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Abstract: Parkinson’s disease (PD) is a neurodegenerative disease in which the neurotransmitter
dopamine (DA) depletes due to the progressive loss of nigrostriatal neurons. Therefore, DA mea-
surement might be a useful diagnostic tool for targeting the early stages of PD, as well as helping
to optimize DA replacement therapy. Moreover, DA sensing appears to be a useful analytical tool
in complex biological systems in PD studies. To support the feasibility of this concept, this mini-
review explores the currently developed graphene-based biosensors dedicated to DA detection.
We discuss various graphene modifications designed for high-performance DA sensing electrodes
alongside their analytical performances and interference studies, which we listed based on their limit
of detection in biological samples. Moreover, graphene-based biosensors for optical DA detection
are also presented herein. Regarding clinical relevance, we explored the development trends of
graphene-based electrochemical sensing of DA as they relate to point-of-care testing suitable for the
site-of-location diagnostics needed for personalized PD management. In this field, the biosensors
are developed into smartphone-connected systems for intelligent disease management. However,
we highlighted that the focus should be on the clinical utility rather than analytical and technical
performance.

Keywords: dopamine; Parkinson’s disease; graphene; point-of-care; biosensing

1. Introduction

Parkinson’s disease (PD) is the second most common human neurodegenerative
disorder, after Alzheimer’s disease (AD), with its incidence ranging from 10 to 18 per
100,000 people/year. Age is the most significant risk factor, with severe implications
for public health. As populations are aging and life expectancy is rising worldwide,
the number of people with PD is expected to increase by more than 50% by 2030 [1].
The disease is diagnosed based on motor impairment, including bradykinesia rigidity or
tremor; this is when about 70% of the dopaminergic neurons of the substantia nigra pars
compacta are degenerated due to α-synuclein deposits. PD is also diagnosed clinically
once the synucleinopathy is already advanced. Researchers and clinicians indicate a
potential temporal window before the onset of specific signs and symptoms of the disorder
during which potential disease-modifying therapy could be administered to prevent or
delay the disease development and progression. Indeed, there is a need for an early
diagnosis primarily based on quantifiable measures (i.e., biomarkers) to refine qualitative
assessments [2]. From a neurochemical perspective, PD is a neurodegenerative disease
in which depletion of the catecholamine DA in the nigrostriatal system appears due to
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the loss of nigral neurons and striatal terminals. Over the years, the neurotransmitter
loss progresses to reach only 3% of normal DA concentration in the putamen of patients
with pathologically proven end-stage PD. In untreated PD patients, most studies found
significantly decreased DA levels in the cerebrospinal fluid (CSF), reflecting dopaminergic
cell loss [3]. Eventually, an individual develops motor symptoms, including bradykinesia,
rigidity, tremor, and postural instability, which result from this drop in DA level. This
means that DA level measurement might be a useful diagnostic tool for targeting the early
stage of the defunctionalization of DA-producing neurons (nigrostriatal dopaminergic
denervation) to enable the development of approaches to retard progression or even
prevent the disease [4].

Dopamine replacement therapy (DRT), with levodopa as the gold standard drug
treatment, is used to alleviate PD’s symptoms. While DRT does not cure the disease, it does
help to reduce many of the motor symptoms of PD, especially during the first years after
clinical disease onset. However, as the disease progresses, levodopa’s alleviating effect
alters nonlinearly due to compensatory mechanisms for the depletion of the striatal DA
level [5]. Véronneau-Veilleux et al. have reported that the compensation for denervation
progress affects both levodopa’s duration and delayed effect [5]. They have highlighted
that therapeutic doses of levodopa may have no effect at high levels of denervation, or that
its effect may vanish rapidly, while larger doses of levodopa may cause high transient peaks
in brain DA concentration, resulting in dyskinesias. The nonlinear pharmacodynamics
of levodopa through PD progression complicates the optimization of a drug regimen.
Indeed, as the disease progresses, side effects appear, and therefore personalized therapy is
recommended. In light of recent findings, algorithmic approaches to dosing adjustments
based on the measurement of the physiological and pharmacokinetic parameters by sensors
are a promising step toward optimizing levodopa therapy [5,6].

Since DA is the target neurotransmitter both in PD diagnostics and treatment, the
sensitive and selective methods of its determination have been of great interest for research
and clinical implications. Notably, a low detection limit is essential due to very low DA
concentrations in the body fluids, which is as low as 0.01–1 µM [7], including plasma up
to 0.11 nM [8], CSF with levels amounting to 0.02–0.07 nM [8,9], and below the upper
reference limit (3.3 µmol/24 h) in the urine of adults [10]. In the brain, the DA level is
83, 1130, and 2969 fmol/mg wet weight, in the cortex, putamen, and caudate regions,
respectively, of PD patients [4]. During the last decade, numerous research efforts have
been devoted to developing various techniques for DA quantification in body fluids,
such as blood and CSF, including mass spectrometry coupled with separation techniques
and immunochemical, fluorescence-based, and electrochemical methods [11]. Although
these highly reliable approaches are generally well accepted, they still suffer from the
disadvantages of being high cost, time consuming, and laborious, with requirements for
highly skilled personnel [7].

Due to high spatial and temporal resolution, high sensitivity and selectivity, and the
possibility of direct monitoring at low cost and with the leverage of user-friendly tools,
oxidation-based electrochemical sensing platforms are becoming a more popular and devel-
oped technique that is being implemented in a biological environment [12–14] and also for
DA detection [15]. Efforts have been made to detect in situ DA, e.g., in the brain or living
cells. Asif et al. applied the Zn-NiAl LDH/rGO superlattice electrode to track the DA re-
leased from human neuronal neuroblastoma cell line SH-SY-5Y [16]. Li et al. demonstrated
a developed nanoelectronic biosensor, as shown in Figure 1, for monitoring the DA release
from living PC12 cells [17]. Figure 1a shows the illustration of a DNA-aptamer modified
by a multiple parallel-connected (MPC) silicon nanowire field-effect transistor (SiNW-FET)
device, as well as the process of DNA-aptamer immobilization of the MPC SiNWFET. This
device detects the DA under hypoxic stimulation from living PC12 cells. This developed
MPC aptamer/SiNW-FET device demonstrated a DA detection limit of up to <10−6 M
with high specificity when exposed to other chemicals, such as tyrosine, ascorbic acid
(AA), phenethylamine, norepinephrine, epinephrine, and catechol. Wu et al. fabricated
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reproducible miniaturized, multi-layered, graphene-based sensors with astonishingly high
sensitivity when compared with other sensors [18]. Figure 1b (i) shows the nanofabricated
miniaturized multilayer graphene sensor electrodes. Figure 1b (ii) shows the scanning
electron microscopy (SEM) image of the top of the sensor array and the AFM image of
the sensor surface. Figure 1b (iii) depicts the mechanism behind it. The DA undergoes a
redox reaction and is oxidized to dopamine-o-quinone (DOQ) by applying voltage. The
sensitivity of the fabricated sensor is monitored by fast-scan cyclic voltammetry (FSCV)
measurements. Figure 1b (iv) displays the area-normalized electrochemical current (IEC)
curves in response to the DA solution. The fabricated graphene sensor achieved a high
sensitivity of 177 pAµm−2µM−1 in response to the DA. It is concluded that the MPC
aptamer/SiNW-FET sensor has shown improved specificity and an LOD up to <10−11 M
for exocytotic DA detection, as compared to other existing electrochemical sensors. The
real-time monitoring of DA induced by hypoxia demonstrates that for triggering the DA
secretion, intracellular Ca2+ is required, which is commanded by extracellular Ca2+ influx
instead of the release of intracellular Ca2+ stores. Such a device, capable of coalescing with
living cell systems, opens a new gateway towards the biosensor for the futuristic studies of
clinical disease diagnostics.
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Figure 1. (a) DNA-aptamer-modified MPC SiNW-FET biosensor for dopamine; illustration of FET
device for detecting exocytotic dopamine under hypoxic stimulation from living PC12 cells; (b) a
semi-log plot of response as a function of dopamine concentration [17]. (c) Schematics of a graphene-
based electrode used for measurements of DA; graphene electrode is mounted on a SiO2/Si substrate,
and a fluidic chamber is filled with PBS solution containing target dopamine; (d) SEM image of
the graphene-based sensor array; AFM topographic image of CVD grown multilayer graphene
(e) mechanism behind the FSCV measurements of dopamine; and (f) noticeable area-normalized
electrochemical current (IEC) response to the dopamine concentrations [18].
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Moreover, downscaling the sensors enables limiting the sample volume, which is
highly desirable for scarcely abundant specimens, including CSF or experimental research
with small laboratory animals [11,19]. Therefore, DA sensing appears to be an applicable
research use only (RUO) analytical tool for monitoring this biomarker in complex biological
systems on studying PD, despite its high clinical relevance. However, graphene-based
DA sensors are emerging analytical tools for PD diagnostics, as carefully and critically
explained in this comprehensive review. Moreover, the challenges relating to the need for
point-of-care (POC) testing is also discussed in this report.

2. Analytical Performances of DA Graphene-Based Biosensors

Detecting biomolecules in real samples is associated with the interaction of other
compounds with similar oxidation potentials during detection [20]. Thus, designing
sensors for the DA monitoring in biological samples, such as routine clinical ones, is
challenging since electrochemically active compounds commonly found in body fluids,
such as AA, uric acid (UA), and glucose (Glu), constantly interact with each other during
detection due to their similar oxidation potentials. Moreover, the present macromolecules,
including proteins, can non-specifically adsorb on the electrode surface, thus hindering
the electron transfer rate [21]. Thus, the development of electrochemical methods for the
analysis of DA in a complex matrix must address all these possible interactions to enable
its successful DA detection in a simple, rapid, and highly selective way.

The limitation caused by overlapping voltametric signals of compounds with very
close oxidation potentials and relatively poor selectivity can be avoided by applying
different sensing layers that enable separate detection of the electrochemical signals.
Several electrode-modification substances, such as oxides, conducting polymers, and
nanomaterial, have been adopted for this purpose. Nanomaterial-modified electrodes,
especially with graphene and its derivatives, such as reduced graphene oxide (rGO) and
graphene oxide (GO), have recently attracted great focus in electrochemical biosensing
approaches [7,20,22–26]. Due to their unique structure, graphene-based materials increase
the conductivity of the compounds used in electrochemical measurement systems. Owing
to their large surface area, they offer a high number of accessible active sites to detect
analytes (Figure 2) [24]. Graphene is always admired for its excellent properties among the
various sensing materials for DA due to its excellent electrical conductivity and π−π inter-
action between the aromatic rings of DA and graphene. Butler et al. developed a graphene
ink-based, ultrasensitive electrochemical sensor for the detection of DA. The lowest limit
of detection is reported as 1 nM. This sensitivity and selectivity of the sensor are achieved
by tuning the surface chemistry of graphene. Figure 2a shows a schematic illustration of
the fabrication of the DA sensor. The curves of Figure 2b depict the effect of annealing
the graphene towards the DA response from 55 pM to 50 µM, using DPV measurements.
Scanning electrochemical microscopy (SECM) mapping confirmed that the graphene layer
(Figure 2d−g) shows higher oxidation at the edges of the flakes. Figure 2d,f display the
height maps for two different regions of the graphene ink film-based sensor. Figure 2, for
example, shows the electrochemical mapping of the graphene ink with 100 mM DA in
PBS. At different concentrations, the total activity is enhanced, as seen by the increased
magnitude of the current in the electrochemical response. Considering the 2D defects and
the active edge sites of graphene ink, it can be an ideal candidate for printable and low-cost
DA sensing devices/systems.

Butler et al. developed ultrasensitive graphene ink which enabled facile post-deposition
annealing of electrochemical sensor for DA detection with the lowest detection limit of
1 nM [21,22]. Furthermore, by increasing the affinity of the cationic DA form to the materi-
als’ surface, electroactive oxygen groups in graphene materials play a significant role in its
detection [27]. Graphene can also be easily modified with various nanomaterials to attain
an enhanced catalytic effect [21]. However, the abovementioned advantages of graphene
are limited due to the strong π–π stacking and van der Waals interactions. Therefore, sur-
face modifications of the graphene nanosheets, made to improve its functionalization, must,
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to be effective, reduce these unfavorable effects while also providing enhancement of the
electrocatalysis of graphene, increasing the surface area, and improving the conductivity of
the composite materials. Moreover, the biofunctionalization aims not only to improve the
analytical performance characteristics, such as sensitivity and selectivity, but also to enable
miniaturization of the diagnostic platform to make it convenient for the analysis of real
and complex matrices, and to make it able to perform monitoring in real time, as well as in
in vivo testing [21].
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film and (g) the corresponding electrochemical map with 100 mM DA [22].

Wang et al. developed organic electrochemical transistors (OECT) for accurate sensing
of DA based on the alternative current (AC) measurements [26], as shown in Figure 3. This
advanced method was introduced to characterize the behavior of ionic motion and the ion
concentrations in aqueous electrolytes, as well as the rapid electrochemical detection of
DA with an LOD of 1 nM. This AC method gives a stable and accurate signal in a broad
frequency range and a low noise level by introducing a lock-in amplifier. Therefore, the
AC method opened a new window for OECT-based sensors [28]. Xue-Xui et al. developed
a high-flexibility and high-selectivity DA sensor with a simple fabrication process. Thus,
the fabricated Pt–Au/LIG/PDMS sensor exhibited a sensitivity of 865.8µA/mM cm−2

and a limit of detection of 75 nM, and successfully detected DA in human urine. The
flexibility of the sensor offers the possibility for continuous DA monitoring in future self-
care monitoring systems [29]. In Table 1, we have presented various graphene modifications
developed in electrodes for DA detection, along with their analytical performances and
interference studies, which are listed based on their limit of detection (LOD) in different
types of biological samples.
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Figure 3. (a) Schematic diagram of an OECT device for DA sensing. (b) Optical image of the transistor and the whole OECT
array. (c) Channel transconductance (gm) response to additions of DA with different concentrations [28]. (d) Fabrication
of flexible electrochemical DA sensor with a Pt-AuNPs/LIG/PDMS electrode and display of flexibility of the fabricated
electrode [29]. Table 1 summarizes the analytical performances of DA biosensors as claimed by various reports [9,30–61].

Table 1. Analytical performances of DA biosensors.

Graphene Functionalization LOD
(µM) Biological Samples Interference Compound Reference

3D RGO-PU 1.0 × 10−6 (h) urine, serum AA, UA, Glu, CA, 4-NP, Trp, Tyr,
GSH [30]

PFSG/GCE 0.0008 (h) serum AA, UA [31]
ZnO NWAs/GF 0.001 (PD) serum AA, UA [32]

NiAl LDH/G LBL 0.002 SH-SY 5Y cells AA, UA [33]
Au NPs-CNT-G-pMet-SPCE 0.0029 (h) urine UA [7]

AgNCs/AgNPs/GO 0.00353 brain homogenate of PD mice GSH [34]
GR/GLN 0.0045 (h) urine, serum AA, UA, Glu [35]

Fe3O4/rGO/GCE 0.005 (h) urine UA, CA, Glu, AA, NaCl, AP [36]
Fe3O4@GNs/Nafion/GCE 0.00713 (h) urine, plasma AA, UA [37]

graphene-MoS2/GCE 0.007 (b) serum AA, UA, CA, Glu, cysteine, Na+,
K+, Mg2+, Ca2+, Cl− [38]

Fe3O4-SnO2-G/CPE 0.0071 (h) urine, serum AA, UA [39]
RGO/Mn-TPP/GCE 0.008 (h) serum AA, UA [40]

Ag NPs/GO/P(Arg)/GCE 0.01 (h) urine U, CA, Glu, Na+, K+, L-lysine,
L-cysteine [41]

TiN-RGO/GCE 0.012 (h) urine AA, UA, Glu, LA [42]
PA/GO/GCE 0.016 (h) urine AA, UA [43]

GNCs/CMG/GCE 0.02 (h) serum AA [44]

Au–Pt/GO–ERGO 0.0207 (h) serum

AA, 5-HT, UA, AP, EP, NEP, CA,
Glu, H2O2, NaCl, KCl, KNO3,

Na2SO4, ZnCl2, CaCl2, (b) serum
albumin, immunoglobulin

[45]

α-Fe2O3@erGO/GCE 0.024 (h) serum AA, UA, Glu, U, H2O2, NaCl, KCl [46]
CNDs-RGO/GCE 0.03 (h) serum UA [47]
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Table 1. Cont.

Graphene Functionalization LOD
(µM) Biological Samples Interference Compound Reference

Au-ZnO NCAs/GF 0.04 (h) urine UA [48]
Pt/rGO/MEA 0.05 (r) CPU AA, UA, Glu, U, 5-HT, DOPAC [49]

rGO–Cu2O/GCE 0.05 (h) urine, blood AA, UA [50]
PANI/Fe2O3-

SnO2/rGO/PFSG/GCE 0.076 (a) urine UA [27]

PTPCNs/GCE 0.078 DA injection and urine UA [51]
ERGO/PLL/GCE 0.10 (h) urine AA, UA [52]

3D-NG 0.26 (h) urine AA, UA, AP [53]
GO/Au NPs 0.29 (a) urine UA, AA [20]

AG-NA/GCE 0.33 (h) urine AP [54]
GO-BAMB-Co(OH)2 0.4 (h) urine AA, 5-HT [55]
Pd-GR/nano-CILE 0.5 (h) urine, serum UA [56]

3D HGB/ITO 1.0 * (h) plasma UA [57]
Pdop@GR/MWCNTs 1.0 (h) urine, serum AA, UA [58]

RGO–ZnO/GCE 1.08 (h) urine, plasma AA, UA [59]

Au/RGO/GCE 1.4 (r) serum AA, UA, CA, NaCl, KCl, NaNO3,
CaCl2, Glu, cysteine [60]

mp-GR/GCE 1.5 (h) serum UA [61]

* levodopa: 3D HGB/ITO—3-dimentional hollow graphene balls using nickel nanoparticles/the indium tin oxide glass electrode;
3D-NG—three-dimensional nitrogen-doped graphene; 3D RGO-PU—3D-reduced graphene oxide/polyurethane; 4-NP—4-nitrophenol;
5-HT—serotonin; α-Fe2O3@erGO—magnetic hematite-decorated electrochemically reduced graphene oxide; (a)—artificial; AA—ascorbic
acid; AG-NA—activated graphene-Nafion; AgNCs/AgNPs/GO—Ag44(SR)30 nanoclusters (AgNCs) with 5-mercapto-2-nitrobenzoic
acid (MNBA)/silver nanoparticles/graphene oxide; Ag NPs/GO/P(Arg)—silver nanoparticles/graphene oxide/poly(L-arginine); AP—
acetaminophen; Au NPs-CNT-G-pMet—gold nanoparticles-carbon nanotube-graphene-poly(L-methionine); Au–Pt/GO–ERGO—Au–Pt
bimetallic nano-clusters/graphene oxide electrochemically reduced; Au/RGO—gold nanoplates/reduced graphene oxide; Au-ZnO NCAs—
gold nanoparticles-Zinc oxide nanocone arrays; (b)—bovine; CNDs-rGO—carbon nitride dots-reduced graphene oxide nanocomposites;
CA—citric acid; CPU—the caudate putamen; DOPAC—3,4-dihydroxyphenylacetic acid; EP—epinephrine; ERGO/PLL—electrodeposited
reduced graphene oxide/polymerization of L-lysine; Fe3O4@GNs/Nafion—Nafion covered core–shell structured Fe3O4@graphene
nanospheres; Fe3O4/rGO—iron oxide/graphene oxide; Fe3O4-SnO2-Gr/CPE —iron oxide/tin oxide/carbon paste electrode; GCE—
glassy carbon electrode; GF—graphene foam electrode; Glu—glucose; GNCs/CMG—gold nanocages/chemically modified graphene
oxide; GO-BAMB-Co(OH)2—graphene oxide -1,4-bis(aminomethyl)benzene and cobalt hydroxide; GONRs—graphene oxide nanorib-
bons; graphene-MoS2—graphene and molybdenum disulfide hybrids; GR/GLN—graphite sheets assisted with gelatine; GSH—reduced
glutathione; (h)—human; LA—lactic acid; LOD—limit of detection; mp-GR—multi-nanopore graphene; NEP—norepinephrine; NiAl
LDH/G LBL—positively charged NiAl layered double hydroxides nanosheets/negatively charged monolayers of graphene layer by layer;
PANI—polyaniline; PA/GO—phytic acid/graphene oxide; PD—Parkinson’s disease patients; Pd-GR/nano-CILE—palladium-doped
graphene/nano-carbon ionic liquid electrode; Pdop@GR/MWCNTs—polydopamine/graphene/multiwalled carbon nanotubes; PFSG—
poly(sodium 4-styrenesulfonate)-functionalized three-dimensional graphene; Pt/rGO MEA—platinum nanoparticles and reduced graphene
oxide/microelectrode array; PTPCNs—porous tal palm carbon nanosheet; (r)—rat; rGO–Cu2O—copper (I) oxide nanostructure decorated
reduced graphene oxide; RGO/Mn-TPP—reduced graphene oxide/manganese tetraphenylporphyrin; RGO–ZnO—reduced graphene
oxide-zinc oxide; SPCE—screen-printed carbon electrode; TiN-RGO—reduced graphene oxide and titanium nitride, Trp—Tryptophan;
Tyr—Tyrosine; U—urea; UA—uric acid; ZnO NWA—ZnO nanowire arrays.

Along with the electrochemical biosensors, fluorescence biosensors are attractive due
to their high sensitivity and rapid response. In terms of signal transduction, fluorescence
biosensors are categorized as fluorescence resonance energy transfer (FRET) [62], chemilu-
minescence [63], fluorescence dye staining [64], fluorescent probe [65], and fluorescence
anisotropy [66] biosensors, and have been proven to be promising devices for diagnostics.
The GO derivatives of graphene have the ability to quench the fluorescence of the adsorbed
dyes due to their conjugated structure. A. Teniou et al. developed GO-based fluorescent
aptasensor for DA detection [62]. In this sensor, there is a fluorescence resonance energy
transfer (FRET) device where GO plays the role of an energy donor and a carboxyflu-
orescein (FAM)-labeled aptamer is the energy acceptor. The thus-developed GO-based
aptasensor depicts a linear relationship between DA concentration (3 to 1680 nm) and fluo-
rescence recovery. The calculated value of the LOD is 0.031 nM. R. Cheng et al. developed
a label-free doxorubicin (DOX)-GO fluorescence sensor for DA detection in cells and the
human serum (Figure 4a) [63]. DA has strong adsorption towards the GO as compared to
the DOX. The exposure of DA to the DOX-GO leads to the release of pre-absorbed DOX
from the same DOX-GO platform, leading to the recovery of the quenched fluorescence
(DOX). This quenching turns on the sensor. The DOX-GO platform shows a linear range
from 8.3 × 10−7 M to 3.3 × 10−5 M in aqueous solution (curves in Figure 4b) and 1.44 to
11.48 µmol L−1 in human serum (curves in Figure 4c) for DA detection. Therefore, the
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DOX-GO label-free sensor successfully detected DA in the living cells. Another research
group, Zhou and coworkers, tested DA concentrations with the polypyrrole/graphene
quantum dots core/shell (Ppy/GQD) hybrids sensor, as shown in Figure 4d [67]. The
Ppy/GQD exhibits strong fluorescence emission. The prepared sensor shows a decrease in
the fluorescence intensity along with the increasing concentration of DA and shows a linear
range from 5–8000 nM (Figure 4e) with an LOD of 10 pM (S/N = 3). Thus, the developed
sensor can easily detect DA when exposed to real human blood samples. The fluorescence
approach is the state of the art for developing low-cost, simple, and sensitive sensors for
DA detection in living cells.

Biosensors 2021, 11, x FOR PEER REVIEW 8 of 14 
 

biosensors are categorized as fluorescence resonance energy transfer (FRET) [62], chemi-
luminescence [63], fluorescence dye staining [64], fluorescent probe [65], and fluorescence 
anisotropy [66] biosensors, and have been proven to be promising devices for diagnostics. 
The GO derivatives of graphene have the ability to quench the fluorescence of the ad-
sorbed dyes due to their conjugated structure. A. Teniou et al. developed GO-based fluo-
rescent aptasensor for DA detection [62]. In this sensor, there is a fluorescence resonance 
energy transfer (FRET) device where GO plays the role of an energy donor and a carbox-
yfluorescein (FAM)-labeled aptamer is the energy acceptor. The thus-developed GO-
based aptasensor depicts a linear relationship between DA concentration (3 to 1680 nm) 
and fluorescence recovery. The calculated value of the LOD is 0.031 nM. R. Cheng et al. 
developed a label-free doxorubicin (DOX)-GO fluorescence sensor for DA detection in 
cells and the human serum (Figure 4a) [63]. DA has strong adsorption towards the GO as 
compared to the DOX. The exposure of DA to the DOX-GO leads to the release of pre-
absorbed DOX from the same DOX-GO platform, leading to the recovery of the quenched 
fluorescence (DOX). This quenching turns on the sensor. The DOX-GO platform shows a 
linear range from 8.3 × 10−7 M to 3.3 × 10−5 M in aqueous solution (curves in Figure 4b) and 
1.44 to 11.48 μmol L-1 in human serum (curves in Figure 4c) for DA detection. Therefore, 
the DOX-GO label-free sensor successfully detected DA in the living cells. Another re-
search group, Zhou and coworkers, tested DA concentrations with the polypyrrole/gra-
phene quantum dots core/shell (Ppy/GQD) hybrids sensor, as shown in Figure 4d [67]. 
The Ppy/GQD exhibits strong fluorescence emission. The prepared sensor shows a de-
crease in the fluorescence intensity along with the increasing concentration of DA and 
shows a linear range from 5–8000 nM (Figure 4e) with an LOD of 10 pM (S/N = 3). Thus, 
the developed sensor can easily detect DA when exposed to real human blood samples. 
The fluorescence approach is the state of the art for developing low-cost, simple, and sen-
sitive sensors for DA detection in living cells.  

 
Figure 4. (a) Schematic illustration of DOX-GO complex and its fluorescence response along with the (i) turn off and (ii) 
turn on mechanism towards DA detection. (b) Fluorescence spectra of DOX-GO-DA solutions with the addition of DA 
concentrations ranging from 1.5 μM to 6.0 μM with excitation at 280 nm. (c) Fluorescence emission spectra of the DOX-
GO for DA detection in human serum at fluorescence intensity of 598 nm. (d) Design of PPy/GQDs. (e) Fluorescence 
emission of spectra of PPy/GQDs with increasing concentrations of DA from 0.005 to 8 μM. 

3. Challenges and Perspectives towards POC Diagnostics of DA 

Figure 4. (a) Schematic illustration of DOX-GO complex and its fluorescence response along with the (i) turn off and (ii)
turn on mechanism towards DA detection. (b) Fluorescence spectra of DOX-GO-DA solutions with the addition of DA
concentrations ranging from 1.5 µM to 6.0 µM with excitation at 280 nm. (c) Fluorescence emission spectra of the DOX-GO
for DA detection in human serum at fluorescence intensity of 598 nm. (d) Design of PPy/GQDs. (e) Fluorescence emission
of spectra of PPy/GQDs with increasing concentrations of DA from 0.005 to 8 µM.

3. Challenges and Perspectives towards POC Diagnostics of DA

The detection of DA has been of great interest for clinical implications because the
neurotransmitter can be used as a biomarker for PD diagnosis, and which can help with
monitoring the disease progression and its treatment effectiveness [68]. In fact, as the
disease progresses and side effects appear, individualization of therapy is recommended.
Because of the nonlinearities of levodopa, DA, and basal ganglia dynamics, which account
for PD progression, there is an unmet need to estimate individuals’ parameters, including
DA level, for DRT dosing adaptation. So far, algorithms have been developed to tailor
DRT based on information acquired by wearable sensors which estimate the physiological
and pharmacokinetic parameters [5,6]. Simultaneous monitoring of DA levels could
improve individualized drug regimen optimization and help predict sudden waning in
levodopa’s effect. The development of in vivo sensing devices is currently in its beginning;
the currently available electrochemical devices dedicated to DA detection are too large for
on-field inspection [21].

Fulfilling this goal is associated with moving away from time- and cost-consuming
laboratory analysis that requires skilled technicians to point of care testing (POCT), i.e.,
medical tests performed close to the site of patient care. The POC devices face significant
challenges for achieving reliable results quickly (a few minutes) without sample pretreat-
ment. They should be portable and user-friendly while providing acceptable analytical
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performance and clinical significance. Electrochemical sensors meet the main requirements
of POCT, such as sensitivity, selectivity, ease of handling, affordability, disposability, stabil-
ity, and flexibility. Electrochemical biosensors, which can be miniaturized, facilitate work
with real samples in small volumes (µL-nL) without any pretreatment and versatility due
to multiple sensor arrays, and show advantages compared to optical biosensors when used
in POC devices [69].

Considering the acceptable selectivity and sensitivity of the graphene-modified elec-
trochemical biosensors for DA as depicted in Table 1, and the simplicity of the measurement
process, they can potentially be applied to POC testing [70]. Hence, developing a portable
and miniaturized sensing platform for DA detection is significant for this approach. More-
over, since electrochemical biosensors can be easily combined with digital signal readout,
smartphone-based integrated systems for simultaneous detection of biomolecules, includ-
ing DA, have been developed (Figure 5). They allow real onsite measurement of DA,
which can immediately be shared with the clinician [69]. The systems usually consist of a
disposable sensor with a graphene-modified electrode, a coin-size detector, and a smart-
phone equipped with application software. Ji et al. demonstrated linear, high sensitivity,
and specific detection of the electrochemical activity of biomolecules, including DA, in
biological matrices with the use of the smartphone-based integrated system, supporting
its use for DA detection in POC testing [20]. Recently, Yu et al. have reported achieving a
turn-on visual DA assay-based ratio metric fluorescence paper microchip coupled with
a smartphone-assisted portable detection device for POC testing (POCT) [62]. Moreover,
The role of the rapid improvement of smartphone cameras in optical POC sensing should
also be considered [69]. This supports the DA detection strategy trend based on the use of
smartphones for portable, rapid, and accurate POCT [71,72].
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Figure 5. Illustration of a futuristic approach based on sensor-IoT-AI-goal of PD management.

Another area of research that still requires increased attention is the development
method for noninvasive DA detection with acceptable reproducibility and stability in
clinical diagnostics. In this sense, the measurement of salivary DA without pretreatment
or modification of the samples, and with satisfactory results that are comparable to the
clinical test, is highly desirable. First, however, it should be highlighted that the DA level
in human saliva is ca. <0.5 nM [68,73].
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The POCT approach appears to be a promising step toward optimizing DRT and
clinical trial designing as well; however, it requires translation of the findings into a mobile
health decision tool. As Lingervelder et al. have reviewed, for general practitioners, the
clinical utility of POC testing is the most critical aspect [65]. To ensure POCT’s useful-
ness to clinicians, future research [74], despite focusing on the analytical and technical
performances of a test, should also tackle the aspects relating to the clinical utility and
risks [75–83]. Moreover, in the case of smartphone-connected POCT devices, the issues
related to data sensitivity, including privacy and protection against theft and medical
advice, should be addressed [69].

4. Conclusions and Viewpoint

The graphene-based biosensors offer promising diagnostic potential for DA detection,
with acceptable selectivity and sensitivity in human serum/plasma and urine samples with
an LOD ranging from 1 pM to 1.5 µM. Notably, the research presented herein meets the
LOD of salivary DA level. Considering new perspectives of the development of portable
and miniaturized sensing platforms, which can be improved through integration into
smartphone-based systems, graphene biosensors appear to be serious candidates for such
application in DA sensing. However, to ensure the POCTs’ usefulness in PD diagnostics
and to make the treatment more personalized and efficient, further development should not
only focus on the analytical and technical performance aspects of a test, but also deal with
the clinical utility and risks. Moreover, due to admirable sensing performances, including
multichannel detection, high sensitivity, and fast response, graphene-based biosensing,
despite the clinical relevance, appears to be a useful RUO tool for real-time detection of DA
various biological systems and in animal experiments in PD research.
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department and institutions for providing support and facilities. All authors have read and agreed to
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