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Abstract: In this paper, dicyandiamide (Dd) and p-benzaldehyde (Bd) were heated at 180 ◦C for 3 h to
prepare a new type of stable covalent organic framework (COF) DdBd nanosol with high catalysis. It
was characterized by molecular spectroscopy and electron microscopy. The study found that DdBd had
a strong catalytic effect on the new indicator reaction of polyethylene glycol 600 (PEG600)-chloroauric
acid to form gold nanoparticles (AuNPs). AuNPs have strong resonance Rayleigh scattering (RRS)
activity, and in the presence of Victoria Blue B (VBB) molecular probes, they also have a strong
surface-enhanced Raman scattering (SERS) effect. Combined with a highly selective oxytetracycline
(OTC) aptamer (Apt) reaction, new dual-mode scattering SERS/RRS methods were developed to
quantitatively analyze ultratrace OTC. The linear range of RRS is 3.00 × 10−3 –6.00 × 10−2 nmol/L,
the detection limit is 1.1 × 10−3 nmol/L, the linear range of SERS is 3.00 × 10−3–7.00 × 10−2 nmol/L,
and the detection limit is 9.0 × 10−4 nmol/L. Using the SERS method to analyze OTC in soil samples,
the relative standard deviation is 1.35–4.78%, and the recovery rate is 94.3–104.9%.

Keywords: COF catalysis; nanogold indicator reaction; aptamer; oxytetracycline; RRS; SERS

1. Introduction

A covalent organic framework (COF) is a new type of porous conjugated crystalline
polymer material. Its framework is mainly composed of C, N, O, and H elements, with
strong covalent bond connection, low density, and good chemical stability. In addition,
it also has the advantages of large specific surface area, regular pore structure, simple
functional design, and easy functionalization; in some cases, it has the characteristics of
luminescence and has been applied to analytical chemistry [1]. In analytical methods for
COFs, the fluorescence method is interesting due to two-dimensional COFs with rigid
delocalization and large π-bond structure with intrinsic luminescence properties [2,3].
Recently, COF catalytic amplification was utilized in a luminescence analysis. Wang et al.
prepared a loaded Pd nanocluster COF (BzBDPd) that can catalyze a Au@NiP nanoreaction,
combined with aptamer reactions to establish resonance Rayleigh scattering (RRS) methods
for the detection of melamine [4]. Therefore, aptamers combined with COFs to establish a
new analysis method can be further studied.

Aptamers (Apts) are the main specific oligonucleotides including single-stranded
DNA or RNA for varieties of targets obtained through in vitro selection. Under the action
of intermolecular forces, for instance, van der Waals forces, hydrogen bonds, hydrophobic,
and electrostatic interactions, Apt reactions usually fold into complex and stable three-
dimensional structures. Compared to conventional molecular biology cognitive elements,
for instance antibodies and enzymes, Apt has considerable merits, including stability
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in a wider temperature range and pH range, ease of synthesis and modification, lower
production costs, and long shelf life [5]. It has been utilized in molecular spectroscopy
such as resonance Rayleigh scattering (RRS) and electrochemical analysis, particularly
in combination with nanomaterials [6,7]. Li et al. modified AuNPs with anti-epidermal
growth factor receptor (EGFR) antibody (Ab) and epidermal growth factor Apt to obtain a
multifunctional Apt-AuNP-Ab nano-binding RRS probe [8], which specifically binds to
EGFR to form a large-volume binding product, thereby determining EGFR in a functional
nanogold system. This method’s linear range is 20–100 ng/mL, and the limit of detection
is 0.1 ng/mL. Pourreza et al. utilized AuNPs synthesized in situ to be embedded in
polyethanol ether borax hydrogel (PBH) [9], and developed an RRS aptasensor for detecting
thrombin from 0.70 pmol/L–0.02 µmol/L with a limit of detection of 0.10 pmol/L.

Surface-enhanced Raman scattering (SERS) is a sensitive molecular spectral technique.
Generally, the nanostructured substrates functionalize with Raman reporter molecules, and
strong characteristic peaks are generated in the SERS spectrum, thus achieving quantitative
detection of the analyte [10]. SERS substrates usually include gold, silver, and other
noble metal materials, and the signal intensity of SERS can be effectively enhanced by
improving the substrate [11]. Compared with a silver nanostructure, a gold nanostructure
has better chemical robustness and perfect functionalized chemistry, and can be better
used in SERS substrates [12]. Wang et al. utilized fullerene as the precursor to prepare Au-
doped carbon dots (CDAu) under microwave conditions [13]. Through research, it can be
concluded that CDAu intensely catalyzes the HAuCl4-fructose reaction to produce AuNPs
as bifunctional materials of SERS substrates and indicators. On the basis of this, a new
method was developed to determine As3+ by SERS with a linear range of 0.10–0.60 µg/L
and a detection limit of 0.06 µg/L. The combination of the two scatterings with Apt
controlled nanocatalytic amplification has made great progress, and has the advantages
of both. Li et al. coupled a sensitive carbon dot catalytic multiplicative reaction and a
high-selectivity Apt reaction to develop a SERS-RRS scattering spectral technology to
determine 5–150 nmol/L potassium ions [14].

Oxytetracycline (OTC) is a compound in the tetracycline class of drugs. It is a broad-
spectrum antibiotic and is broadly utilized for veterinary purposes in the livestock and
poultry industry. Owing to its low absorption efficiency, any intake above 70% is excreted
into the environment through excrement. The non-point-source emissions of municipal
waste and the farmyard manure application release antibiotics into the surroundings.
They enter natural surface water through urban sewage and wild outflows [15]. The
concentration in surface water can be detected in tens of micrograms/liters, and the
detection frequency is quite high, up to 90%. The increase in the utilization of OTC and
its release into rivers and oceans through wastewater has resulted in OTC resistance
genes increasing in pathogen-related species [16]. Therefore, it is urgent to establish new
analytical methods for tracing OTC besides classical methods such as chromatography.
Ma et al. established a fluorescent Na-Ln heterometallic CP as a fluorescent probe for the
quantitative detection of OTC [17]. The linear range was 0–100 µmol/L, and the detection
limit was 0.09 µmol/L. Gonzalez et al. proposed an AgNP substrate SERS method to control
honey quality and to identify oxytetracycline in honey samples [18]. The detection limit was
0.0001 nmol/mL. Wang et al. prepared silica microspheres coated with CdTe quantum dots
to detect 0–80 µmol/L OTC [19]. Yang et al. covalently immobilized the Apt with amino
groups on the electrode surface through a diazo coupling reaction [20], and constructed
a suitable electrochemical Apt sensing platform for 1.0 × 10−9–1.0 × 10−4 g/mL OTC.
Some of the above methods are not very sensitive, and some of the analysis processes
are complicated. As far as we know, there are no reports of a polycondensation reaction
of dicyandiamide (Dd) containing C≡N bonds with p-benzaldehyde (Bd) to synthesize
the COF of dicyandiamide/p-benzaldehyde (DdBd) with high catalytic activity, and a
polyethylene glycol 600 (PEG600)-HAuCl4 nanocatalytic amplification indicator reaction,
coupled with a highly selective aptamer, to establish a double scattering assay for OTC.
In this study, the specific Apt reaction of OTC was combined with the novel COF-DdBd
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nanocatalytic amplification to establish a simple and sensitive new SERS/RRS dual-mode
method to detect the ultratrace OTC in a soil sample.

2. Experimental
2.1. Instruments and Reagents

Instruments: A model F-7000 fluorescence spectrophotometer (Hitachi Co.,
Tokyo, Japan) with the parameters of volt = 350 V, excited slit = emission slit = 5 nm;
a DXR smart Raman spectrometer with a laser wavelength of 633 nm, a laser power
of 3.0 mW, a slit of 25 µm and an acquisition time of 5 s (Thermo Fisher Scientific
Co., Waltham, MA, USA); a model TU-1901 dual-beam UV−visible spectrophotometer
(Beijing Puxi General Equipment Limited Co., Ltd., Beijing, China); a high-speed freezing
centrifuge (Shanghai Lu Xiangyi Centrifuge Instrument Co., Ltd., Shanghai, China), an
electric thermostatic drying oven (Shanghai Jing Hong Laboratory Instrument Co., Ltd.,
Shanghai, China); a Fourier transform infrared (FTIR) absorption spectrometer (Shanghai
PerkinElmer Instruments Co., Ltd., Shanghai, China); an FEI Tecnai G2 F20 field-emission
transmission electron microscope (Thermo Fisher Scientific Co., Ltd., Suzhou, China) with
stem volt = 200 kV and camera constant 200; an X-ray diffractometer (Nippon Rigaku
Co., Tokyo, Japan); Belsorp-max II automatic specific surface area and porosity distributor
(Mack Company, Tokyo, Japan), sonic cleaner SK3300B (Shanghai Kedao Ultrasonic Instru-
ment Co., Ltd., Shanghai, China); KQ3200DB CNC ultrasonic cleaner (Kunshan Ultrasonic
Instrument Co., Ltd., Jiangsu, China); SXZ-4–10TC ceramic fiber muffle furnace (Shanghai
Shibei Instrument Equipment Factory Co., Shanghai, China); and a model HH-S2 constant
temperature water bath kettle (Jintan Dadi Automatic Instrument Co., Changzhou, China)
were used.

Reagents: Dicyandiamine (Shanghai Macklin Biochemical Co., Ltd., Shanghai, China);
p-benzaldehyde (Shanghai Macklin Biochemical Co., Ltd., Shanghai, China); dimethyl
sulfoxide solution (DMSO) (Guangzhou Yuanchang Trade Co., Ltd., Guangzhou, China);
ethanol (Chengdu Kelong Chemical Co., Ltd., Chengdu, China); and 0.1 nmol/L Apt of
OTC with a base sequence of 5′-CGA CGC ACA GTC GCT GGT GCG TAC CTG GTT
GCC GTT GTG T-3′ (Shanghai Shengong Bio-engineering Co., Shanghai, China) were
used. A 1.00 g/L chloroauric acid (HAuCl4) solution was prepared by taking 250 µL of 4%
chloroauric acid in a 10 mL centrifugal tube and diluting to the mark. An amount of 0.0496 g
of OTC solid was put in a tube and diluted to 10 mL with water to obtain a 10.0 mmol/L
OTC solution, then gradually diluted to 0.100 nmol/L with water. All reagents used were
analytical grade, and the experimental water was secondary pure water.

2.2. Preparation of the Highly Catalytic DdBd Nanosol

Bonding the requirements of nanocatalytic analysis and referring to previous re-
search [21], the preparation steps of DdBd nanosol were as follows. An amount of 0.378 g
of dicyandiamide (4.5 × 10−3 mol) and 0.101 g of p-benzaldehyde (7.5 × 10−2 mol) were
dissolved in 20 mL DMSO at a ratio of 6:1, and were completely dissolved via ultrasound,
then the solution was transferred into the reaction kettle and heated for 3 h in the muffle
furnace at 180 ◦C. It was then taken out and a uniform orange-yellow solution was obtained.
The prepared bright yellow solution was different from the reference prepared [21]. The
molar concentration of dicyandiamide represents the prepared DdBd concentration; that is,
the DdBd concentration was 0.225 mol/L. We took 3 mL 0.225 mol/L DdBd and diluted
the volume to 10 mL with water. A dialysis bag with a 3500 Da cut molecular mass was
utilized to dialyze for 14 h, and the DdBd solution concentration was 0.0675 mol/L.

2.3. Procedure

Amounts of 100 µL 6.75 mmol/L DdBd solution, 100 µL 0.100 nmol/L AptOTC solution,
and 0–1000 µL 0.100 nmol/L OTC solution were added to a 5 mL test tube with stopper and
mixed evenly. Then, 120 µL 1.00 g/L HAuCl4 solution, 35 µL 10.0 mmol/L HCl solution,
and 200 µL 15.0 g/L PEG600 solution were added, and diluted to 1.50 mL. The tube was
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put in an 80 ◦C water bath to heat for 45 min, then taken out and cooled with ice water.
The RRS intensity was measured by a fluorescence spectrophotometer and the value at
370 nm (I370nm) was recorded. The sample without OTC solution was prepared as the
blank (I370nm)0, and ∆I = I370nm − (I370nm)0 was calculated. When 100 µL 10.0 µmol/L VBB
solution was added, the SERS intensity at 1613 cm−1 (I1613) was measured; OTC was not
added as the blank (I1613)0, and ∆I1613 = I1613 − (I1613)0 was calculated.

3. Results and Discussion
3.1. Analytical Principles

Three COFs were prepared by reacting cyanamide, dicyandiamide, and melamine
with p-benzaldehyde. The experiment found that the reaction of HAuCl4-PEG600 to
form gold nanoparticles (AuNPs) is very slow; in this gold nanoreaction system the COF
could catalyze the reaction to form more AuNPs, and the generated AuNPs have RRS
and SERS signals. Using the slope procedure, COF (DdBd) prepared by dicyandiamide-p-
benzaldehyde showed the best catalytic effect and was selected for use. Considering the
fact that both AptOTC and DdBd have functional groups and π-π overlapping hydrophobic
groups, DdBd will be wrapped by AptOTC through hydrogen bonds, hydrophobic interac-
tions, and intermolecular force interactions, causing its catalytic activity to be inhibited.
When the OTC target was added, it could specifically bind to the Apt to form a stable
complex and release free DdBd, thereby restoring the catalytic activity of DdBd and grad-
ually increasing the content of AuNPs in the system. As a result, due to the increase in
AuNPs, the RRS/SERS signal also gradually increased. Within a certain concentration of
OTC range, the signal intensity of RRS/SERS is proportional to the concentration of added
OTC. On this basis, a sensitive SERS/RRS double-scattering spectroscopy method can be
established to determine OTC (Figure 1). Although the SERS/RRS peak area also has a
linear relationship with the OTC concentration, it is not convenient and fast for peak height
measurement. Therefore, its intensity is chosen to be expressed in the following text.
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3.2. Characterization of the Nanomaterials

An ordered π-π structure exists in COF materials, and the luminescence characteristics
of the π structure can be utilized as a fluorescent molecular probe to develop an analysis
method. In the COF materials, however, the aggregation of the π-π overlayer may also
cause fluorescence quenching. DdBd has a fluorescence peak at 460 nm under the excitation
wavelength of 360 nm (Figure A1A), and the fluorescence gradually increases with the in-
crease in DdBd concentration. It has been found that the interaction between aptamers and
nanomaterials with fluorescent properties will lead to its fluorescence decrease [22]. More-
over, due to the fluorescence characteristics of DdBd, it was used as a direct fluorescence
probe to examine the interaction between the COF and the aptamer. The result (Figure A1B)
shows that the fluorescence decreased with the aptamer increasing from 0 to 50 nmol/L
aptamer. This demonstrates that when DdBd is wrapped by Apt, the excited light cannot
directly hit the surface of DdBd, making it difficult for it to enter the excited state. Without
the transition of electrons, energy will not be released to produce fluorescence, so the fluo-
rescence of DdBd will be weakened. The RRS spectrum (Figure A1C) reveals that DdBd
produces two intense RRS peaks at 360 nm and 450 nm. With the increase in DdBd concen-
tration, the two peak RRS signals also increase due to the nanoparticles increasing, and the
peak at 450 nm is more sensitive. The absorption spectrum of DdBd (Figure A1D) has an
absorbing peak at 310 nm. The hyperchromic response of the absorption peak also increases
with the DdBd concentration increase, and the higher the concentration, the greater the
degree of conjugation of the nanoparticles, which cause the ultraviolet absorption peak
red-shift. The characteristic peaks of Raman at 1005 cm−1 and 1623 cm−1 (Figure A1E)
are attributable to a benzene ring stretching vibration and C=C bond stretching vibration,
and because dicyandiamide does not have the same ring structure as melamine, the peak
at 1623 cm−1 is very weak. The two peaks at 669 cm−1 and 683 cm−1 can be ascribed to
the N-H bond deformation vibration, and the peak at 1412 cm−1 is attributed to the C-N
bond tensile vibration. The peaks at 2919 cm−1 and 3008 cm−1 can be ascribed to the N-H
bond stretching vibration, which is in accordance with the characterization of infrared
results. According to the preparation method of the DdBd materials, the solution was
obtained and placed in a 50 mL centrifugal tube and centrifuged with a refrigerated cen-
trifuge. The supernatant liquid was discarded and 20–30 mL water was added for washing;
this was repeated 3–4 times, and after adding 20 mL water the resulting precipitate was
ultrasonically dispersed. Finally, dried solid DdBd was obtained after oven drying for
1–2 h. The precursors dicyandiamine and p-benzaldehyde were used to record the FTIR
(Figure A1F). DdBd exhibits broad and large frequency bands at 3283 cm−1 and a peak at
2169 cm−1, which are ascribed to dicyandiamide and which indicate the N-H bond stretch-
ing vibration and symmetrical stretching vibration of -NH2 bonds. Both of them have
C≡N bond extra tensile vibrations at 2194 cm−1 and 2169 cm−1, and N-H deformation
vibrations at 1253 cm−1 and 1208 cm−1. Of course, dicyandiamide also has C=N bonds
with obvious tensile vibrations at 1618 cm−1 and 1505 cm−1, and DdBd also has this key at
1599 cm−1. The peak relevant to the C=O bond stretching vibration that disappeared at
1691 cm−1 indicates that the reaction of aldehyde occurred and the triazine unit assimilated
into the structure successfully. The peaks of dicyandiamine at 1094 cm−1 and DdBd at
1168 cm−1 also show the presence of the secondary amine C-N tensile vibration. At the
same time, in dicyandiamide, the C-N-C bond symmetric stretching vibration existing at
928 cm−1 disappears in DdBd with the change in the ring structure of COF. Zeta potential
is a measure of the strength of mutual repulsion or attraction between particles. Under
neutral conditions, the zeta potential of DdBd is negative. It can be seen from Figure A2A
that the charge distribution of DdBd is −1.29 Mv, and the ζ value of the Zeta potential is
between 0 and ±5. This proves that the repulsive force between particles is small, and
particles are prone to aggregation. As shown in Figure A2B, the particle size distribution of
DdBd was measured with a particle size analyzer, and this shows that the mean granule
size of DdBd was approximately 68 nm.
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Transmission electron microscope (TEM) images of DdBd and the analysis system were
recorded. As shown in Figure 2A,B, the degree of aggregation of particles in DdBd is small,
and the dispersion is relatively uniform, which is in keeping with the average particles
in the particle size analyzer. The particle diameter of a single particle is approximately
70 nm, but from Figure 2B, we can see that smaller particles are spreading around, and
the diameter of a single particle is approximately 40 nm. In the element distribution
diagram, it can be clearly seen that the C, N, and O elements are distributed in various
places, and the distribution of elements in the concentrated area of DdBd is more dense
(Figure 2C,E). The energy spectra show that the DdBd particles mainly contain C, N, and O
elements (Figure A3A). So as to check the degree of crystallinity of the prepared DdBd, the
sample and two of its precursors were tested via powder X-ray diffraction. As shown in
Figure A3B,C, the two precursors of DdBd have good crystallinity, and the DdBd also has a
definite degree of crystallinity, which can be confirmed when the Bragg angle is 25◦ and the
DdBd has a wide diffraction peak. This is in accordance with the TEM image. The sample
DdBd was degassed at 150 ◦C for 8 h, then tested with the BELSORP-MAX II automatic
specific surface area and porosity distribution instrument under an N2 atmosphere. During
the test, we ensured that the sample tube was completely immersed in liquid nitrogen. The
specific surface area of the sample was calculated by BET: SBET = 24.2 m2/g. This shows
that the prepared DdBd has a good specific surface area, which also provides a good site
for aptamer adsorption (Figure A3D). The AuNP produced in the analysis system without
OTC is quasi-spherical with a mean size of 30 nm; after addition of OTC, the catalytic
indicator nanoreaction enhanced to form more AuNPs with a size of 20 nm (Figure 2F,G).

3.3. RRS and SERS Spectra of the Catalytic Analysis System

Highly sensitive SERS and simple RRS are a kind of inelastic and elastic scattering,
respectively, and both have developed rapidly with nanoparticle preparation technology.
The dimode molecular spectra were chosen to study the COF catalytic indicator reaction.
The AuNP indicator reaction of PEG600-HAuCl4 is extremely slow, and the RRS signal is
very weak due to fewer AuNPs. However, the prepared DdBd has a strong catalytic effect
on this nanoreaction. The system has two RRS peaks at 370 nm and 520 nm (Figure 3A), and
the largest peak is at 370 nm. Therefore, this spectral peak was selected for the RRS analysis.
The catalytic effect of COF depends not merely on its chemical properties, but also on its
size. A large size of COF displays weak catalysis, which is similar to precious nanoparticles.
With the amount of DdBd increased, the catalytic effect, the produced AuNPs, and the RRS
signal intensity ∆I370nm gradually increased. For the DdBd-PEG600-HAuCl4-AptOTC-OTC
nanocatalytic system, via electrostatic adsorption Apt can adsorb on the surface of DdBd
to restrain its catalytic action. After adding the OTC target, Apt combines with the target
and releases DdBd, restoring the DdBd catalytic activity. The ∆I370nm shows a great linear
relation with OTC concentration (Figure 3B), so we selected this peak for the determination
of OTC. In general, large particles produce strong RRS. Owing to the formation of large
AuNPs in the blank, the RRS blank was high. SERS is a highly sensitive molecular spectral
technique. We used it to research the aptamer-mediated catalytic analysis system. However,
there was no SERS signal when SERS detection is performed. Thankfully, in the presence
of the SERS probe molecule Victoria blue B (VBB), the system showed an intense SERS
peak at 1613 cm−1, belonging to C=N and C=C bond bending stretching. The SERS peak at
1164 cm−1 is attributed to CH2 bond bending vibration. The peak values at 1360 cm−1 and
1393 cm−1 are attributed to the symmetric bending vibration of the CH2 bond and bending
vibration of the CH bond, respectively. The peak at 1199 cm−1 is attributed to symmetric
tensile vibration of the NH2 bond (Figure 3C). The signal strength ∆I1613cm

−1 is positively
proportional to the concentration of OTC, with a detection limit of 9.0 × 10−4 nmol/L.
In addition, the linear relationship between the area and intensity of SERS with OTC
concentration was compared (Figure A4), and it was found that using SERS intensity to
express OTC concentration showed a higher slope and higher sensitivity. Its determination
of sensitivity is higher than with the RRS method. Additionally, due to the large AuNPs and
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the weaker SERS activity, the blank value is lower than the RRS. Compared with RRS, this
is the advantage of SERS. Therefore, the SERS of the PEG600 system was chosen to detect
OTC. In addition, according to the calculation formula of enhancement factor (EF) [23,24],
EF = (ISERS/CSERS)/(IRS/CRS), the Raman spectra of the VBB solution with AuNPs and
VBB solution were recorded (Figure A5); ISERS = 1836, CVBB = 6.25 × 10−7 M, when VBB
solution CRS = 0.1 M and its intensity IRS = 80.04, thus the EF is 3.67 × 106. Generally, the
EF results were 103~1014 [25]; EF in this study was 106, indicating that the newly prepared
AuNPs showed good performance as a SERS substrate. Compared with the reported EF of
rhodamine 6G (R6G) and crystal violet (CV) common molecular probes, the EF of R6G and
CV in the study of Wang et al. were 6.12 × 107 and 3.02 × 105, respectively [26]. Although
the EFVBB molecular probe in this study was not as good as R6G, there exists fluorescence
interference. Compared with the CV, the VBB shows a better Raman enhancement effect.

Biosensors 2021, 11, x FOR PEER REVIEW 7 of 20 
 

 
Figure 2. (A,B) TEM image of DdBd. (C–E) The mapping image of DdBd. (C1) TEM image of the 
element mapping part. (F) TEM image of 80.0 mg/L HAuCl4 + 0.230 mmol/L HCl + 149 g/L PEG + 
0.300 mmol/L DdBd + 6.70 pmol/L AptOTC + 0.625 μmol/L VBB. (G) TEM image of F + 4.00 × 10−2 

nmol/L OTC. 

3.3. RRS and SERS Spectra of the Catalytic Analysis System 
Highly sensitive SERS and simple RRS are a kind of inelastic and elastic scattering, 

respectively, and both have developed rapidly with nanoparticle preparation technology. 
The dimode molecular spectra were chosen to study the COF catalytic indicator reaction. 
The AuNP indicator reaction of PEG600-HAuCl4 is extremely slow, and the RRS signal is 
very weak due to fewer AuNPs. However, the prepared DdBd has a strong catalytic effect 
on this nanoreaction. The system has two RRS peaks at 370 nm and 520 nm (Figure 3A), 
and the largest peak is at 370 nm. Therefore, this spectral peak was selected for the RRS 
analysis. The catalytic effect of COF depends not merely on its chemical properties, but 
also on its size. A large size of COF displays weak catalysis, which is similar to precious 
nanoparticles. With the amount of DdBd increased, the catalytic effect, the produced 
AuNPs, and the RRS signal intensity ΔI370nm gradually increased. For the DdBd-PEG600-
HAuCl4-AptOTC-OTC nanocatalytic system, via electrostatic adsorption Apt can adsorb on 
the surface of DdBd to restrain its catalytic action. After adding the OTC target, Apt com-
bines with the target and releases DdBd, restoring the DdBd catalytic activity. The ∆I370nm 
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Figure 2. (A,B) TEM image of DdBd. (C–E) The mapping image of DdBd. (C1) TEM image of the
element mapping part. (F) TEM image of 80.0 mg/L HAuCl4 + 0.230 mmol/L HCl + 149 g/L
PEG + 0.300 mmol/L DdBd + 6.70 pmol/L AptOTC + 0.625 µmol/L VBB. (G) TEM image of
F + 4.00 × 10−2 nmol/L OTC.
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Figure 3. RRS and SERS spectra of the catalytic analysis system. (A) RRS spectra of catalytic system: 53.0 mg/L HAuCl4
+ 0.300 mmol/L HCl + 2.00 g/L PEG600+ DdBd (a–h: 0, 0.225, 0.450, 0.675, 0.900, 1.13, 1.35, 1.58 mmol/L DdBd).
(B) RRS spectra of catalytic analysis system: 0.080 g/L HAuCl4 + 0.230 mmol/L HCl + 2.00 g/L PEG600 + 0.450 mmol/L
DdBd + 6.70 pmol/L Apt + OTC (a–h: 0, 3.00 × 10−3, 6.70 × 10−3, 2.00 × 10−2, 2.70 × 10−2, 4.00 × 10−2, 5.30 × 10−2,
6.00 × 10−2 nmol/L OTC). Inset shows a linear relationship between the RRS intensity(4I370) with the OTC concentration.
(C) SERS spectra of catalytic analysis system: 0.080 g/L HAuCl4 + 0.230 mmol/L HCl + 2.00 g/L PEG600 + 0.450 mmol/L
DdBd + 6.70 pmol/L AptOTC+0.625 µmol/L VBB+OTC (a–j: 0, 3.00 × 10−3, 6.70 × 10−3, 1.30 × 10−2, 2.00 × 10−2,
2.70 × 10−2, 3.30 × 10−2, 4.70 × 10−2, 6.00 × 10−2, 7.00 × 10−2 nmol/L OTC). Inset shows a linear relationship between
the SERS intensity(4I1613) with the OTC concentration.

3.4. Catalytic Enhancement Mechanism of COF

Under the experimental conditions, DdBd can catalyze the reduction of HAuCl4
by PEG600 to form gold nanoparticles. Within a certain concentration range, with the
concentration of the catalyst DdBd increases, the catalytic capacity increases, and the
generated gold nanoparticles increase. At the same time, the RRS and SERS effects of
the system increase and show a certain linearity with the concentration of DdBd. Here
we still compare the catalytic effects of DdBd by changing the reducing agent (Table A1).
The results show that the PEG600 exhibits the biggest slope and it was chosen for use.
Dicyandiamide does not have the same ring structure as melamine, but it has C≡N.
Therefore, the DdBd synthesized by the condensation reaction of dicyandiamine and p-
benzaldehyde has a porous organic structure with a skeleton, and it is easier to obtain the
structure of 3D. By combining the catalytic active center embedded in the material skeleton,
it has better catalytic performance. Combined with the characteristics of low density, large
specific surface area and good chemical stability of COF, this new COF may bring new
vitality to the research. In short, the surface electrons on DdBd can accelerate the redox
electron-transfer between Au3+ and PEG600 to speed up the AuNP reaction (Figure 4).
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3.5. Optimal Conditions

The effects of PEG600, HAuCl4, HCl, AptOTC, the concentration of DdBd, the temper-
atures of reaction and time on the scattering signals of the system were studied separately
(Figure A6). When 2.00 g/L PEG600, 80.0 mg/L HAuCl4, 0.230 mmol/L HCl, 0.450 mmol/L
DdBd, 6.70 pmol/L AptOTC, 0.040 nmol/L OTC, and temperature of 80 ◦C for 45 min were
selected, the signal was strongest. In addition, the 0.625 µmol/L VBB concentration was
chosen for use.

3.6. Working Curve

Under the chosen conditions, different concentrations of OTC, and the according RRS,
SERS signal values were used to draw the working curves to obtain their analytical features
(Table 1). The linear range of RRS (LR) is 3.00 × 10−3–6.00 × 10−2 nmol/L, the linear
equation is ∆I370nm = 9.33 × 103 C + 34.0, the coefficient is 0.9902, and the limit of detection
(DL) is 1.1 × 10−3 nmol/L. The SERS linear range is 3.00 × 10−3–7.00 × 10−2 nmol/L, the
linear equation is ∆I1613 = 4.58 × 104 C + 181, the coefficient is 0.9872, and the detection
limit is 9.0 × 10−4 nmol/L. The RRS and SERS working curves are shown in Figure 3.
Through comparison, the RRS is simpler than SERS due to its determination and does not
require SERS molecular probes. However, it can be seen that the SERS analysis method is
not only highly sensitive, but also has low blank value and good reproducibility; it has low
blank value due to large AuNPs with low SERS activity. It is more practical than the RRS
analysis method. Therefore, the SERS method was selected to detect the OTC in the sample.
Although the use of COF and SERS analysis methods has been reported to determine the
analyte, it can be seen from Table A2 that the OTC detection methods reported in recent
years are not enough [27–31], the sensitivity is not high, and the quantitative analysis
method of SERS is not used to detect OTC in soil samples. This method provides a new
method to detect OTC in soil samples.
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Table 1. RRS/SERS analysis features of HAuCl4-glycol (GC)/PEG-Apt-DdBd-OTC system.

Reductant Linear Range (×10−3 nmol/L) Linear Equation Coefficient DL (×10−3 nmol/L)

EG 13.0–53.0
6.70–33.0

∆IRRS = 2.54 × 103 COTC + 11.9
ISERS = 1.44 × 104 COTC − 92.5

0.9853
0.9797

8.7
7.2

PEG200 6.70–46.7
6.70–53.0

∆IRRS = 7.30 × 103 COTC + 13.9
ISERS = 2.50 × 104 COTC + 59.4

0.9721
0.9932

3.3
2.2

PEG400 13.0–60.0
6.70–60.0

∆IRRS = 2.99 × 103 COTC − 8.10
ISERS = 4.00 × 104 COTC + 308

0.9715
0.9292

5.0
5.0

PEG600 3.00–60.0
3.00–70.0

∆IRRS = 9.33 × 103 COTC + 33.9
ISERS = 4.58 × 104 COTC + 181

0.9902
0.9872

1.1
0.9

PEG6000 6.70–57.0
3.30–33.0

∆IRRS = 7.76 × 103 COTC + 0.400
ISERS = 2.93 × 104 COTC − 0.800

0.9748
0.9899

2.9
2.6

PEG20000 6.70–50.0
6.70–43.0

IRRS = 6.19 × 103 COTC + 18.2
ISERS = 171 × 104 COTC − 13.9

0.9905
0.9801

3.2
3.8

3.7. Influence of Coexisting Substances

On the basis of the experimental method, the influence of coexisting substances in the
detection of 1.30 × 10−2 nmol/L OTC by RRS and SERS was researched. The outcomes
of the experiment indicate that within a relative error range not exceeding ±10%, in the
RRS spectrum analysis, 1000 times Na+, Co2+, Ca2+, SO3

2−, PO4
3−, NO2

−, CH3COO−,
lysine (Lys), histidine (His), and tryptophan (Trp); 500 times Fe3+, SO4

2−, HCO3
−, HPO4

2−,
CO3

2−, and alanine (Ala); 100 times Mg2+, P2O7
4−, glycine (Gly), and threonine (Thr);

50 times K+; 10 times H2PO4
− and penicillin sodium; and 5 times tetracycline did not

interfere with the RRS measurement of OTC (Table A3). In the SERS spectral analysis,
1000 times Na+, Co2+, Mg2+, Fe3+, SO3

2−, PO4
3−, NO2

−, CH3COO−, H2PO4
−, threonine

(Thr), Lys, and Ala; 500 times Ca2+, HPO4
2−, P2O7

4−, and His; 100 times K+, HCO3
−,

CO3
2−, and Trp; 50 times Al3+; 10 times Zn2+, SO4

2−, and Gly; and 5 times ofloxacin and
tetracycline did not interfere with OTC SERS determination (Table A4). This shows that
the selectivity of these two spectral analysis methods is relatively good.

3.8. Sample Analysis

Four soil samples were collected, dried, smashed, and ground. We weighed 0.200 g of
each soil sample into a 50 mL centrifuge tube, added water to increase the volume to 30 mL,
used an ultrasonic cleaner to sonicate the mixture for 36 h, and then centrifuged for 10 min
at 10,000 r/min. The supernatant liquid was used to detect the OTC content after passing
through a 0.2 µm filter membrane to remove the residue. The blank without sample as
the blank solution was disposed of in the same way, and was detected depending on the
experimental method. The final measurement results were on the basis of the mean of
5 measurements. The measurement results are shown in Table A5. The relative standard
deviation (RSD) is 1.35~4.78%, and the sample recovery is 94.3~104.9%. This shows that
the SERS method is reliable and accurate.

4. Discussion

It was found that redox electron transfer between Au3+ and PEG600 is very slow,
and AuNPs are rarely formed. For the prepared material DdBd, its surface electrons can
accelerate the redox electron transfer between Au3+ and PEG600, which speeds up the
formation of AuNPs. When DdBd was wrapped via the AptOTC, the synergy between
nanosurface electrons of DdBd and the redox electrons was destroyed, the nanoreaction
between Au3+ and PEG600 was inhibited, so the generated AuNPs decreased, and the
SERS/RRS signal changes correlated with the change in AuNP content. Upon addition
of the target molecule OTC, it specially bound AptOTC to release DdBd, which sped
up the transfer of redox electrons, and the SERS/RRS signal increased with the OTC
increasing. Based on this theory, this research has established a new SERS/RRS method for
OTC detection.

The COF exhibits strong catalysis of the Au(III)-PEG reaction, which can amplify the
analytical signal. This is a foundation for developing a highly sensitive SERS/RRS method.
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Secondly, the interaction of COF and Apt should be appropriate. The strong interaction
between them leads to the difficulty in Apt desorption, and the assay method cannot be
developed. Too weak an interaction caused a high blank. Finally, the specificity of the Apt
is high. After reacting with the target molecule, the Apt can be desorbed from the COF
surface so as to obtain a highly sensitive and selective method.

5. Conclusions

According to the solvothermal reaction of dicyandiamide and p-benzaldehyde, DdBd
nanosols with high catalysis and stability were prepared and characterized via TEM, EDS,
infrared spectroscopy, and other techniques in detail. It was found that DdBd has an intense
catalytic activity on the new PEG600-HAuCl4 nanoreaction, and the generated AuNPs
show intense SERS signals in the presence of VBB molecular probes. Via combining the
Apt reaction with the DdBd nanocatalytic amplification reaction, a new SERS quantitative
analysis method to detect OTC was developed. It has advantages of high sensitivity,
selectivity, accuracy, and low blank value. In addition, RRS can also be used to detect OTC
without adding molecular probes. This work can provide new ideas for the design of the
Apt-controlling COF catalytic AuNP reaction SERS system, and this system can be used to
detect residual antibiotic substances in the environment and eliminate the potential harm
of these substances to the natural environment and human body.
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Figure A1. Molecular spectra of DdBd. (A) Fluorescence spectrum of DdBd (a–i: 10.7, 11.8, 12.5, 13.2, 15.0, 17.3, 18.8, 20.5,
22.5 mmol/L DdBd, with volt = 500 V, excited slit = emission slit = 5 nm). (B) Fluorescence spectrum of 0.680 mmol/L
DdBd+AptOTC (a–d: 0, 20.0, 40.0, 50.0 nmol/L AptOTC, with volt = 500 V, excited slit = emission slit = 10 nm). (C) RRS
spectrum of DdBd (a–i: 2.25, 3.21, 4.09, 4.89, 5.63, 6.30, 6.92, 7.50, 8.04 mmol/L DdBd). (D) Absorption spectrum of
DdBd (a–i: 2.25, 2.74, 3.66, 4.29, 5.08, 6.46, 7.07, 7.50, 8.04 mmol/L DdBd). (E) Normal Raman spectrum (a–c: 14.5, 17.6,
22.5 mmol/L DdBd). (F) FTIR spectrum of dicyandiamide, p-benzaldehyde, and DdBd.

Table A1. Comparison of DdBd nanocatalysis characteristics of glycol/PEG systems.

Nano Catalytic System Linear Range
(nmol/L) Linear Equation Coefficient

lycol 0.450–4.50 ∆I370nm = 1.73 × 103 C − 67.4 0.9750
PEG200 0.225–1.575 ∆I370nm = 5.54 × 103 C + 402.3 0.9208
PEG400 0.450–3.15 ∆I370nm = 3.26 × 103 C + 383 0.9603
PEG600 0.225–1.58 ∆I370nm = 6.67 × 103 C + 223 0.9952
PEG6000 0.225–1.58 ∆I370nm = 2.79 × 103 C + 57.9 0.9590

PEG20000 0.225–1.58 ∆I370nm = 5.11 × 103 C + 231.3 0.9301
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Figure A2. Apparent zeta potential and particle size distribution of DdBd. (A) Apparent zeta
potential of DdBd. (B) DdBd particle size distribution.
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Figure A3. XRD, adsorption/desorption isotherms and energy spectrum of DdBd. (A) DdBd energy spectrum. (B) XRD of
Dd and Bd. (C) XRD of DdBd. (D) N2 adsorption/desorption isotherms of DdBd (where P is the measured air pressure, P0

is the saturated vapor pressure of nitrogen at liquid nitrogen temperature, P/P0 is the partial pressure of N2).
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Figure A4. The relationship between SERS intensity and area with OTC concentration. The DdBd-PEG600-HCl-HAuCl4-
AptOTC-OTC-VBB catalytic analysis system: 0.080 g/L HAuCl4 + 0.230 mmol/L HCl + 2.00 g/L PEG600 + 0.450 mmol/L
DdBd + 6.70 pmol/L AptOTC + 0.625 µmol/L VBB+OTC (a–j: 0, 3.00 × 10−3, 6.70 × 10−3, 1.30 × 10−2, 2.00 × 10−2,
2.70 × 10−2, 3.30 × 10−2, 4.70 × 10−2, 6.00 × 10−2, 7.00 × 10−2 nmol/L OTC).
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Figure A5. Normal Raman and SERS spectra of the VBB. (a) Normal Raman spectra of 0.1 mol/L VBB
solution. (b) SRES spectra of catalysis system: 0.080 g/L HAuCl4 + 0.230 mmol/L HCl + 2.00 g/L
PEG600 + 0.450 mmol/L DdBd + 0.625 µmol/L VBB.
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Table A2. Comparison of reported OTC analysis methods.

Method Principle Linear Range DL Ref.

Fluorescence

The covalent attachment of DNA probes and
MOF nanosheets enhances the affinity

between the nanomaterials and DNA, and the
interaction with OTC leads to a decrease

in fluorescence.

0.50–5.00 µg/L 0.40 µg/L [27]

Apt electrochemical sensor

A portable aptamer sensor was constructed to
detect oxytetracycline by using gold

nanoparticles/carboxylated multi-walled
carbon nanotubes @thionine-linked aptamer

complementary chains as signal markers.

10−13–10−5 g/mL 3.1 × 10−14 g/mL [28]

Apt electrochemical sensor

The Ce-MOF@COF hybrid product shows
high bioaffinity for OTC targeting aptamers,

which further increases the detection effect of
OTC detection.

0.1–0.5 ng/mL 17.4 fg/mL [29]

Ap light sensor
A LRET biosensor was developed, coupling

the OTC aptamer to the photonanoparticle for
OTC measurement.

0.1–10 ng/ml 0.054 ng/ml [30]

SERS

A nano-biosensor based on AuNPs was
established, with stem-loop DNA

modification as the SERS active substrate for
OTC detection.

4.60 × 10−2–4.6 × 102 fg/mL 4.35 × 10−3 fg/mL [31]

SERS/RRS

According to a COF-catalyzed
PEG600-HAuCl4-HCl reaction to generate

AuNPs, SERS and RRS signals were generated,
and combined with aptamers at the same time;

a new SERS/RRS coupled dual-mode OTC
detection method was developed.

3.00 × 10−3–7.00 × 10−2 nmol/L 9.0 × 10−4 nmol/L This Method
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Table A3. Influence of coexistent substances (RRS).

Coexisting Substances Times Relative Error (%) Coexisting Substances Times Relative Error (%)

Na+ 1000 −2.4 HCO3
− 500 2.4

Co2+ 1000 4.5 CH3COO− 1000 −2.1
Zn2+ 500 3.3 HPO4

2− 500 6.1
K+ 50 4.4 H2PO4

− 10 −5.3
Ca2+ 1000 3.5 P2O7

4− 100 9.6
Mg2+ 100 −4.3 CO3

2− 500 −7.5
Al3+ 1000 5.2 NAD 100 −5.3
Fe3+ 500 3.1 GTP 1000 −7.2

SO3
2− 1000 −6.4 CTP 1000 −6.3

SO4
2− 500 −4.5 UTP 1000 −4.1

PO4
3− 1000 −5.1 ADP 500 −2.3

NO2
− 1000 −3.1 AMP 100 6.8

penicillin sodium 10 5.4 tetracycline 5 8.6

Table A4. Influence of coexistent substances (SERS).

Coexisting Substances Times Relative Error (%) Coexisting Substances Times Relative Error (%)

Na+ 1000 −5.9 HCO3
− 100 −1.8

Co2+ 1000 5.9 CH3COO− 1000 −7.1
Zn2+ 10 −3.5 HPO4

2− 500 5.4
K+ 100 −5.3 H2PO4

− 1000 −0.6
Ca2+ 500 −3.4 P2O7

4− 500 −6.1
Mg2+ 1000 −6.7 CO3

2− 100 −3.5
Al3+ 50 2.8 Thr 1000 −4.7
Fe3+ 1000 4.2 Lys 1000 1.1

SO3
2− 1000 2.8 His 500 6.1

SO4
2− 10 −9.5 Trp 100 2.8

PO4
3− 1000 1.7 Ala 1000 4.3

NO2
− 1000 −6.9 Gly 10 −5.7

ofloxacin 5 6.7 tetracycline 5 7.1

Table A5. The results of OTC sample determination.

Sample Single Value
(×10−3 nmol/L)

Average
(×10−3 nmol/L)

Added
(×10−3 nmol/L)

Found
(×10−3 nmol/L)

Recovery
(%)

RSD
(%)

Content
(µg/kg)

AAS
(µg/kg)

1
5.45, 5.36, 5.73,

5.01, 5.36 5.38
6.70 11.88 96.3

4.78 2.0413.0 18.79 107.6 2.20
20.0 25.52 102.6

2
7.04, 6.73, 6.96

7.23, 7.18 7.03
6.70 13.42 95.6

2.82 2.6713.0 20.39 105.1 2.44
20.0 27.10 101.1

3
8.49, 8.47, 8.34

8.61, 8.73 8.53
6.70 15.16 99.2

1.73 3.2413.0 21.42 98.7 3.46
20.0 28.17 95.8

4
7.82, 7.83, 7.65

7.93, 7.74 7.79
6.70 14.05 94.3

1.35 2.9613.0 20.93 101.8 3.12
20.0 28.17 104.9
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