers in the UK, reported a pioneer-
ing electrochemical biosensor with a functionalized glass carbon electrode for specifically 
identifying miR-21 in urine for prostate and bladder malignancy patients. This pioneering 
system offers a much lower detection limit, 20 × 10−15 molar [147]. Tavallaie and coauthors 
designed a novel reconfigurable DNA–Au@MNP electrical network for the direct detec-
tion of miRNA concentrations of 10 aM–1 nM in untreated blood samples [203]. 

In 2018, another research group in China created an ultrasensitive ratiometric elec-
trochemical biosensor for miRNA-21 in breast cancer cells. Their biosensor applied DNA 
walkers, DNA tracks, a target–response reporter, and a reference reporter. Applying these 
features offers advantages such as (1) low cost; (2) reproducibility, as it can be used up to 
five times, (3) high selectivity, and (4) a low detection limit, 67 aM [162]. Assembling the 
ratiometric electrochemical biosensor, Zhao et al. [164] and Wang et al. [204] developed 
their electrochemical biosensors to selectively detect cancer-derived exosomes. Zhao et al. 
applied their biosensor to the detection of exosome DNA captured with anti-CD63 and 
EpCAM aptamers derived from breast cancer cells. Zhao used a 3D DNA walker and an 
exonuclease-III-assisted electrochemical ratiometric sensor to reach a detection limit of 1.3 
× 104 particles/mL [164]. Wang applied cholesterol-labeled DNA strands to plug into the 
bilayer of captured exosomes, with a detection limit of 29 particles/μL [204]. Cao and co-
authors designed an electrochemical cell to detect exosomes derived from hepatic cancer. 
The detection part has a CD63 aptamer combined with a DNA chain combined with im-
munobeads functionalized with anti-CD63. This method possesses a high specificity level 
with a low detection limit, 1.72 × 104 particles/mL, which provides adequate details on 
cancer prognosis monitoring [205]. Boriachek and coworkers selectively isolated exoso-
mal miRNA from eight serum samples on a surface of pre-functionalized magnetic beads, 

Figure 8. Examples of electrochemical platforms for exosome detection and quantification. The figure permissions are as
follows: (A) license ID 1147246-1, license date 13 September 2021, licensed content publisher ELSEVIER BV. Licensed content
publication of “A ratiometric electrochemical DNA biosensor for detection of exosomal MicroRNA”. Copyright Clearance
Center, Inc. (CCC) grants licenses on behalf of the rightsholder (Royal Society of Chemistry). (B) License ID 1120257-1,
license date 13 September 2021, licensed content publisher Pergamon. Licensed content publication of “A catalytic molecule
machine-driven biosensing method for amplified electrochemical detection of exosomes”. Copyright Clearance Center, Inc.
(CCC) grants licenses on behalf of the rightsholder (Royal Society of Chemistry).

In 2018, another research group in China created an ultrasensitive ratiometric elec-
trochemical biosensor for miRNA-21 in breast cancer cells. Their biosensor applied DNA
walkers, DNA tracks, a target–response reporter, and a reference reporter. Applying these
features offers advantages such as (1) low cost; (2) reproducibility, as it can be used up to
five times, (3) high selectivity, and (4) a low detection limit, 67 aM [162]. Assembling the
ratiometric electrochemical biosensor, Zhao et al. [164] and Wang et al. [204] developed
their electrochemical biosensors to selectively detect cancer-derived exosomes. Zhao et al.
applied their biosensor to the detection of exosome DNA captured with anti-CD63 and
EpCAM aptamers derived from breast cancer cells. Zhao used a 3D DNA walker and
an exonuclease-III-assisted electrochemical ratiometric sensor to reach a detection limit
of 1.3 × 104 particles/mL [164]. Wang applied cholesterol-labeled DNA strands to plug
into the bilayer of captured exosomes, with a detection limit of 29 particles/µL [204]. Cao
and coauthors designed an electrochemical cell to detect exosomes derived from hepatic
cancer. The detection part has a CD63 aptamer combined with a DNA chain combined
with immunobeads functionalized with anti-CD63. This method possesses a high speci-
ficity level with a low detection limit, 1.72 × 104 particles/mL, which provides adequate
details on cancer prognosis monitoring [205]. Boriachek and coworkers selectively isolated
exosomal miRNA from eight serum samples on a surface of pre-functionalized magnetic
beads, which then automatically adsorbed on a gold electrode. The adsorbed miRNA
was electrochemically detected in the presence of a redox system ([Fe (CN)6]4−/3−) with a
sensitivity of 1.0 pM [121].

One year later, in 2019, Huang and coauthors invented a label-free electrochemical
aptasensor to specifically detect exosomes derived from gastric cancer exosomes. Again,
anti-CD63 loaded onto a gold electrode surface was used to capture exosomes. Then,
circle amplification was triggered as a response of the exosome capture step, and mul-
tiple G-quadruplex units were produced. An electrochemical signal accumulated when
the hydrogen peroxide was reduced, and horseradish peroxidase mimicking DNAzyme
acted as a catalyst. This aptasensor is specific and sensitive, as its detection limit is 9.54
× 102/mL [175]. Continuing with the same concepts, Qiao and his team reported a sys-
tem for identifying exosomal CD63 derived from breast cancer cells from serum samples.
They used mercaptopropionic acid (MPA)-modified Eu3+-doped CdS nanocrystals as the
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electrochemiluminescent emitters and hydrogen peroxide as the core actant. After rec-
ognizing the exosomes, the H2O2 decomposed, and the electrochemiluminescence (ECL)
signals decreased [206]. The limit of detection (7.41 × 104 particles/mL) was twice as
low as that of the Rongrong design [175]. Other efforts produced a CD63-fuctionalized
reduced graphene oxide field effect transistor biosensor to quantify cancer-derived exo-
somes in low-concentration samples (33 particles/µL) electrically. This device was capable
of distinguishing prostate cancer samples from control samples without labeling [11].

A peptide nucleic acid (±)/microRNA/spherical nucleic acid nanoprobe (+) sandwich
on an electrochemical sensor was developed by the Liu research team to detect exosomal
miRNA in blood samples from breast cancer patients. This sandwich sensor was (1) spe-
cific because of the hybridization opportunity between the neutral and the negative sides
of the sandwich, which enhanced the detection process, (2) sensitive enough to detect
a single base mismatch, (3) label-free, and (4) an enzyme-free process [207]. Recently a
sandwich structure for diagnosing ovarian malignancy early by detecting phosphatidylser-
ine (PS)-positive exosomes was created by Liu. Exosomes were captured on the surfaces
of functionalized gold nanoflowers that capped g–C3N4 nanosheets. When exosomes
were captured, the nanosheets catalyzed the decomposition of H2O2, and the ECL signals
were amplified. In addition to its sensitivity and low cost, this system possesses the low
detection limit of 39 particles/µL [146].

Applying 2D Ti3C2 MXenes nanosheets and anti-EpCAM as the ECL probe and the
capture aptamer, Zhang designed a reliable, sensitive biosensor to detect breast cancer
in serum samples with a detection limit of 125 particles/µL [137]. A novel ECL system
conjugated with polymerase amplification was constructed to detect miRNA-16 derived
from leukemia [141]. A magnet-controlled glassy carbon electrode functionalized with
a nano-Au surface that adsorbs assistance DNA with the pyridine–ruthenium complex
included the chemical components of the system. When the target miRNA was detected,
the capture DNA immobilized on the electrode opened and was conjugated with that
target to form double-stranded DNA. Then, the hairpin structure opened, and the DNA
primers conjugated with the complementary sequence occurring at the hairpin neck with
the assistance of the Klenow fragment of DNA polymerase and the ECL signals were
recorded. This biosensor is (1) label-free, (2) ultrasensitive, with the low detection limit of
4.3 × 10−17 mol/L, (3) stable, and (4) reproducible [141].

In 2020, an electrochemical biosensor for exosomal microRNA detection was realized
that has two steps: (1) the induction of miRNA signal amplification and (2) induction
of silver nanoparticle deposition. This method is simple, inexpensive, and ultrasensitive
(limit of 0.4 fM) [200]. An improved electrochemical system for exosome detection was
fabricated by Fang and coauthors. They enhanced their system by combining the benefits
of (1) MXenes, which act as a probe supporter to improve the signals, (2) black phosphorous
quantum dots (BPQDs), which act as an oxidation catalyst for tris (4,4′-dicarboxylicacid-
2,2′-bipyridyl) ruthenium (II) dichloride (Ru(dcbpy)3)2+ and also improves signals, and (3)
SiO2 nanourchin, which acts as a sensing platform for the aptamer. Both the MXenes and
the BPQDs provide extraordinary photothermal properties. Their systems operate in two
forward steps: First, EpCAM is detected on an immobilized aptamer; second, the modified
exosomes are combined with the CD63 antibody on the MXenes-BPQDs–Ru(dcbpy3)2+

complex [115]. This dual ECL system is specific and effective. Another electrochemical
assay was fabricated and hybridized with the chain reaction method to detect miR-122 in
liver and breast cancers [167]. The presence of miR-122 opens hairpin DNA immobilized on
a gold electrode surface and triggers a hybridization chain reaction to generate long double
helixes that capture more [Ru (NH3)6]3+ and increases the differential pulse voltammetry.
The structure and controlling features of this method offer a promising amplification
efficiency and high sensitivity. A self-reductant ECL biosensor was developed to derive
benefits from the hybridization of Ti3C2–MXenes/gold nanoparticle complexes and CD63
aptamer to capture and detect tumor-derived exosomes. This naked catalytic surface
biosensor delivers high sensitivity, excellent conductivity, a large surface area, and the



Biosensors 2021, 11, 518 22 of 37

low detection limit of 30 particles/µL, which is 1000-fold lower than that of ELISA [208].
A ratiometric electrochemical DNA biosensor was also fabricated and modified with
a Y-shaped locked nucleic acid to detect exosome miR-21 derived from breast cancer.
This modification increased the selectivity and accuracy and brought the sensitivity to a
detection limit of 2.3 × 10−15 moles [209].

Human epidermal growth factor receptor (EGFR) and the EGFR variant (v) III muta-
tion (EGFRvIII) are exosomal biomarkers that have been used for the early detection of
fatal brain tumor glioblastoma from circulating blood. In the designed electrochemical
system, (1) a peptide ligand binds to the EGFR and EGFRvIII, (2) Zr4+ from the metal
organic framework/electroactive methylene blue complex binds to the intrinsic phosphate
groups on exosome surfaces, and (3) the exosome concentrations are quantified directly
from the concentration of electroactive molecules on the exosome surfaces. The detection
limit is 7.83 × 103 particles/µL [173].

Applying the strategies of locked nucleic acids, a G-quadruplex, and rolling circle
amplification and using a gold electrode, Xiaoqi and coauthors designed an electrochemical
system to detect exosomal miRNA-21 with a detection limit of 2.75 × 10−15 M. Their
design was comparable to the RT-PCR strategy because of its stability, consistency, and
reproducibility [210].

A dual-signal self-calibrating biosensor for detecting cancer-derived exosomes was
developed from previous electrochemical protocols [211]. The authors designed their
platform using black phosphorus nanosheets associated with a metal–organic framework,
which hybridized with antibody thin films to capture exosome biomarkers. Both the
nanosheets and the framework were assembled on an indium tin oxide slice, which was
attached to a ssDNA aptamer labeled with methylene blue. The redox current of the
methylene blue was reduced in the presence of the desired exosomes. This workstation
offered a low detection limit—100 particles/mL, specificity, and the capability of detecting
multiple biomarkers [211].

Meng and colleagues designed a novel on/off photoelectrochemical biosensor apply-
ing an organic dye (toluidine blue O dye) to detect cancer biomarker miRNA 21. A low
concentration of miRNA 21 (1017–1011 mol/L) could be detected when transformed into
abundant p-type copper sulfide (CuS)-labeled signal tags and combined with TBO@Bi2S3-
ZnS. The photoelectrochemical signals could then be used to detect and quantify miRNA
21 [212].

Electrochemical techniques, which have been the subject of research efforts since 2016,
have many applications and are considered the most promising techniques for exosome
detection and cancer diagnosis, because all the electrochemical techniques are easy to
handle, rely on nontoxic materials, are timesaving, and have high sensitivity with a low
background.

4.2.5. Fluorescence and Colorimetric Techniques

The main differences between fluorescence immunoassays and colorimetric techniques
are the high sensitivity and accuracy of the fluorescence immunoassays [213]. Here,
we focused on the published designs (37 models) using either one of the methods to
detect/quantify cancer-derived exosomes for diagnostic purposes (Figure 9).
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Figure 9. Examples of fluorescence techniques for exosome detection and quantification. The figure
permissions are as follows: (A) license ID 1119684-1, license date 17 May 2021, licensed content
publisher RSC Pub. Licensed content publication of “Screening and multiple detection of cancer
exosomes using an SERS-based method”. Copyright Clearance Center, Inc. (CCC) grants licenses on
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behalf of the rightsholder (Royal Society of Chemistry). (B) License ID 1147245-1, license date
13 September 2021, licensed content publisher Pergamon. Licensed content publication of “A
paper-supported aptasensor based on upconversion luminescence resonance energy transfer for the
accessible determination of exosomes”. Copyright Clearance Center, Inc. (CCC) grants licenses on
behalf of the rightsholder (Royal Society of Chemistry). (C) License ID 1119685-1, license date 17 May
2021, licensed content publisher RSC Pub. Licensed content publication of “A simple fluorescence
aptasensor for gastric cancer exosome detection based on branched rolling circle amplification”.
Copyright Clearance Center, Inc. (CCC) grants licenses on behalf of the rightsholder (Royal Society of
Chemistry). (D) License Number 5071720075356, license date 18 May 2021, licensed content publisher
Elsevier. Licensed content publication of “A simple, specific and “on-off” type MUC1 fluorescence
aptasensor based on exosomes for detection of breast cancer”.

As miRNAs are responsible for regulating gene expression and are protected from
ribonuclease degradation, they are excellent biomarkers for the diagnosis and prognosis
of cancer [195,199,200]. In 2008, Taylor and Gercel-Taylor were able to separate exosomes
derived from ovarian cancer from serum samples by applying a modified magnetically
activated cell sorting technique based on identifying the exosomal EpCAM protein using a
LD microcolumn. The exosomes and beads were separated, and the exosomes were recov-
ered in PBS by ultracentrifugation. The miRNAs were isolated using a mirVanamicroRNA
isolation kit, then labeled with Cy3, hybridized using microarrays, and scanned with an
array scanner. Perfect matches for miR-27a, miR-93, and miR-152 plus two mismatches
for each one was applied. According to Taylor’s procedure, detecting certain miRNAs
(miR-21, miR-141, miR-200a, miR-200c, miR-200b, miR-203, miR-205, and miR-214) are
the key to discriminating between ovarian cancer samples and benign disease or healthy
samples [18].

Ovarian cancer diagnosis research has been extended to screening exosome claudin
proteins, e.g., claudin-4, as biomarkers. In 2009, Li et al. found full-length claudin-4
shed from a plasma culture in a conditioned culture medium following immunoblotting.
They detected it using sucrose gradient separation and immunogold electron microscopy
experiments. The authors presented their procedure as a step for confirming ovarian
cancer detection combined with further analysis [145]. Additionally, in 2009, Logozzi
presented a novel tool for screening for and following-up on melanoma-derived exosomes.
Logozzi invented a home-based sandwich ELISA to capture exosomes CD63 and Rab-5b
and to quantify caveolin-1 from mice plasma samples as follows: (1) isolate exosomes
using ultracentrifugation, (2) coat 96-well plates with anti-Rab-5b, (3) incubate exosomes
overnight inside the functionalized 96-well plates, (4) add anti-CD63 Mab or anticaveolin-1
Mab, and (5) record the density at 450 nm. The results collected from the invented tool were
confirmed using Western blot and flow cytometry. Melanoma samples: n = 0 compared to
healthy cases: n = 58 [178].

By 2015, several research efforts were published. It was found that exosome c-Met
promotes the progression of melanoma [214]. A fast, simple, and sensitive procedure for
capturing, detecting, and quantifying exosomal miRNA-21 from exosomes derived from
breast cancer was reported. Simply by functionalizing molecular beads with streptolysin O
and fluorescent dye Cys3, Lee and his team were able to selectively identify and quantify
miRNA-21 mixed into human serum [20].

Melanoma-derived exosomes inside lymph nodes pulse signals to control cell re-
cruitment, the spread of vascular tissues inside the lymph nodes, and the deposition of
fluids [215]. For the first time, melanoma exosomes were imaged in vitro and within lymph
nodes in vivo, using magnetic resonance imaging to prove those exosomes can be moni-
tored in vivo. The exosomes can be tracked after they are loaded onto superparamagnetic
iron oxide nanoparticles [194].

To report the progression of tumors implanted in mice, microtoroid optical resonators
were applied. The target exosomes were only able to land on a functionalized silica
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microtoroid and change its resonance frequency. This method was label-free, applicable to
a range of exosome sizes, and sensitive [216].

In 2016, Ahadi and coauthors published a dataset identifying the long noncoding
RNA exosomes related to prostate cancer. After testing the exosomes from five cell lines,
they concluded that there was a significant expression difference between the exosomes
and their original cells [217]. They found that miR-17, miR-18a, miR-20a, miR-93, miR-106b,
and thelet-7 were highly expressed in prostate cancer samples. A rapid, one-step, and novel
flow immunoassay strip was invented in 2016 for capturing CD9 and CD81, detecting
CD63 labeled with nano-Au, and quantifying exosomes derived from melanoma cancer in
plasma and urine samples based on the use of tetraspanins as targets [179]. In addition,
Kibria et al. (2016) were able to distinguish a single circulating exosome biomarker in
human cell lines and blood samples using a microflow cytometer. This captured exosome,
CD63, then applied fast staining and automated counting steps. They were also able to
compare the expression of CD44 and CD47 between breast cancer and healthy samples [6].
miR 182, which is dose-independent in breast cancer, was detected in both the cell culture
supernatant and fresh serum. Higginbotham and coauthors developed a fluorescence-
activated vesicle-sorting platform for detecting and sorting individual exosomes from cell
lines based on specific exosome-surface biomarkers. Their protocol is based on (1) sequen-
tial ultracentrifugation to isolate exosomes, (2) the capturing and labeling of exosomes
using labeled fluorescent antibodies, and (3) the detection of individual exosomes using a
commercial flow cytometer. They were able to detect EGFR and CD9 as biomarkers for
human colorectal cancer and recognized the activation state of EGFR using monoclonal
antibody 806 [218]. A capillary electrophoresis/mass spectrometry method was applied
to isolate and analyze iso-miR-16-5p and miR-21-5p in serum samples from leukemia
patients [114].

In 2017, for the first time, carcinoembryonic antigen was detected and quantified in
colorectal cancer-derived exosomes in serum. At Wakayama Medical University Hospital,
116 patients were tested through one year using an ELISA protocol, and the protocol
was optimized [219]. In the same year, single-stranded DNA was found to improve the
peroxidase activity of g–C3N4 nanosheets, yielding a four-fold increase in the colorimetric
analysis of exosomal CD63 in breast cancer cells. The reason for this was the electrostatic
attraction and aromatic stacking between the DNA and the nanosheets [220]. An on-off
aptamer was designed to detect MUC1 on breast cancer-derived exosomes. The aptasensor
had two ends, one representing TAMRA (luminophore) and the other representing Dabcyl
(quenching group). In the presence of exosomes, the aptasensor was locked, and MUCI
was recognized by the aptasensor, which turned on and emitted fluorescence signals. This
protocol offers applicability, sensitivity, and specificity [107].

Three microchip and electrochemical technologies allowing the detection of exosomes
with the naked eye were mentioned above [190,193,208]. Other published platforms allow-
ing detection with the naked eye applied calorimetric and fluorescence technologies. The
first one was designed by Reference [151]. The mechanism was based on substituting the
aptamer/Au nanoparticle complex with aptamer/exosome surface proteins and releasing
Au nanoparticles, which aggregate in the ultra-salty solution and change the solution
color [151]. Additionally, Zhang and his team initiated a novel protocol for virtually rec-
ognizing cancer-derived exosomes. Their protocol was based on the following steps: (1)
capture exosomes through binding with anti-CD63 on a magnetic bead aptamer, and (2)
immediately insert a modified DNA probe into the exosome membrane to trigger the
hybridization chain reaction, transduce the signal, and amplify the signal through alkaline
phosphatase. As a result, silver ions are reduced by ascorbic acid and form a shell around
gold nanoparticles, causing a vivid color change. This protocol offered limits of detection
of 1.6 × 102 particles/µL with UV−Visible spectroscopy and 9 × 103 particles/µL with the
naked eye [221]. The imaging protocol recently designed by Zhou [156] targets simplicity,
rapidity, and low cost and can identify exosomes derived from breast cancer. This protocol,
like the previous protocol published by Reference [107], is aimed at creating an on–off
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switch with a low limit of detection, 3.9 × 105 particles/mL. The two ends of the aptasen-
sor represent MUC1 aptamer as a luminophore and mimicking DNAzyme in a hairpin
structure as a quenching group. If there are exosomes, they bind to the MUC1 aptamer;
then, the DNA hairpin unfolds and triggers the conformation of G-quadruplex–DNAzyme.
As a result, a clear blue color originates from the reduction of hydrogen peroxide [156].

Efforts have been made to fabricate a self-referenceable platform specifically for detect-
ing and quantifying cancer-derived exosomal biomarker CD63. Researchers constructed a
Cy3–anti-CD63 aptamer that adsorbed on Ti3C2 MXene nanosheets via metal interactions
and hydrogen bonds. In the presence of the desired exosomes, the aptamer highly bonded
with exosome CD63 released from the nanosheet surface and produced fluorescence signals
that were referenced through the fluorescence resonance energy transfer nanoprobe. This
self-referenced platform can be applied to detect several biomarkers at once, and it offers a
limited range of detection, 1000-fold lower than that of ELISA [222]. Since the expression
profiles of exosomal miRNA make them potential candidates for cancer diagnosis, Zhai
and coauthors developed a 4-h detection and quantification protocol for detecting miR-
1246 and identifying breast cancer samples in plasma. They constructed a functionalized
Au nanoflare probe with nucleic acids that were able to enter the exosomal plasma and
generate fluorescence signals. This in situ detection protocol is (1) inexpensive, (2) fast,
(3) simple, and (4) specific [24]. Another miRNA was investigated as a biomarker for
ductal carcinoma, which is sometimes a result of breast cancer. Yoshikawa investigated
miR-223-3p as a biomarker for diagnosing ductal carcinoma in 185 plasma samples using a
miRNA microarray and TaqMan miR assays [177]. Both CD63 and nucleolin were used
as targets to capture exosomes derived from leukemia cells using anti-CD63 antibody
conjugated with magnetic beads. After that, a DNA primer–nucleolin–recognition aptamer
bound the exosomes, initiating the amplification reaction and generating gold nanopar-
ticle/DNA/fluorescent dye complexes. Through the help of nicking endonuclease, the
fluorescent dye was released, emission started, and signals accumulated [142]. This dual
fluorescence platform provides sensitivity for sample concentrations as low as 1 × 102

particles/µL. Another fluorescent biosensor for detecting miRNA-21 was fabricated by
Reference [148]. This biosensor couples the target-catalyzing signal amplification with
DNA-labeled carbon dots and a 5,7-dinitro-2-sulfo-acridone probe to reach high fluores-
cence resonance energy transfer when the probe is assembled. This ratiometric biosensor
is (1) sensitive, with the low detection limit of 3 × 10−15 M, (2) stable, (3) capable of re-
moving environmental fluctuations, (4) selective of a single base mismatch sequence, (5)
cost-effective, and (6) usable for monitoring purposes [148].

In 2019, a direct method for exosomal DNA detection was published. When exosomes
were captured on the CD63 aptamer surface, the DNA probe initiated a hairpin DNA
cascade reaction, and the open DNA hairpin bound to gold nanoparticles. The signals
of the labeled DNA dendrimers were recorded. The limit of detection was 1.16 × 103

particles/µL [223].
Another way to overcome the disadvantages of exosomal miRNA detection for early

cancer diagnosis and monitoring is to combine the detection of the miRNA pool with
surface proteins to reflect the tumor heterogeneity. Cho and coworkers (2019) found that
miR-21, miR-574-3p, EpCAM, and epidermal growth factor receptor (EGFR) were more
highly expressed in exosomal cancer-derived cells than in noncancer cells. Exosomes
derived from a prostate cancer biopsy were first isolated using anti-CD63 antibody. Then
their miR-21, miR-574-3p, and EpCAM surface proteins were simultaneously detected and
quantified in a single step using CD63/antibody/nanomolecular beacon/oligonucleotide
probes at 37 ◦C for 60 min after normalization [19]. This multitarget detection method is
(1) simple, (2) inexpensive, and (3) labor-saving. Like Cho, Shi proposed a protocol using
magnetic beads, antibodies, and aptamer hybridized with chain reaction probes to detect
exosomes derived from hepatic carcinoma at a limiting rate of 100 particles/mL. Three
types of antibodies were used: prostate-specific antigen, D-dimer, and anti-CD63. This
protocol requires the pretreatment of exosomes before manipulation [224].
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Turning their attention from the miRNA biomarkers to other RNAs to use as biomark-
ers, researchers in Japan investigated the possibility of relating the expression of four
mRNAs and five small nucleolar RNAs for the early diagnosis of pancreatic cancer. They
found that the mRNAs (ARF6 and WASF2) and snRNAs (SNORA25 and SNORA74A) were
highly expressed in patient samples and could be used as biomarkers [170].

Another on/off detector has been designed in which an afterglow semiconducting
polyelectrolyte switches between the on and off modes according to the presence of target
exosomes [225]. Different exosome proteins can be detected using different aptamer se-
quences. This design offers a detection limit that is twice as low as that of other fluorescence
detection methods.

Recently, the Huang research group developed an assay specifically for detecting
exosomes derived from gastric cancer. The desired exosomes bind to the aptamer, and
branched rolling circle amplification is triggered when a second primer is added. SYBR
Green I fluorescent dye is used to detect long, double-stranded DNA. This assay possesses
throughput specificity, a detection limit of 4.27 × 104 particles/mL, and a probability of an
early diagnosis of gastric cancer [226].

A new colorimetric method for detecting exosomes derived from colorectal cancer
patients (n = 16) and comparing them to healthy ones (n = 9) was invented by Huang et al.
2020. Their detection method was based on the enzymatic activity of deoxynucleotidyl
transferase. Two probes were selected: anti-A33 as a capture probe and the EpCAM ap-
tamer/Au/primer complex as a signal probe. After capturing exosomes, deoxynucleotidyl
transferase helps the signal probe to reach the biotin adenine chains and bind them to
avidin-modified horseradish peroxidase for the hydrogen peroxide-mediated oxidation of
3,3′,5,5′-tetramethyl benzidine in an enzyme-linked aptamer-sorbent assay (ELASA). The
results showed high sensitivity, with the method detecting 1.95 × 106 particles/µL. This
platform also provides flexibility; the probes can be changed to detect different biomark-
ers [108]. In a new sandwich-type biosensor developed for cancer diagnosis, functionalized
magnetic beads with anti-CD63, anti-EpCAM, and horseradish peroxidase catalysis were
applied. After capturing the exosomes with anti-CD63, anti-EpCAM captured the exo-
somes derived from hepatic cancer. At this point, the oxidation–reduction reaction was
triggered, and the fluorescent spectra at 370–550 nm were detected with a detection limit
of 200 particles/mL [227].

A magnet-based immunoassay for characterizing and quantifying general and specific
biomarkers for breast cancer patients was presented recently [155]. The exosomes were
preconcentrated using anti-CD9, CD63, and CD-81-functionalized magnetic beads, then
labeled with a second antibody for detecting CD24, CD44, CD54, CD326, and CD340.
The second group of antibodies was conjugated with ELISA to quantify the signals. The
detection limit of this procedure was 105 particles/µL, and there was no need for pretreat-
ments [155]. Immuno-translating exosomal proteins helps us to determine their structure
and physiological roles. An immunosensor was developed to exploit CD63 on exosome
surfaces. First, the desired exosomes are isolated using a size-exclusion chromatography.
Then, the desired exosomes are detected using an anti-CD63-functionalized quartz crystal
microbalance with dissipation monitoring. The detection limit of this technique (2.9 × 108

particles/mL) is much higher than those of other techniques [228].
Xia and coauthors developed a cactus-like biosensor in which anti-CD63 mimicked

the roots, captured exosomes mimicked the stem, and modified streptavidin/horseradish
peroxidase/cholesterol-labeled DNA mimicked the thorns when inserted into an exosome
membrane. The signals were generated from fluorescein because of the catalyzed oxidation
of 1,4-phenylenediamine. This biosensor is comparable to known methods, because it is
sensitive with no interference from proteins, has a detection limit of ~3 × 103 particles/µL,
and quantitatively measures the exosome extraction [229]. An advanced all-in-one biosen-
sor was fabricated to simultaneously detect multiple biomarkers derived from breast cancer
(miR-21, miR-27a, and miR-375) based on competitive strand displacement. This biosensor
has three Y-type scaffold oligonucleotides, each of which has ss-recognition sequences
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associated with three quenchers and three labeled reporters conjugated with fluorophores
FAM, Cy3, and Cy5. The protocol for this biosensor is based on intra-communication
between the biosensor and the exosomes: the oligonucleotides complementarily hybridize
with miRNA inside exosomes and release the reporter to activate the fluorescent signals.
The limit of detection for this biosensor was found to vary according to the target miRNA
and ranges from 0.116 to 0.287 µg/mL. This biosensor could be a routine bioassay for
clinical purposes [166].

Fluorescence immunoassays and colorimetric techniques for detecting/quantifying
cancer-derived exosomes are highly sensitive and easy to manipulate and have been
upgraded to allow detection with the naked eye, which makes them fast and accurate to
follow.

Many published research efforts have indicated the suitability of methods charac-
terizing and detecting exosomes for procedures for monitoring cancer biogenesis. These
methods include surface plasmonic biosensors; microchips; specific Raman scattering; and
electrochemical, fluorescence, and colorimetric techniques. In addition, these methods can
be used in applications that provide results that can be seen with the naked eye.

5. Conclusions and Future Prospects

Exosomes have been investigated as (1) disease biomarkers, (2) therapeutic agents,
(3) activation motors, and (4) diagnostic tools. Exosomes are considered promising candi-
dates for human disease and therapeutics biomarkers because they are easy to circulate
through the blood, represent their parent cells, and are stable. Further exosome research
is needed because of their heterogeneity and purification requirements and the need to
attain supersensitive molecular profiling for individual exosomes with sizes of 30–50
nm [6,163,230].

Exosomes as disease-monitoring nanovesicles have been applied as rate-dependent
biomarkers of disease stages [231]. We expect and suggest testing the informative role of
exosomes as tools to predict the development of cancer diseases like Alzheimer’s disease.
Certain exosome biomarkers (P-S396-tau, P-T181-tau, and Ab1–42) found to predict the
development of Alzheimer’s disease up to 10 years in advance [232].

For another prospect, using exosomes to activate cells such as sperm [233] could
be a start towards investigating the possibility of using exosomes as engines to activate
immune-defense cells (T cells) and protect cells from cancer diseases. The future prospects
for exosome research include, besides investigating exosomes for defense and prediction
purposes, investigating the roles of exosomes derived from microorganisms such as bacteria
and algae, as these organisms naturally produce multiple bioactive compounds.
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