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Abstract: A novel, integrated experimental and modeling framework was applied to an inhibition-
based bi-enzyme (IBE) electrochemical biosensor to detect acetylcholinesterase (AChE) inhibitors
that may trigger neurological diseases. The biosensor was fabricated by co-immobilizing AChE and
tyrosinase (Tyr) on the gold working electrode of a screen-printed electrode (SPE) array. The reaction
chemistry included a redox-recycle amplification mechanism to improve the biosensor’s current
output and sensitivity. A mechanistic mathematical model of the biosensor was used to simulate key
diffusion and reaction steps, including diffusion of AChE’s reactant (phenylacetate) and inhibitor,
the reaction kinetics of the two enzymes, and electrochemical reaction kinetics at the SPE’s working
electrode. The model was validated by showing that it could reproduce a steady-state biosensor
current as a function of the inhibitor (PMSF) concentration and unsteady-state dynamics of the
biosensor current following the addition of a reactant (phenylacetate) and inhibitor phenylmethyl-
sulfonylfluoride). The model’s utility for characterizing and optimizing biosensor performance was
then demonstrated. It was used to calculate the sensitivity of the biosensor’s current output and the
redox-recycle amplification factor as a function of experimental variables. It was used to calculate di-
mensionless Damkohler numbers and current-control coefficients that indicated the degree to which
individual diffusion and reaction steps limited the biosensor’s output current. Finally, the model’s
utility in designing IBE biosensors and operating conditions that achieve specific performance criteria
was discussed.

Keywords: amperometric biosensor; neural esterase; acetylcholinesterase; inhibition; organophos-
phate; design; optimization; mathematical model; flux control; dimensionless

1. Introduction

Electrochemical biosensors are analytical devices that detect analytes by transforming
a biochemical reaction into a quantitative, electrical signal. They integrate the specificity of
biological recognition molecules (e.g., antibodies) with the advantages of electrochemical
detection techniques [1,2]. Electrochemical biosensors benefit from several advantages,
such as low cost, ease of use, portability, and simplicity of construction. These advantages
make electrochemical biosensors great options for the development of analytical devices in
different fields [3,4]. Some of the limitations for electrochemical biosensors are limited shelf
life, narrow or limited temperature range for operation, and sometimes high sensitivity of
detection results in false-positive results [5]. The electrochemical biosensors can be divided
into four major categories based on the electrochemical technique that is used to measure
the electrical signal produced by the biochemical mechanism: amperometric biosensors,
potentiometric biosensors, conductometric biosensors, and impedimetric biosensors [6].
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Amperometric biosensors detect chemicals at a constant electrochemical potential
by measuring the oxidation or reduction current produced by electroactive products of a
biochemical reaction [7]. Their low cost, high sensitivity, fast response time, simplicity of
design, compactness, and potential for miniaturization make amperometric biosensors well
suited for detecting a wide range of chemicals and biochemical agents, including disease
markers [8,9].

Amperometric biosensors that measure analytes indirectly by their inhibition of target
enzymes have been developed for environmental and healthcare applications [10]. Such
inhibition-based biosensors can be very sensitive when the target enzyme is inhibited by a
very low concentration of its inhibitor [11]. For that reason, significant research has been
devoted to developing amperometric biosensors that measure markers of neurological
disease processes that inhibit neural esterases, such as acetylcholinesterase (AChE) [12–17].

Some organophosphate compounds (OPs) are potent inhibitors of neural esterases and,
for that reason, are used as pesticides and as chemical weapons [18]. The well-known neural
esterase acetylcholinesterase (AChE) breaks down the neurotransmitter acetylcholine,
which chemically relays an impulse across the synapse between two neurons [19]. The
inhibition of AChE by OPs prevents acetylcholine hydrolysis, resulting in continuous
nerve firing, which can cause severe, acute health issues, including death [20]. Each
year, approximately 3 million people are poisoned by organophosphates, accounting for
300,000 deaths worldwide [21].

The gold standard analytical method for OPs is gas/liquid chromatography combined
with mass spectroscopy [22]. This method is sensitive, specific, and reliable. However,
it is not well suited for many on-site applications because it requires bulky, expensive
equipment and involves complicated and time-consuming sample processing by trained
technicians [22]. In contrast, inhibition-based amperometric biosensors offer the potential
to measure OPs on-site rapidly, inexpensively, with minimal sample processing using a
miniature electronic device similar to a personal blood-glucose meter [23].

When an enzyme is strongly inhibited by a specific substance, it may be possible to
develop an inhibition-based enzyme biosensor that can specifically detect the presence
of the inhibitor in a complex mixture that may include unknown chemicals or pollutants.
However, for enzymes that are sensitive to multiple inhibitors, this approach cannot discern
which inhibitor(s) is present in the mixture.

Although amperometric biosensors might not offer the same sensitivity and specificity
of detection that gas/liquid chromatography-based techniques offer, the fact that they can
be developed as portable diagnostic devices for quick and cost-effective initial analysis
makes them valuable for initial screening and monitoring. Commercialized miniaturized
potentiostats and screen-printed electrodes (SPEs) can be used to develop portable ampero-
metric biosensor systems. SPEs include one or more printed working electrodes, a reference
electrode, and a counter electrode printed on a solid substrate. The assay chemistry is
performed on the working electrode, and the electrochemical assay is conducted by con-
tacting the SPE with a sample solution. SPEs can replace bulky convention electrochemical
cells with a miniaturized system that can be used for simple and quick electrochemical
measurements. However, because SPEs are designed to minimize the required space and
reagent volume, their measurements are often not as stable and accurate as those conducted
in a conventional electrochemical cell.

Research to rationally design and optimize amperometric biosensors for detecting
inhibitors of AChE or other neural esterases (e.g., butyrylesterase) has been hampered by
the lack of a comprehensive mathematical model able to predict the rates of potentially
rate-limiting mass-transfer and chemical reaction steps that produce the amperometric
signal. Zhang et al. developed a theoretical model for immobilized-enzyme-inhibition
biosensors under the assumption that the inhibition process is diffusion-limited [24]. Choi
et al. developed a mathematical model for a fiber-optic biosensor to detect OPs. This model,
which simulated both AChE inhibition kinetics and diffusion, was able to optimize the
concentrations of AChE and its substrate [25].
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We recently developed a novel, integrated experimental and modeling framework
that includes a steady-state, mechanistic mathematical model that describes the rate of
key mass-transfer and reaction steps and a novel dimensional-analysis approach to assess
the degree to which individual mass-transfer and reaction steps limit the biosensor’s
amplitude and sensitivity [26]. We then demonstrated the framework’s utility using a
novel amperometric electrochemical immunosensor.

In this paper, we apply the framework to an inhibition-based bi-enzyme (IBE) am-
perometric biosensor assembled on a s SPE. The IBE interface contained a neural esterase
(AChE) and an oxidase enzyme (tyrosinase) that generates a redox-reaction loop to amplify
the biosensor’s output [27–29]. We present a novel, unsteady-state model of the IBE biosen-
sor that consists of unsteady-state mass balance equations describing the mass-transfer and
reaction steps that govern the biosensor’s signal. We use experimental results to validate
the model and discuss the utility of dimensionless groups based on the model, including
current-control coefficients, sensitivity coefficients, and Damkohler numbers, to rationally
design and optimize IBE biosensors.

2. Materials and Methods
2.1. Materials

Sodium phosphate (monobasic and dibasic), AChE (C2888, from Electrophorus electri-
cus), tyrosinase (T3824, from mushroom), bovine serum albumin (BSA), glutaric dialdehyde
(50 wt.% solution in water), PMSF, and phenylacetate were obtained from Sigma Aldrich
(St. Louis, MO, USA). Ultrapure water (18.2 MΩ) was produced by a Nanopure-UV four-
stage purifier (Barnstead International, Dubuque, IA, USA); the purifier was equipped
with a UV source and a final 0.2 µm filter. Ultrapure water was used to prepare all aqueous
solutions. Screen-printed electrodes were obtained from Conductive Technologies Inc.
(New York, NY, USA). and Metrohm DropSens (models DRP-250AT, Asturias, Spain).

2.2. Enzyme Electrode Preparation

SPEs were selected as the platform for conducting the experiments for two reasons.
First, SPEs are small, inexpensive, and disposable, making them well-suited for POC appli-
cations. Second, SPEs are often used in the development of commercialized electrochemical
biosensors. SPEs were cleaned by sonication in pure ethanol for 2 min followed by rinsing
with ultrapure water. Different types of SPEs, including carbon (DPR-C110), low tempera-
ture cured gold (DRP-220BT), high temperature cured gold SPEs (DRP-250AT), and carbon
nanotube-modified (DRP-10SWCNT), were tried for the fabrication of the biosensor. The
immobilization technique used in this work was based on the crosslinking of two enzymes
with glutaraldehyde and bovine serum albumin (BSA) [30]. This technique resulted in an
efficient and rapid comobilization of two enzymes. Although this technique worked on
all types of SPEs, DPR-250AT resulted in a better repeatability of data. To optimize the
immobilization method, a variety of BSA concentrations, glutaraldehyde concentrations,
and ratios of AChE to tyrosinase were studied.

To prepare the enzyme solution, 40 µL of 50 mM phosphate buffer pH 7, 20 µL of
20 mg/mL tyrosinase in phosphate buffer, 20 µL of 1 mg/mL AChE in phosphate buffer,
10 µL of 2.7 mg/mL BSA in phosphate buffer, and 10 µL of 4 wt.% glutaraldehyde in
water were mixed together just before starting the preparation procedure. To obtain the
optimized concentration of the two enzymes, BSA, and glutaraldehyde, 3 µL of enzyme
solution (in the case of DropSens SPEs) or 1 µL of enzyme solution (in the case of CTI SPEs)
were deposited on the working electrode, and the SPEs were left at 4 ◦C to dry overnight.
The next day, the prepared bi-enzyme-modified SPEs were rinsed with ultrapure water
and then stored in phosphate buffer at 4 ◦C.



Biosensors 2021, 11, 459 4 of 20

2.3. PMSF Detection and Electrochemical Measurements

PMSF is used as a model AChE inhibitor because it is less toxic to humans than many
OPs. Its reaction mechanism is similar to that of OPs, but its sulfonamide bond with
serine’s hydroxyl group in the AChE active site is more stable than a typical OP linkage.

To conduct the electrochemical measurements, the desired electrochemical potential
was applied on the SPE’s working electrode relative to the SPE’s printed pseudo-Ag/AgCl
reference electrode. The SPE’s counter electrode served as the anode, so the biosensor’s
current would not flow through the reference electrode and change its potential. In experi-
ments to detect AChE inhibition by PMSF, 30 µL of 50 mM phosphate buffer (pH 7) was
added to the IBE SPE biosensors. A potential of −200 mV relative to an Ag/AgCl reference
electrode was maintained on the working electrode using a potentiometer (CHI 660, C.H.
Instruments, Austin, TX, USA). An aliquot of phenylacetate solution was added to initiate
the IBE’s amperometric signal. Then, after a stable electrochemical signal was obtained,
a known amount of PMSF was added while continuously recording the electrochemical
current as a function of time. The experiments were repeated in triplicate, and steady-state
current values were reported as the mean ± standard deviation of three replicates.

2.4. Mechanistic Mathematical Model of the IBE Biosensor Interface

The biosensor’s conceptual model (Figure 1) includes a working electrode onto which
an enzyme-containing layer of thickness L is bound, a diffusion layer having thickness δ,
and the bulk solution. AChE (E1) hydrolyzes the reactant phenylacetate (S1) to give phenol
(S2) (Figure 2), which is then oxidized twice by tyrosinase (E2)–first to catechol (S4) and
then to o-quinone (S3). The S4 can then be reduced back to S3 at the electrode, generating
the biosensor’s output current. This current is amplified by a redox-recycle loop in which
each molecule of S4 produced by the combined actions of E1 and E2 may be sequentially
oxidized by E2 and then reduced at the electrode many times, with additional current being
produced in each cycle.
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Figure 1. Schematic representation of reactions in the IBE biosensor interface. S1, S2, S3, and
S4 denote phenylacetate, phenol, catechol, and o-quinone, respectively. E1, E2, and E3 denote
acetylcholinesterase, tyrosinase’s phenolase activity, and tyrosinase’s catecholase activity, respectively.
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The concentration of PMSF (I, Figure 3) in a sample was determined from the drop in
the biosensor’s current following addition and exposure to PMSF.
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Figure 3. Molecular structure of PMSF.

The biosensor’s mathematical model consists of a set of coupled, unsteady-state,
differential mass-balance equations that take into account: (1) the rate of mass transfer
of phenylacetate, phenol, catechol, O-quinone, and PMSF in the x-direction through the
diffusion layer (L < x < L + δ) and the enzyme-containing layer (0 < x < L); (2) the ki-
netics of the enzyme-catalyzed chemical reactions by AChE and tyrosinase within the
enzyme-containing layer; and (3) the kinetics of electrochemical reduction of o-quinone
at the gold electrode. The enzymes’ concentrations are assumed to be uniform across the
enzyme-containing layer [31,32]. The bulk solution is assumed to be well-mixed, with the
concentrations of all chemical species remaining constant at their initial values [33]. The
PMSF bulk concentration is assumed to be zero before the addition time (t = T0).

2.4.1. AChE Inactivation and Enzyme Kinetics

PMSF inhibits AChE’s reaction rate (E1) by binding at AChE’s active site [34]. The
sulfonyl group of PMSF (Figure 3) mimics the carbonyl group of phenylacetate’s transition
state. As a result, the hydroxyl group of the serine residue in AChE’s active site nucleophili-
cally attacks the sulfonyl group, which can lead to irreversible, covalent sulfonylation of
AChE [35]. In this model, we assumed that the rate of PMSF (I) consumption is equal to
the rate of AChE inactivation.

The general scheme for inactivation of AChE with PMSF (I) in the presence of the
substrate (S1) is shown in Figure 4.
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Studies have shown that AChE inhibition with PMSF follows pseudo-first-order
kinetics [35] (Equation (1)):

ln
V′max,1

Vmax,1
= −k′t′ (1)

where Vmax,1 and V′max,1 are the maximum reaction rates for AChE in the absence of
the inhibitor and when incubated with inhibitor for a time of t′, respectively. k′ is the
pseudo-first-order rate constant for the inactivation of AChE by PMSF (Equation (2)):

k′ =
k2[I]

1
(1−γ)kI + [I]

(2)

The affinity of PMSF for AChE is given by the Michaelis–Menten type constant, kI [35]:

kI =
k−1 + k2

k+1
(3)

where k+1 and k−1 are the forward and backward rate constants for the formation of
the Michaelis–Menten type complex, and k2 is the sulfonylation rate constant (Figure 4).
The value of γ is given by Equation (4), where Km,1 is the Michaelis–Menten constant for
phenylacetate hydrolysis.

γ =
[S1]

[S1] + Km,1
(4)

PMSF competes with phenylacetate for the active site of AChE, thereby changing Km,1
to an the apparent value K′m,1 (Equation (5)) [25].

K′m,1 = Km,1

(
1 +

[I]
kI

)
(5)

Equations (6)–(8) describe the enzymatic kinetics of AChE in the presence of PMSF,
where kcat,1 is the turnover number of AChE for phenylacetate. By assuming that the rate
of PMSF (I) consumption equals the rate of enzyme inactivation, Equation (9) was derived
to describe the rate of PMSF (I) consumption.

v1 =
V′max,1[S1]

K′m,1 + [S1]
(6)

V′max,1 = Vmax,1e−k′t (7)

Vmax,1 = kcat,1E1 (8)

dI
dt

= −k′E1e−k′t (9)
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2.4.2. Tyrosinase Enzyme Kinetics

Tyrosinase exhibits two enzymatic activities: monophenolase activity, which catalyzes
the hydroxylation of phenol to produce o-diphenol (catechol) and catecholase activity,
which catalyzes the oxidation of catechol to o-quinone. Figure 5 shows the scheme for the
two-step oxidation of phenol with tyrosinase.
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Studies have shown that the hydroxylation step (monophenolase activity) is much
slower than the oxidation step (catecholase activity), and therefore limits the o-quinone
production rate [36]. Therefore, we assumed that the rate (v2) of o-quinone (S4) production
from phenol (S2) can be obtained from Equations (11)–(12), where E2 corresponds to
phenolase activity of tyrosinase. The rate (v3) of conversion of catechol (S3) to o-quinone
(S4) can be given by Equations (12) and (13), where E3 denotes the catecholase activity of
tyrosinase [29]

v2 =
Vmax,2[S2]

Km,2 + [S2]
(10)

Vmax,2 = kcat,2 E2 (11)

v3 =
Vmax,3[S3]

Km,3 + [S3]
(12)

Vmax,3 = kcat,3 E3 (13)

The molecules of o-quinone produced by tyrosinase are assumed to be reduced back
to catechol at the working electrode at a rate described by the Butler–Volmer equation
(Equation (14)):

J = nFDL

[
∂Q
∂x

]
x=0

= nFK0[Q]x=0 e
(
−αnF(E−Eh)

RT

)
− nFK0[C]x=0 e

(
(1−α)nF(E−Eh)

RT

)
(14)

where J is the electric current density, n is the number of electrons transferred (e.g., n = 2
for the electrochemical reduction of Q), α is the charge transfer coefficient (assumed to
be 0.4), F is the Faraday constant (96,485 C mol−1), K0 is the apparent electron transfer
rate constant for Q, R is the universal gas constant (8.314 J K−1 mol−1), T is the absolute
temperature (298 K), and Eh is the redox potential for electrochemical reduction of Q to C
under the experimental conditions. An Eh value of 0.15 V was determined as the midpoint
between the cathodic peak and anodic peak of cyclic voltammogram obtained under the
same conditions.
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2.4.3. Mass Balance Equations

The mass balance equations including diffusion and enzymatic reaction for S1, S2, S3,
S4, and I across the enzyme-containing layer (0 < x < L) can be derived (Equations (15)–(19)).

∂S1

∂t
= DL

∂2S1

∂x2 −
V′max,1[S1]

K′m,1 + [S1]
(15)

∂S2

∂t
= DL

∂2S2

∂x2 −
Vmax,2E2[S2]

Km,2 + [S2]
+

V′max[S1]

K′m,1 + [S1]
(16)

∂S3

∂t
= DL

∂2S3

∂x2 −
Vmax,3E3[S3]

Km,3 + [S3]
(17)

∂S4

∂t
= DL

∂2S4

∂x2 +
Vmax,3[S3]

Km,3 + [S3]
(18)

∂I
∂t

= DL
∂2I
∂x2 + k′E1e−k′t (19)

2.4.4. Boundary Conditions

Because Q reduction at the electrode generates C in equimolar amounts, the fluxes of Q
and C at x = 0 were assumed to be equal in magnitude but opposite in sign (Equation (20)).

DL[
∂S4

∂x
]x=0 = −DL[

∂S3

∂x
]x=0 (20)

At x = 0, S1, S2, S3, and I are assumed not to be consumed or produced at the electrode
(Equation (21)):

[
∂S1

∂x
]x=0 = 0, [

∂S2

∂x
]x=0 = 0, [

∂S3

∂x
]x=0 = 0, [

∂I
∂x

]x=0 = 0 (21)

Partitioning kinetics of all reactants were assumed to be rapid enough that the interfa-
cial concentrations at the boundaries of the diffusion layer and enzyme-containing layer
remained at equilibrium. Identical partition coefficients (kp = 1) were assumed for all
reactants (Equations (22)–(26)).

[S1]L+ = kp[S1]L+ (22)

[S2]L+ = kp[S2]L+ (23)

[S3]L+ = kp[S3]L+ (24)

[S4]L+ = kp[S4]L+ (25)

[I]L+ = kp[S4]L+ (26)

The bulk solution (where x = ∞) contained S1 at a concentration of S1(∞) but negligible
concentrations of S2, S3, and S4 (Equations (27)–(31)).

[S1]x=∞ = C(∞) (27)

[S2]x=∞ = 0 (28)

[S3]x=∞ = 0 (29)

[S4]x=∞ = 0 (30)

[I]x=∞, t<T0 = 0, [I]x=∞, T0 < t = I(∞) (31)
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Because no reaction is assumed to occur in the diffusion layer, the flux of species
entering this layer was assumed to equal that exiting it (Equations (32)–(36)).

DL[
∂S1

∂x
]x=L− =

Dδ

kp δ

{
kp S1(∞)− [S1]x=L−

}
(32)

DL[
∂S2

∂x
]x=L− = −Dδ

δ
{[S2]x=L+ − 0} = − Dδ

kp δ
[S2]x=L− (33)

DL[
∂S3

∂x
]x=L− = −Dδ

δ
{[S3]x=L+ − 0} = − Dδ

kp δ
[S3]x=L− (34)

DL[
∂S4

∂x
]x=L− = −Dδ

δ
{[S4]x=L+ − 0} = − Dδ

kp δ
[S4]x=L− (35)

DL[
∂I
∂x

]x=L− =
Dδ

kp δ

{
kp I(∞)− [I]x=L−

}
(36)

2.4.5. Initial Conditions

Initial conditions of phenylacetate at injection time (t = 0) are given in Equation (37):

[Si] i=2:4,06x6L = 0, [S1]06x<L = 0, [S1]x=L = S1(∞) (37)

The inhibitor concentration (I) was assumed to be zero before it was injected at (T0)
and was assumed to be constant throughout the enzyme-containing layer and solution
afterward (Equation (38)):

[I]0<t<T0, = 0, [I]T0<t = I(∞) (38)

A splitting-finite-difference algorithm was programmed in MATLAB and used to
solve the mass balance equations (Equations (15)–(19)) numerically using the parameters
given in Table 1 and the boundary and initial conditions given in Equations (20)–(38).

Table 1. Parameters and variables used in the numerical simulation.

Parameter/Variable Dimensional
Parameter Variation Range Value Used to Fit

Experimental Data

Time t, s 0–300 –

Distance from electrode surface x, cm 3.0 × 10−4–3.0 × 10−2 3.0 × 10−3

Phenylacetate concentration (S1), mM 0–1.5 0.9

PMSF concentration (I), mM 0–0.5 –

Acetylcholinesterase concentration (E1), µM 0–100 30

Tyrosinase Concentration (phenolase activity) (E2), mM 0–5 1.45

Tyrosinase Concentration (catecholase activity) (E3), mM 0–5 1.65

Michaelis–Menten constant of phenylacetate Km,1, µM 0–100 50.5

Michaelis–Menten constant of phenol Km,2, µM 0–10 0.25

Michaelis–Menten constant of catechol Km,3, µM 0–10 0.22

Acetylcholinesterase turnover number
for phenylacetate kcat,1, s−1 2.0 × 102–2.0 × 105 2.3 ×104

Tyrosinase turnover number for phenol kcat,2, s−1 2.0–2.0 × 103 20

Tyrosinase turnover number for catechol kcat,3, s−1 2.0–2.0 × 103 760

Dissociation constant of PMSF kI, mM 0.02–2.0 0.25
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Table 1. Cont.

Parameter/Variable Dimensional
Parameter Variation Range Value Used to Fit

Experimental Data

Reaction constant of deactivation of
acetylcholinesterase with PMSF k2, s−1 0.001–0.1 0.005

Enzyme-containing layer thickness L, nm 10–100 25

Diffusion layer thickness δ, µm 10–200 30

Diffusion coefficient in diffusion layer Dδ, cm2 s−1 1 × 10−6–9 × 10−5 2.2 × 10−5

Diffusion coefficient in enzyme-containing layer DL, cm2 s−1 1 × 10−8–9 × 10−6 2.28 × 10−8

Standard redox electrochemical potential
of O-quinone E0, V 0.15 0.15

Heterogeneous electron transfer rate constant K0, cm s−1 1 × 10−7–1 × 10−4 1 × 10−5

3. Results and Discussion
3.1. Biosensor’s Response to PMSF

Figure 6 shows a typical amperometry experiment to detect PMSF. Phenylacetate was
added at about 35 s, and PMSF was added at about 190 s. As soon as a buffer sample
containing PMSF was added, the biosensor’s current rapidly declined and then returned
to a relatively stable value whose magnitude varied with the PMSF concentration in the
sample. A first-order time constant for the IBE biosensors’ response to PMSF (defined as
63% toward the relatively stable current value) was typically about 20 s.
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Figure 6. Current vs. time response of the bi-enzyme biosensor to the addition of phenylacetate (S1)
to obtain a final phenylacetate (S1) concentration of 0.9 mM followed by the addition of inhibitor
PMSF to obtain a final PMSF concentration of 0.17 mM.

Control experiments were conducted to characterize the IBE biosensor’s response to
blank samples with the addition of a bolus of the buffer without PMSF (Figure 7). As soon
as a buffer sample without PMSF was added, the biosensor’s signal rapidly declined and
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then returned to a relatively stable current very close to that before the blank sample was
added.
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Figure 7. Control experiment to study the effect of phosphate buffer addition on the bi-enzyme
biosensor’s signal.

The PMSF-challenge experiments described above were repeated for samples con-
taining a variety of PMSF concentrations. Figure 8 shows the current to which the signal
returned after the initial decline as a function of the PMSF concentration in the sample. The
calibration curve had a sensitivity (slope) of 18.4 µA cm−2 (mM PMSF)−1 and an R2 value
for a linear fit of 0.995.
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3.2. Validation of the Mathematical Model and Simulation of the Biosensor’s Response

The numerical model successfully simulated the biosensor’s behavior shown in
Figures 6–8. To explain the initial, rapid signal decline triggered by sample addition,
we hypothesized that the increase in convective mass transfer while the sample was being
pipetted into the solution on the SPE altered the pseudo-steady-state concentration gradi-
ents of the reacting chemical intermediates (S2, S3, and S4) in the enzyme-containing layer.
To simulate this effect in the model, we decreased the concentrations of these intermediates
in the enzyme-containing layer by some fraction (e.g., 20%) at t = T0 (Equations (39)–(41)):

[S2]0<x<L, t=T+
0
= 0.8 [S2]0<x<L, t=T−0

(39)

[S3]0<x<L, t=T+
0
= 0.8 [S3]0<x<L, t=T−0

(40)

[S4]0<x<L, t=T+
0
= 0.8 [S4]0<x<L, t=T−0

(41)

This change enabled the model to predict the biosensors observed dynamics following
sample addition, including the sudden drop in the biosensor’s signal, followed by a return
to a stable current (Figure 9A), providing support for the hypothesis.
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The model was also able to accurately predict the relatively stable current that resulted
after the initial biosensor-response dynamics as a function of the PMSF concentration in
the sample (Figure 9B).

Figures 6, 7 and 9B show that after phenylacetate was added, the biosensor’s current
increased rapidly, went through a maximum, and then exhibited a gradual decay. The
mechanism responsible for the decay is unknown, but it may result from the formation
of byproducts of o-quinone reduction at the electrode that are not re-oxidized as rapidly
by tyrosinase as catechol. The result of such a reaction would be a gradual increase in the
byproduct concentration, and decrease in the catechol and o-quinone concentrations, and,
consequently, a gradual decrease in the biosensor’s current.

Signal Amplification by Redox-Recycle Loop

The degree of biosensor signal amplification due to the redox-recycle loop involving
catechol and O-quinone (Figure 5) activity can be quantified using an amplification factor
(AF), which is defined as the ratio of the biosensor’s current density (J) in the presence of
catecholase activity to that in the absence of the catecholase activity (Equation (42)) [29]:

AF =
J|E3 6=0

J|E3=0
(42)

After validating the biosensor model (Figure 9A,B), we used it to explore the extent of
signal amplification under a variety of operating conditions. Figure 10A shows the model-
predicted output current both in the presence and absence of the amplification system. To
predict the absence of amplification system zero, catecholase activity of tyrosinase was set
to zero in the model. The predicted AF of about three across the range of [I] simulated
indicates that redox amplification increases the biosensor’s current roughly three-fold
under the experimental conditions.

The effect of catecholase concentration (E3) on the predicted AF was also explored
with the model (Figure 10B). This result shows an increasing tyrosinase concentration
would increase the biosensor’s output by increasing the redox amplification.

3.3. Biosensor Sensitivity

Biosensor sensitivity (S) with respect to PMSF concentration [I] is defined in Equation (43):

S =
dJ

d[I]
(43)

To calculate S for a given set of experimental conditions, the incremental change
in J (∆J) resulting from an incremental change in [I] (∆[I]) was calculated by the model.
Then the asymptotic value of the ratio ∆J/∆[I] as ∆[I] approached zero was determined
and used as the S value for those conditions. The resulting S values were plotted as
function of a dimensionless phenylacetate concentration ([S1]/Km,1,app) for several [I]
values (Figure 11A).

All the sensitivity curves exhibited a maximum value for the following reasons. At
low [S1]/Km,1,app values, the S1 hydrolysis rate, and thus the J value, is so low that the
maximum possible drop in J due to an increase on PMSF concentration is also small. At
large [S1]/Km,1,app values, almost all AChE active sites are occupied with S1 values, and
are unavailable to bind to PMSF molecules; thus the addition of PMSF has little effect on J.

For all [S1]/Km,1,app values shown, sensitivity values increased as the PMSF concen-
tration decreased. The lower the PMSF concentration, the higher the S1 hydrolysis rate, the
J value, and the maximum possible drop in J as the PMSF concentration is increased.
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Figure 10. (A): Simulated current density with and without (E3 = 0) the amplification system in the
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The calculated S values were also plotted as a function of dimensionless AChE con-
centration for several dimensionless tyrosinase concentrations (Figure 11B).

For all tyrosinase concentrations, plots of sensitivity vs. (AChE)/(AChE*) exhibited
a maximum. At low [AChE]/[AChE*] values, they are equal to the S1 hydrolysis rate,
and thus the J value is so low that the [AChE]/[AChE*] values are different from the S1
hydrolysis limits, J; therefore, the inhibition of AChE by PMSF addition has little effect on J.

For all of the [AChE]/[AChE*] values shown, sensitivity values increased as the
tyrosinase concentration increased. This effect is attributed to the catecholase activity,
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and thus greater amplification and J values that occur at higher tyrosinase concentrations
(Figure 11B).
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(B): Sensitivity vs. [AChE] at different tyrosinase concentrations. [AChE] has been normalized with
[AChE*] = 3 µM. [I] = 0.3 mM.

3.4. Identification of Rate Limiting Step

In a recent publication, we described the use of dimensionless groups to assess the
rate-limiting step(s) in amperometric biosensors. The biosensor’s current results from the
interplay of multiple mass transfer and reaction steps, each of which has the potential to
be rate-limiting (i.e., control the biosensor current output) to some extent. Because the
mechanistic model predicts the rate of each step, it enables the extent to which each step is
rate-limiting to be calculated.
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We used Equation (44) and parameter values from Table 1 to calculate the Damkohler
number (σ), defined as the square root of the dimensionless ratio of the relative rates of
enzymatic reaction ( Vmax

KM
) and diffusional mass transfer ( DL

L2 ) within the enzyme-containing
layer [37].

σ2 =
VmaxL2

DLKM
(44)

The σ values for AChE and tyrosinase were in the order of 10−5, indicating that the
diffusion steps are many orders of magnitude faster than the reaction steps [32,38].

Flux-control analysis has been used to determine the extent to which the rates of
individual enzymatic reactions limit the overall mass flux through a metabolic pathway [39].
We extended this approach to assess to what extent both individual enzymatic reactions
and electrochemical reactions limited current production by the biosensor. We defined a
current-control coefficient (CJ

Vi) for a given reaction step (Vi) as the ratio of the percent
change in the biosensor’s output current (J) to the percent change in a given Vi while
holding all other independent variables constant (Equation (45)). We used the validated
model to calculate CJ

Vi values for each of the three reaction rates involved in generating that
current: the AChE reaction rate (V1), the tyrosinase reaction rate (V2), or the electrochemical
reaction rate (V3). The mechanistic model allowed the enzymatic reaction rates (V1 and V2)
to be varied by adjusting the assumed AChE and tyrosinase concentrations, respectively,
and the electrochemical reaction rate (V3) to be varied by adjusting the assumed working-
electrode overpotential (E-Eh). Figure 12A–C show calculated CJ

V1 values as a function of
the AChE concentration, CJ

V2 values as a function of the tyrosinase concentration, and CJ
V3

values as a function of overpotential (E–Eh), respectively.
Figure 12A shows the effect of normalized AChE concentration CJ

V1 values. The
curve declines monotonically from a value of 1 as the AChE concentration increases. For
the AChE concentration used in the validated biosensor mathematical model (3 µM), a
current-control coefficient of 0.52 is predicted.

dJ
J /dVi

Vi
= CJ

Vi (45)

Figure 12B shows the effect of tyrosinase concentration (normalized by a constant
[AChE] value of 3 µM) on CJ

V2 values. The curve exhibits a maximum at very low tyrosinase
concentrations and then declines monotonically at the tyrosinase concentration increases.
Similar curve shapes were predicted for three applied working-electrode overpotentials,
with CJ

Vi values increasing as the overpotential increases in magnitude (i.e., the working
electrode becomes more negative).

Figure 12C shows the effect of applied overpotential on CJ
V3 values appear to decrease

monotonically from a maximum value as overpotential values increase in magnitude (i.e.,
the working electrode becomes more negative). Similar curve shapes were predicted for
the three tyrosinase concentrations studied, with CJ

V3 values increasing as the tyrosinase
concentration increases.

Once validated, the IBE model’s predictive power has utility for guiding future
biosensor design and optimization efforts. For example, Figure 8 indicates that the IBE
biosensor has a sensitivity for detecting PMSF of 18.4 µA cm−2 (mM PMSF)−1. To increase
that sensitivity, researchers might consider whether it would be possible to increase the
percent change in biosensor output per percent change in AChE activity due to PMSF
inhibition (i.e., increase CJ

V1). Figure 12A predicts that the CJ
V1 value under the experimental

conditions was 0.52, and that the CJ
V1 value could be increased by about a factor of two

by decreasing the AChE concentration. The potential utility of other strategies to increase
the sensitivity could be evaluated quickly and inexpensively in silico using the model.
For example, the effects of changing the thickness of the enzyme-containing layer, the
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concentrations and ratios of the two enzymes, the working electrode’s overpotential on the
sensitivity could be rapidly assessed using the model.
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4. Conclusions

This study demonstrated the utility of a novel experimental and modeling frame-
work to characterize and optimize IBE electrochemical biosensors to detect markers of
neurological diseases (e.g., inhibitors of neural esterases). The experimental system was
an amperometric biosensor with an oxidase (tyrosinase) and a neural esterase (AChE)
co-immobilized on the working electrode of a commercially available SPE array to detect
markers of neurological disease. The mechanistic model included a system of coupled,
partial-differential, mass-balance equations that described the simultaneous reaction and
diffusion of reactants and products between the bulk solution, the enzyme-containing
layer, and the working electrode. These equations, together with their boundary and
initial conditions, were solved numerically using a splitting-finite-difference algorithm.
The model was able to reproduce several trends in the experimental results, including a
steady-state biosensor current as a function of the inhibitor (PMSF) concentration, as well
as unsteady-state dynamics of the biosensor current following the addition of a reactant
(phenylacetate) and an ACE inhibitor (PMSF).

The successful application of our integrated experimental and modeling framework
in this paper for IBE biosensors and in a previous paper for a novel amperometric electro-
chemical immunosensor [26] has demonstrated that the approach is generic and has wide
utility for mechanistic modeling of the key mass-transfer and reaction steps that determine
the biosensor’s amplitude and sensitivity. Moreover, the novel dimensional-analysis ap-
proach (e.g., current-control coefficients, sensitivity coefficients, and Damkohler numbers)
has been shown to be capable of determining the degree to which various steps limit
the biosensor’s signal magnitude and sensitivity to the target analyte. These capabilities
enable the framework to be used for in silico design of biosensors having performance
properties that are customized for the target application, whether that might be the max-
imum sensitivity at low analyte concentrations or a linear response over a very wide
analyte range. The framework can also predict which independent variable(s) (e.g., the
thickness of the enzyme-containing layer, the concentrations and ratios of the two enzymes,
the working electrode’s overpotential) would be most effective in obtaining the desired
dependent performance variable(s) (e.g., signal magnitude, analyte sensitivity). Finally,
this paper’s extension of the modeling capability to predict unsteady-state IBE biosensor
responses provides a novel capability to design biosensors having desired dynamic proper-
ties, thereby providing the capability for a new dimension of experimental characterization
using electrochemical biosensors.
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