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Abstract: Considering the vital physiological functions of dopamine (DA) and uric acid (UA) and
their coexistence in the biological matrix, the development of biosensing techniques for their si-
multaneous and sensitive detection is highly desirable for diagnostic and analytical applications.
Therefore, Ti3C2Tx/rGO heterostructure with a double-deck layer was fabricated through electro-
chemical reduction. The rGO was modified on a porous Ti3C2Tx electrode as the biosensor for the
detection of DA and UA simultaneously. Debye length was regulated by the alteration of rGO mass
on the surface of the Ti3C2Tx electrode. Debye length decreased with respect to the rGO electrode
modified with further rGO mass, indicating that fewer DA molecules were capable of surpassing
the equilibrium double layer and reaching the surface of rGO to achieve the voltammetric response
of DA. Thus, the proposed Ti3C2Tx/rGO sensor presented an excellent performance in detecting
DA and UA with a wide linear range of 0.1–100 µM and 1–1000 µM and a low detection limit of
9.5 nM and 0.3 µM, respectively. Additionally, the proposed Ti3C2Tx/rGO electrode displayed good
repeatability, selectivity, and proved to be available for real sample analysis.

Keywords: reduced graphene oxide; Ti3C2Tx; dopamine; uric acid; double deck

1. Introduction

Dopamine (DA) is a catecholamine neurotransmitter in the central nervous system
which contributes to various physiological functions, including memory, stimulus-response,
motion control and vasodilation. [1,2]. The abnormality of DA is clinically related to several
neurological disorders, such as senile dementia, Parkinson’s disease, and schizophrenia [3].
Uric acid (UA) is the major end product of purine metabolism, and an excess of UA levels
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may lead to serious chronic and metabolic diseases, such as gouty, hyperuricemia and
kidney injury [4,5]. Considering the vital physiological functions of DA and UA and their
coexistence in the biological matrix, the development of biosensing techniques for their
simultaneous detection with high sensitivity is desirable for diagnostic and analytical
applications [6,7].

Conventional analytical methods for the simultaneous detection of DA and UA, such
as high-performance liquid chromatography (HPLC), chemiluminescene, and capillary
electrophoresis, have been under development for decades [8–10]. As DA and UA are
electrochemically active compounds, the electrochemical method has been adopted for the
detection of these biomolecules with high sensitivity, simplicity and time efficiency [11–13].
However, the oxidation peak positions of these biomolecules are almost the same and
difficult to distinguish effectively when using conventional electrodes such as glassy carbon
electrodes (GCE) [14]. By using various nanomaterials modified on GCE chemically, the
peak resolutions of these biomolecules have been much improved [15]. Therefore, this
method has been widely adopted for the recognition of DA and UA simultaneously [16,17].

Among them, graphene has received extensive attention, due to its high surface-to-
volume ratio, good electrical conductivity and high carrier mobility [18–22]. Kim et al.
proposed a graphene-modified electrode for the selective detection of DA with a linear
range of 4.0–100.0 µM and a detection limit of 2.6 µM [23]. Qi et al. constructed an
electrochemical sensor based on pristine graphene to detect DA and UA, achieving a
linear range of 5.0–710 µM and 6.0–1330 µM and a detection limit of 2.0 and 4.8 µM,
respectively [24]. Gao et al. fabricated a graphene oxide (GO)-modified GCE with the
covalent coupling method, indicating a good performance in sensing DA with a detection
range of 1.0–15.0 µM and a detection limit of 0.27 µM [25]. However, since DA in human
blood is usually low as 0.01–1 µM, the sensitivity of graphene-modified electrodes needs
to be further improved [26]. Conventionally, using a graphene hybrid with metal (Au,
Pt, Ag) nanoparticles (NPs) or carbon nanomaterial (as carbon nanotubes (CNTs)) is a
common approach to increase the electrochemical activity of a modified electrode. Wang
et al. synthesized novel Au NPs and reduced the graphene oxide (rGO) composite film by
electrodepositing AuNPs onto the rGO surface, showing good performance in its ability
to detect DA and UA with a linear range of 6.8–41.0 µM, 8.8–53.0 µM and a low detection
limit of 1.4, 1.8 µM, respectively [27]. Sun et al. demonstrated a novel sensor based
on graphene and Pt NPs nanocomposite by self-assembling Pt NPs onto the graphene
surface, indicating its excellent performance in detecting DA and UA with a linear range
of 0.03–8.13 µM, 0.05–11.9 µM and a low detection limit of 0.03, 0.05 µM, respectively [28].
Sun et al. developed a sensor based on CNTs and GO nanocomposite, exhibiting its
performance in detecting DA and UA with a linear range of 5.0–500 µM, 3.0–60.0 µM and a
low detection limit of 1.5, 1.0 µM, respectively [29].

Compared to the electrode modified by graphene, the detection performance of the
electrode modified by graphene-based nanocomposite is improved, but it still needs to be
further promoted. The interfacial binding strength of graphene-based nanocomposite and
electrode may not be high either. To overcome this problem, a new and promising 2D nano-
material with a 2D-layered structure, MXene, especially titanium carbide MXene (Ti3C2Tx),
has been extensively applied as a material with a high number of electric electrodes for bat-
teries, supercapacitors and electrochemical detection [30–33]. Due to its excellent metallicity,
electrical conductivities, hydrophilic surfaces, and environmental-friendly characteristics,
Ti3C2Tx has been employed for the electrochemical detection of biomolecules, H2O2, and
heavy metal ions [34–36]. Murugan et al. proposed a Ti3C2Tx-modified electrode, which
exhibited good performance in determining DA and UA and obtained a low detection
limit of 0.06 and 0.08 µM, respectively [37]. These successful applications of Ti3C2Tx in the
electrochemical detection prove that Ti3C2Tx is an ideal conductive matrix and improves
electron transfer kinetic effectively. Particularly, the Ti-O-C covalent bonding is formed at
the Ti3C2Tx/rGO heterointerface via nucleophilic substitution dehydration reaction, and
charge transport through the heterointerface is increased [38]. Therefore, the interfacial
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binding strength of Ti3C2Tx/rGO heterointerface increases, resulting in an excellent elec-
trochemical performance in detecting biomolecules. The Debye screening length, λD, is
defined as the effective thickness of the equilibrium double layer (EDL) [39]. The detection
limit of biosensors is determined by λD between the surface of sensitive nanomaterials and
the electrolyte [40]. Thus, λD can be altered effectively to obtain the low detection limit of
biosensors based on the Ti3C2Tx/rGO heterostructure.

In this work, we attempted to construct Ti3C2Tx/rGO heterostructure with double-
deck layer through electrochemical reduction. The rGO was modified on porous Ti3C2Tx
electrode as the biosensor for the detection of DA and UA simultaneously. The Debye
length was regulated by the alteration of rGO on the surface of Ti3C2Tx electrode. As
evidenced by the differential pulse voltammetry (DPV) test, this proposed Ti3C2Tx/rGO
sensor exhibited an excellent performance in detecting DA and UA with a linear range of
0.1–100 µM and 1–1000 µM and a low detection limit of 0.0095 and 0.3 µM, respectively.
Additionally, the proposed biosensor indicated good repeatability, selectivity, and potential
for real sample analysis.

2. Materials and Methods
2.1. Chemicals

Potassium chloride (KCl), sodium chloride (NaCl), sodium sulphate (Na2SO4), dibasic
sodium phosphate (Na2HPO4), potassium dihydrogen phosphate (KH2PO4), and Uric
acid (UA) were purchased from Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China).
Dopamine (DA) was purchased from Shanghai Aladdin Biochemical Technology Co., Ltd.
(Shanghai, China). All of the above chemical reagents were analytical reagents and were
used without further purification. GO powder and rGO water dispersion were purchased
from Nanjing JCNANO Technology Co., Ltd. (Nanjing, China). Ti3C2Tx water dispersion
was purchased from Beike 2D materials Co., Ltd. (Suzhou, China). Deionized Milli-Q
water (18.2 MΩ/cm) was used throughout the experiments.

2.2. Fabrication of Ti3C2Tx/rGO Electrodes

The Ti3C2Tx water dispersion and GO water dispersion were dispersed ultrasonically
for 1 h in an ice bath. Before modification, GCE electrodes with a diameter of 3 mm were
polished using a 0.05 µm alumina slurry and cleaned in deionized water and ethanol by
ultrasonication. Following that, GCE was activated via repetitive potential range scanning
from −1–1 V with a scan rate of 0.1 V/s in 0.5 M H2SO4. The Ti3C2Tx dispersion was
uniformly dropped onto the surface of the GCE and dried, followed by GO dispersion in
the same way (Ti3C2Tx/GO electrode). The Ti3C2Tx/rGO-modified GCE was obtained
through the electrochemical reduction method of immersing Ti3C2Tx/GO into PBS with
cyclic voltammetry (CV) sweeping in the potential range of 0.0–1.4 V at a scan rate of
0.1 V/s for 5 cycles, which was defined as the experimental group (Ti3C2Tx/rGO electrode).
As shown in Figure S1 (see Supplementary Materials), a large reduction peak was observed
at the potential peak position of −1.23 V in the first cycle, and vanished subsequently,
which referred to the electrochemical reduction process of GO to rGO. As controls, Ti3C2Tx-
modified GCE (Ti3C2Tx electrode) and rGO modified-GCEs (rGO electrode) were also
prepared using the same method.

2.3. Characterizations

Field emission scanning electron microscope (FE-SEM QUANTA 250 FEG, FEI, Hills-
boro, OR, USA) and energy dispersive spectroscopy (EDS)-mapping were applied to
observe the morphology of the nanomaterials, including CNTs and AgNWs, separately,
and the composite material. The surface compositions and chemical states were carried
out by Raman spectroscopy (Renishaw in Via Reflex, Renishaw plc, Wotton-under-Edge,
London, UK) with a laser wavelength of 532 nm and X-ray photoelectron spectroscopy
(XPS, Axis Ultra DLD, Kratos Analytical, Manchester, UK), respectively. All electrochemi-
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cal experiments were conducted with a CHI660e electrochemical workstation (Shanghai
Chenhua Co., Ltd., Shanghai, China).

2.4. Electrochemical Tests

The electrolyte was a phosphate buffer solution (PBS) which contained 137 mM
NaCl, 102.7 mM KCl, 8.1 mM Na2HPO4, and 1.8 mM KH2PO4 (pH ≈ 7.4). The bare
GCE, Ti3C2Tx, rGO, and Ti3C2Tx/rGO were applied as working electrodes, which were
separately immersed into PBS containing different DA concentrations, from 9.5 nM to
100 µM, and different UA concentrations, from 0.3 µM to 1000 µM, respectively, to compare
their electrochemical performances. A saturated calomel electrode (SCE, Pt Hg(l)|Hg2Cl2
(s)|KCl (saturated)) and a Pt electrode were applied as a reference electrode and counter
electrode, respectively. CV, DPV, and electrochemical impedance spectroscopy (EIS) tests
were conducted to analyze the electrochemical behavior of different concentrations of DA
and UA on the GCE modified with various materials. CV curves (five cycles) were recorded
from 0 to 0.5 V with scan rate of 0.1 V/s, while DPV tests were conducted from −0.2 to
0.5 V with an increment step of 4 mV, amplitude of 50 mV, and pulse period of 0.5 s. EIS
was performed in 0.1 to 100 KHz on various modified electrodes with 10 mV amplitude of
the AC voltage.

3. Results and Discussion
3.1. Characterization of Ti3C2Tx/rGO Nanocomposite

The schematic diagram of the simultaneous electrochemical detection procedures of
DA and UA on Ti3C2Tx/rGO electrode is displayed in Figure 1a. The uniform Ti3C2Tx and
GO water dispersion were prepared through ultrasonication. GO dispersion was dropped
and dried on the Ti3C2Tx electrode to form a Ti3C2Tx/GO electrode with a double-deck
structure, and an electrochemical reduction process was applied using CV sweeping to
obtain a Ti3C2Tx/rGO electrode for DA and UA detection. Based on previous studies
(Figure 1b) [41], a pair of reversible peaks (Ox1, Re1) can be interpreted as the two-electron
oxidation of DA to o-dopaminoquinone. Meanwhile, a pair of reversible peaks (Ox2, Re2)
originated from the transformation of UA to dehydrourate. Specifically, oxidation peaks
Ox1, Ox2 at 0.185 V and 0.316 V were chosen as the characteristic peaks for quantitative
analysis of the electrochemical behavior of DA and UA, respectively.
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According to the morphologies of Ti3C2Tx shown in Figure 2a, Ti3C2Tx was well
distributed on the surface of GCE, and a porous electrode with good electrical conductivity
was formed. Figure 2b is an enlarged view of Figure 2a, and the corresponding EDS
mapping of C, Ti, F, and O are shown. The results indicate the two-dimensional layered
sheet-like structures of Ti3C2Tx with good flatness. Figure 2c displays the morphologies of
Ti3C2Tx/rGO, exhibiting the rough surface of rGO with random wrinkles and the layered
structures of Ti3C2Tx. Figure 2d is an enlarged view of Figure 2c, and the corresponding
EDS mapping of C, Ti, F, and O are shown. The morphology revealed the recovery of rGO
film to the surface of Ti3C2Tx.
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and the EDS mapping of element distribution of C, Ti, F, O, respectively. (e) Raman spectra of Ti3C2Tx, rGO, and
Ti3C2Tx/rGO nanocomposite. (f) XPS survey spectra of Ti3C2Tx/rGO, and Ti 2p spectra (g), C 1s spectra (h), O 1s spectra
(i) spectra, respectively.

The Raman spectra of rGO, Ti3C2Tx and Ti3C2Tx/rGO are shown in Figure 2e. Three
main peaks of rGO, namely the D band (~1350 cm−1), G band (~1580 cm−1), and 2D band
(~2700 cm−1), correspond to random vibration of amorphous carbon (sp3 hybrid carbon)
and in-plane vibration of graphitic carbon (sp2 hybrid carbon) [42]. The peak positions of
Ti3C2Tx at 199 and 719 cm−1 are assigned to the out-of-plane vibrations of Ti and C atoms.
The modes at 287, 369, and 624 cm−1 are the Eg group vibrations, including in-plane modes
of Ti and C, and surface functional group atoms [43]. The peak positions of Ti3C2Tx/rGO
are located at 205, 287, 369, 624, 723, 1350, 1580, and 2700 cm−1, verifying the existence of
both Ti3C2Tx and rGO in the composite. From the full XPS survey spectra of Ti3C2Tx/rGO,
F 1s, Ti 2s, O 1s and Ti 2p, C 1s appear at the binding energy of 684.8, 536.6, 496.9, 462.8
and 287.7 eV, respectively, as shown in Figure 2f, confirming the presence of four elements
in the composite [44]. As depicted in Figure 2g, the Ti 2p narrow spectra of Ti3C2Tx/rGO
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are divided into two parts: Ti 2p3/2 and Ti 2p1/2. Ti 2p3/2 spectra can be segmented into
four components, which are located at 454.9 eV (Ti-C), 455.4 eV (Ti(II)), 456.3 eV (Ti(III)),
and 458.8 eV (TiO2). The Ti 2p1/2 spectra can be fitted into three components, which are
located at 461.1 eV (Ti-C), 462.1 eV (Ti(II)), and 462.6 eV (Ti(III)). Next, C 1s’ XPS curve can
be fitted into five components (Figure 2h), which correspond to 284.8 eV (C-C), 281.6 eV
(C-Ti), 282.4 eV (C-Ti-O), 287.5 eV (C=O), and 288.6 eV (O-C=O) [45]. Notably, the peak
of C=O and O-C=O are ascribed to the introduction of rGO and the closed interaction
between Ti3C2Tx and rGO [46]. The O 1s spectrum of Ti3C2Tx/rGO is well fitted into
two components (Figure 2i), which are centered at 531.8 eV (C-Ti-OH) and 529.6 eV (Ti-
O-Ti). Therein, the oxygen-containing functional termination groups of Ti3C2Tx/rGO
were confirmed by the presence of C-Ti-OH bond [47]. The XPS consequence verifies the
formation of Ti3C2Tx/rGO heterostructure and is consistent with the previous results.

3.2. Electrochemical Collaboration Behavior of Ti3C2Tx/rGO towards DA

To investigate the electrochemcial response of Ti3C2Tx/rGO towards DA and UA,
CV scanning was performed on the Ti3C2Tx/rGO electrode in PBS with 10 µM DA and
10 µM UA. As shown in Figure 3a, compared with the CV curve from blank PBS, there
is an oxidation peak and a reduction peak in the CV curve of DA (Re1, Ox1), and UA
(Re2, Ox2) [41]. Among them, Ox1 and Ox2 were specified as the characteristic peaks
for qualitative and quantitative analysis of the electrochemical behavior of DA and UA,
respectively. As shown in Figure 3b,c, DPV curves of electrochemical behaviors at a
potential interval of 0.0–0.5 V were conducted in the presence of 10 µM DA on bare
GCE, Ti3C2Tx, rGO, and Ti3C2Tx/rGO electrodes. The current intensity of the Ti3C2Tx
electrode exhibited higher than GCE, indicating that the porous Ti3C2Tx electrode with
good electrical conductivity promoted the electron transfer of DA oxidation. Compared to
the Ti3C2Tx electrode, the current intensity of the rGO electrode improved by nearly double,
demonstrating the much better electrochemical performance of rGO than Ti3C2Tx towards
DA. Furthermore, the Ox1 current intensity of Ti3C2Tx/rGO electrode was much higher
than the sum of rGO and Ti3C2Tx, owing to the synergistic effect of the huge specific surface
area of rGO and the porous Ti3C2Tx electrode with good electrical conductivity. To assess
the electrochemcial feasibility of various modified electrodes in 10 mM [Fe(CN)6]3−/4−, EIS
was performed on bare GCE, Ti3C2Tx, and Ti3C2Tx/rGO electrodes with 10 mV amplitude
of the AC voltage, as shown in Figure 3d. The semicircle diameter at higher frequencies
in the Nyquist diagram indicates the interfacial electron transfer resistance (Rct), which
controls the electron transfer of [Fe(CN)6]3−/4− on the electrode surface [48]. The Rct
values of GCE, Ti3C2Tx, and Ti3C2Tx/rGO electrodes were 1036.0, 628.8, and 369.6 Ω,
respectively. The result reveals that the Ti3C2Tx/rGO electrode greatly facilitates the
electron transfer of the DA electrochemical reaction, which agrees with the former results.
Rs, Rp, Qcoat, and Qsub represent the solution resistance, pore resistance, coating constant
phase, and double-layer constant phase, respectively, and the corresponding values are
listed in Table S1.

To further investigate the synergistic effect of the Ti3C2Tx/rGO nanocomposite, GO
and Nafion were taken as the coating layer hybrid with Ti3C2Tx and rGO as the coating
layer hybridize with the Au electrode instead of the Ti3C2Tx electrode, in comparison with
the Ti3C2Tx/rGO nanocomposite modified electrode. As shown in Figure 3e,f, the current
intensity on the Ti3C2Tx/Nafion electrode was lower than that of the Ti3C2Tx electrode.
This indicates that Nafion as an electric material is not suitable for hybridizing with Ti3C2Tx
to DA electrochemical reaction. The current intensity of the Ti3C2Tx/rGO electrode was
higher than of the Ti3C2Tx/GO electrode, indicating that less oxygen-containing groups
of rGO with better electrical conductivity exhibited greater facilitation of electron transfer
reaction of DA. Interestingly, the current intensity of Au electrode/rGO electrode was
lower than that of the Ti3C2Tx/rGO electrode, demonstrating the advantage of the porous
Ti3C2Tx electrode to the smooth Au electrode towards DA electrochemical reaction, as
displayed in Figure S2. To further reveal the superior electrochemical performance of
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rGO to Ti3C2Tx, a comparison experiment of DA adsorption performance was conducted
between Ti3C2Tx and rGO water dispersions, as shown in Figure 3g. Ti3C2Tx and rGO
water dispersions containing 100 µM DA were prepared with sonification. After filtration
by 0.22 µM membrane, the filtrates of Ti3C2Tx and rGO dispersions both became much
more transparent, and the colors of both film membranes were much darker. The result
demonstrates that nanomaterials such as Ti3C2Tx and rGO adsorption DA were mostly
trapped on the membrane. Then, the DPV curves of electrochemical behaviors at a potential
interval of 0.0–0.35 V were conducted on the Ti3C2Tx/rGO electrode in electrolytes using
original DA solutions, filtrates of the Ti3C2Tx, and rGO dispersions containing 300 µM
DA, respectively, as shown in Figure 3h. The adsorption consequence revealed that the
DA adsorption performance of rGO was greater than that of Ti3C2Tx. This may be due to
the electrostatic interaction between positively charged DA (pKa = 8.87) and negatively
charged rGO with oxygen-containing groups at pH 7.0, as well as the π–π interaction
between the phenyl structure of DA and two-dimensional planar hexagonal carbon–carbon
structure of graphene, rather than the electrostatic interaction between DA and negative
Ti3C2Tx only [49].
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3.3. Ti3C2Tx/rGO Electrode Performance Optimization of DA Detection

To further improve the electrochemical performance of the proposed sensor, ex-
perimental parameters including the preparation of modified electrodes, electrolyte pH
were optimized. To affirm the influence of the preparation of layer-by-layer structured
Ti3C2Tx/rGO electrode on the DPV response in PBS with 100 nM DA, various rGO masses
including 0.03, 0.075, 0.15, 0.3, 0.75, and 1.5 µg were formed on the same Ti3C2Tx electrode
cast on 6.0 µg. As shown in Figure 4a, the background current of the DA detection peak
in 0.124 V greatly increased with the rising mass of rGO, and the DA oxidation peak was
obviously observed only when rGO mass adjusted to 0.075 µg in the fabrication of the
Ti3C2Tx/rGO electrode. The results reveal that the rising mass of rGO was not suitable for
the nM concentration level of effective DA detection, and rGO mass was chosen as 0.075 µg.
Similarly, to confirm the suitable mass of Ti3C2Tx in the fabrication of Ti3C2Tx/rGO elec-
trode, various Ti3C2Tx masses of 0.6, 1.5, 3, 6, 12, and 30 µg were firstly cast on GCE, and
0.075 µg GO was then dropped on and dried to perform the CV method of electrochemical
reduction. The DPV response in PBS with 10 µM DA was then performed, as shown in
Figure 4b,c. The Ti3C2Tx mass was selected as 3 µg, and the corresponding optimal mass
ratio of Ti3C2Tx to rGO was 40:1.

To better determine if the mechanism of a lower rGO mass is suitable for trace level DA
detection, CV and DPV curves at a potential interval of 0.0–0.5 V were performed in PBS on
an rGO electrode cast with masses of 0.15 µg, 0.6 µg, and 3.0 µg respectively, as shown in
Figure 4d,e. The capacitance can be calculated by CV methods with the following formula:

C =
∫ V0+∆V

V0 i dV
S·∆V , wherein, S refers to scan rate; ∆V refers to potential scan range; and i refers

to current. The area Ac of the CV curves determines the value of capacitance, when S and
∆V remain consistent. Obviously, the results reveal that the total capacitance formed on
the rGO electrode and the background current both increased with the rising rGO mass.
The structure of the EDL at the junction of a metal with an electrolyte solution conceives
the layer to have two elements, known as “Helmholtz layer, and diffuse layer” [50]. The
two elements interpret the existence of a capacitance Cd of electrical double layer to be
close to the solid/electrolyte interface, the Helmholtz capacitance CH, and diffuse layer
capacitance CD, wherein Cd

−1 = CH
−1 + CD

−1 [51]. The thickness of the diffuse layer gives
the distance from the solution up to the point where the electrostatic effect of the surface
is felt by the ions [40]. According to the schematic diagram in Figure 4f,g, when the rGO
mass modified on GCE increased, the total capacitance Cd increased, and the diffuse layer
capacitance CD increased. Thus, λD decreased with respect to the rGO electrode modified
with greater rGO mass, indicating that fewer DA biomolecules were capable of passing
through EDL and reaching the surface of GO to achieve the voltammetric response of DA.
The increasing mass of GO decreased λD, suggesting that the detection limit of DA was
raised to a higher level, and the result is consistent with Figure 4a.

The effect of pH on the electrochemical response of the Ti3C2Tx/rGO electrode was
conducted in the range from 3.0 to 11.0, as shown in Figure 4h. The oxidation peak
potentials of DA shifted negatively with the increased electrolyte pH, ascribing to an
improvement in the reversibility of the investigated faradic process that involves the
deprotonation of DA, followed by the protonation of the amine group in DA to form a
cation [52,53]. The value of the peak current reached the maximum at pH 7.0 and was
selected as the optimal pH value. The electrochemical behavior of various electrodes was
performed by CV in 10 mM [Fe(CN)6]3−/4− containing 0.1 M KCl electrolyte solution at
scan rates ranging from 20 to 260 mV s−1 (Figure 4i). The observed peak currents (Ipa
and Ipc) both increased linearly, with the square root of scan rates as shown in Figure 4j,
indicating that the Ti3C2Tx/rGO electrodes were controlled by diffusion [54].
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3.4. Electrochemical Determination of DA and UA with Different Concentrations

The quantitative electrochemical detection of DA and UA on the Ti3C2Tx/rGO elec-
trode was conducted via DPV measurements, as shown in Figure 5a,b. An increase in peak
current value was recorded with the increasing concentration of DA in a range from 9.5 nM
to 100 µM, and the increasing concentration of UA in a range from 300 nM to 1000 µM,
respectively. Correspondingly, the inset graphic of Figure 5a,b depicts the enlarged view
in the potential range from 0.0–0.3 V and 0.1–0.4 V to clearly show the variations of DPV
curves ranging from 0.0–100 nM DA and 0.0–1.0 µM DA, respectively. As presented in
Figure 5c, the calibration curve of DA and UA was obtained from the average of peak
current data. According to the calibration curve, the linear range of DA detection was
in a range from 0.1 to 100 µM, and UA detection was in a range from 1 to 1000 µM, re-
spectively. The linear regression equation of DA was Ipc (µA) = 0.413 lg DA (µM) − 5.780
(R2 = 0.993), and the linear regression equation of UA was Ipc (µA) = 0.529 lg UA (µM)
− 0.209 (R2 = 0.994). The limit of detection (LOD) of DA and UA on the Ti3C2Tx/rGO
electrode was determined as 9.5 nM and 300 nM, respectively.
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Specifically, the quantitative electrochemical detection of DA and UA were conducted
by DPV measurements on six individual electrodes. Compared with graphene- based
modified electrodes prepared using various methods for simultaneous detection of DA
and UA, as shown in Figure 5d, our Ti3C2Tx/rGO electrode achieved a relatively low
simultaneous detection LOD of DA and UA and a four-order-magnitude linear range with
convenience and efficiency. The corresponding literatures are listed in Table 1.

3.5. Repeatability, Reproducibility, Interference, and Real Sample Analysis

In order to study the repeatability of the Ti3C2Tx/rGO electrode for DA detection
(10 µM), the Ox1 peak currents in DPV curves were repeatedly measured 11 times on the
same electrode at a potential interval of 0.0–0.5 V. As shown in Figure 5e, the reduction
peak potentials of DPV curves were consistent at 0.129 V, and these curves overlapped well.
The relative standard deviation (RSD) of peak currents was 3.57%. The reproducibility
of the Ti3C2Tx/rGO electrode was performed in the presence of 10 µM DA by using six
individual electrodes in DPV curves, as shown in Figure 5f, and the RSD was 3.92%. The
results indicate that the Ti3C2Tx/rGO electrode has good repeatability and reproducibility.
The anti-interference of the Ti3C2Tx/rGO electrode was investigated via DPV curves in PBS
containing various concentrations of DA ranging from 0.1 µM to 10 µM in the presence of
30 µM UA as interfering substances, as shown in Figure 5g. Similarly, the anti-interference
was performed in PBS containing UA ranging from 1 µM to 100 µM in the presence of
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10 µM DA, as presented in Figure 5h. When compared to the calibration curve of DA and
UA detection individually in Figure 5a,b, the anti-interference results indicate that DA
and UA did not induce obvious interference in the DPV determination of each other. The
anti-interference of Ti3C2Tx/rGO electrode in the presence of other potential interfering
substances as 100 µM glucose, 100 µM ascorbic acid (AA), 100 µM H2O2, and 10 µM
isoniazid in PBS containing 3 µM DA and 3 µM UA was investigated via DPV curves, as
shown in Figure S3. The results indicate that our constructed sensor will not be affected by
these molecules during testing.

Table 1. Performance comparison of graphene-based materials modified electrodes for simultaneous
detection of DA and UA.

Modified
Electrodes Measurements

Linear Range (µM) LOD (µM)
Ref.

DA UA DA UA

rGO DPV 0.5–60 0.5–60 0.5 0.5 [49]
Graphene Amperometric 5.0–710 6.0–1330 2.0 4.8 [24]
Graphene DPV 0.5–2000 0.8–2500 0.12 0.2 [14]

Graphene aerogel DPV 0.65–75 0.4–50 0.22 0.12 [17]
CNTs/GO DPV 5.0–500 3.0–60 1.5 1.0 [29]

Chitosan/Graphene DPV 1.0–24 2.0–45 1.0 2.0 [55]
Au/rGO DPV 6.8–41 8.8–53 1.4 1.8 [27]

Au/Pt/GO/rGO DPV 0.07–49,800 0.13–82,800 0.02 0.04 [56]
Pt NPs/Graphene DPV 0.03–8.13 0.05–11.9 0.03 0.05 [28]

Ag/rGO DPV 10–70 10–130 1.0 1.0 [57]
Pd/Pt/rGO DPV 4–200 4–400 0.04 0.1 [6]
Mn3O4/rGO SWV a 1–600 1–600 1.42 0.76 [58]
Hemin/GO DPV 0.5–40 0.5–50 0.17 0.17 [59]
TiN/rGO DPV 5–175 30–215 0.16 0.35 [60]

N-doped rGO DPV 1–60 1–30 0.1 0.2 [61]
Ti3C2Tx/rGO DPV 0.1–100 1–1000 0.0095 0.3 This work

a SWV: Square wave voltammetry.

To evaluate the practical application performance of Ti3C2Tx/rGO electrodes for
simultaneous detection of DA and UA, human serum was selected as real samples for
analysis using the standard addition technique. The serum samples were centrifuged at
6000 rpm for 5 min, and the supernatants were collected and diluted 100 times with PBS.
Then KCl was added to 0.1 M of the serum samples, and the pH was adjusted to 7.0 to
perform appropriate electrochemical detection of DA and UA [56]. Serum samples were
then spiked with 0.1, 0.3 µM DA, and 1, 3 µM UA, respectively, and the DPV curves of
Ti3C2Tx/rGO electrode were extracted, as shown in Figure 5i. The results demonstrate the
accuracy and reliability of the fabricated sensor, indicating that the proposed Ti3C2Tx/rGO
electrode exhibited good potential for simultaneously detecting DA and UA practically.

Thus, our fabricated Ti3C2Tx/rGO electrode with a double-deck layer was applied as
the biosensor for the simultaneous detection of DA and UA successfully. The detection sen-
sitivity of the Ti3C2Tx/rGO electrode was greatly improved with the adjustment to Debye
length. Our proposed Ti3C2Tx/rGO electrode displayed good repeatability, selectivity, and
proved suitable for real sample analysis.

4. Conclusions

In summary, a Ti3C2Tx/rGO heterostructure with a double-deck layer was fabricated
through electrochemical reduction. The rGO was modified on the porous Ti3C2Tx electrode
as the biosensor for the simultaneous detection of DA and UA. The Debye length λD is
regulated by the alteration of rGO on the surface of the Ti3C2Tx electrode. λD decreased
with respect to the rGO electrode modified with a greater rGO mass, indicating that fewer
DA biomolecules were capable of passing through EDL and reaching the surface of GO to
achieve the voltammetric response of DA. Thus, the proposed Ti3C2Tx/rGO sensor had
an excellent performance in the detection of DA and UA, with a wide linear range from
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0.1–100 µM to 1–1000 µM and a low detection limit from 0.0095 to 0.3 µM, respectively.
Additionally, the proposed Ti3C2Tx/rGO electrode displayed good repeatability, selectivity,
and proved suitable for real sample analysis.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/bios11110462/s1. Figure S1: CV curves of Ti3C2Tx/rGO electrode on electrochemical
reduction of GO to rGO. Figure S2: Performance comparison of DPV curves on Ti3C2Tx/rGO and
Au/rGO electrode with 10 µM DA in PBS and the corresponding current values. Figure S3: The
anti-interference of our electrode in the presence of 100 µM glucose, 100 µM ascorbic acid, 100 µM
H2O2 and 10 µM isoniazid with PBS containing 3 µM DA and 3 µM UA. Table S1: The fitting
parameters of EIS for GCE, Ti3C2Tx and Ti3C2Tx/rGO electrode.
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