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Abstract: Spin-gapless semiconductors (SGSs) with Dirac-like band crossings may exhibit massless
fermions and dissipationless transport properties. In this study, by applying the density functional
theory, novel multiple linear-type spin-gapless semiconducting band structures were found in a
synthesized
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Abstract: Spin-gapless semiconductors (SGSs) with Dirac-like band crossings may exhibit massless 
fermions and dissipationless transport properties. In this study, by applying the density functional 
theory, novel multiple linear-type spin-gapless semiconducting band structures were found in a 
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-type bulk PdF3 compound, which has potential applications in ultra-fast and ultra-low power 
spintronic devices. The effects of spin-orbit coupling and on-site Coulomb interaction were 
determined for the bulk material in this study. To explore the potential applications in spintronic 
devices, we also performed first-principles combined with the non-equilibrium Green’s function 
for the PdF3/Ga2O3/PdF3 magnetic tunnel junction (MTJ). The results suggested that this MTJ 
exhibits perfect spin filtering and high tunnel magnetoresistance (~5.04 × 107). 
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Spintronics [1] is a promising research field that focuses on electrons in a degree of freedom 
(i.e., spin). Conventional electronic devices have high power consumption and a relatively low 
circuit integration, resulting in physical limitations. Generally, spintronics strives for ultra-efficient 
and ultra-fast devices [2–5]. Thus, the development of corresponding spintronic materials is crucial 
and must be realized. For the past several years, diluted magnetic semiconductors [6], half-metals 
[7], and topological insulators [8] were proposed, and while they can each meet various 
requirements of spintronics, they cannot meet all of them. 

In 2008, Wang [2] proposed a new spintronic material—spin-gapless semiconductors (SGSs) [9]. 
In general, SGSs possess a gapless feature in one spin channel and a semiconducting gap in the other 
spin channel. In terms of differences in the dispersion of its band structures near the Fermi level, 
SGSs can be divided further into parabolic or Dirac-like crossing types. Parabolic SGSs show a 
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Spintronics [1] is a promising research field that focuses on electrons in a degree of freedom (i.e.,
spin). Conventional electronic devices have high power consumption and a relatively low circuit
integration, resulting in physical limitations. Generally, spintronics strives for ultra-efficient and
ultra-fast devices [2–5]. Thus, the development of corresponding spintronic materials is crucial and
must be realized. For the past several years, diluted magnetic semiconductors [6], half-metals [7],
and topological insulators [8] were proposed, and while they can each meet various requirements of
spintronics, they cannot meet all of them.

In 2008, Wang [2] proposed a new spintronic material—spin-gapless semiconductors (SGSs) [9].
In general, SGSs possess a gapless feature in one spin channel and a semiconducting gap in the other
spin channel. In terms of differences in the dispersion of its band structures near the Fermi level, SGSs
can be divided further into parabolic or Dirac-like crossing types. Parabolic SGSs show a quadratic
band dispersion for gapless bands, while Dirac-like crossing SGSs (DSGSs) exhibit a linear band
dispersion at the Fermi level in one spin channel. Due to this unique dispersion, the effective electron
quantity can be eliminated in DSGSs. As a member of the topological non-trivial family, DSGSs have
100% spin polarization, high Fermi velocity (vF), massless fermions around the Fermi level, and no
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dissipation characteristics. These desirable characteristics indicate possible applications in future high
efficiency spintronic devices.

In the past (and based on first-principle calculations), DSGSs with a single Dirac-like crossing
could be observed in two-dimensional Ni2C24S6H12 [10] and Mn2C6S12 [11] metal–organic frameworks
as well as NiCl3 [12], MnX3 (X = F, Cl, Br, and I) [13] and YN2 monolayers [14]. DSGSs with more than
two Dirac-like crossings can be found in CrO2/TiO2 heterostructures [15] and three-dimensional MnF3

materials [16]. Compared with DSGSs that have a single Dirac-like crossing, DSGSs with multiple Dirac
band dispersions have a stronger nonlinear electromagnetic response and a higher carrier transport
efficiency at the Fermi level.

In this study, we proposed a new rhombohedral-type of bulk material, PdF3, which demonstrates
the spin-gapless semiconducting feature with multiple linear band dispersions, by means of the density

functional theory (DFT) method. We should point out that this material with R
−

3c has been prepared by
the reaction of dry fluorine on PdI2 at about 400 ◦C [17]. Its magnetism and physical stability under
the spin-orbit coupling effect and mechanic pressure was also investigated in detail. Additionally, we
built a PdF3/Ga2O3/PdF3 magnetic tunnel junction (MTJ) and investigated its nonequilibrium spin
injection and spin-polarized quantum transport properties based on the non-equilibrium Green’s
function (NEGF) and in combination with first-principles calculations. The results showed that the
MTJ exhibits a perfect spin-filtering feature with extremely high magnetoresistance. Details about the
computational and simulation models can be found in the supplementary materials (Supplementary
Figures S1 and S2).

The electronic structures of bulk PdF3 were calculated without the effect of spin-orbit coupling
(Figure 1). We found that its electronic structure shows multiple spin-gapless semiconducting features
with linear dispersion, which indicates excitation at the Fermi level owning the dissipationless and
massless features. Considering that the correlation effect from the 4d orbit of a Pd element cannot be
regarded, we also adapted DFT plus U to conduct this calculation. In this study, several Hubbard
U values (from 0 to 4 eV) were tested on-site for Pd-4d orbits. The corresponding band structures
(Supplementary Figure S3) were not significantly different from the gapless spin-up structures, and the
enlargement of the gap in the spin-down channel stabilized the semiconducting feature. Therefore,
we will focus on the Perdew−Burke−Ernzerhof (PBE) results in the following discussion. Also, the
modified Becke–Johnson exchange potential with the generalized gradient approximation (GGA)
method was also used in this work to examine the electronic structure of PdF3 bulk and the results are
shown in Supplementary Figure S4.
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Figure 1. Band structure of bulk PdF3 calculated based on the Perdew−Burke−Ernzerhof function
without consideration to the spin-orbit coupling effect.

As shown in Figure 1, there is clearly a semiconducting gap at about 0.92 eV in the spin-down
channel, and a gapless configuration in the spin-up channel. In total, ten linear band crosses appear
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exactly at the Fermi level. Some of these linear crosses are located at the high symmetry points (one
at the L point and another near the Z point along the Z–F1 line), and some appear along the high
symmetry lines (M–G, G–Y, I–G, G–I1, F1–G, G–X1, Y|X–G, and G–N lines respectively). Also, one
can see that the crossing bands have a very large linear energy range (up to 1 eV). As was the case
with bulk ReO2 [18], hourglass-shaped band dispersions are apparent along the Z–F1 and G–N lines.
Such an irregular distribution of band crosses and linear SGS features bring the anisotropy, but high
Fermi velocities, in the whole Brillouin zone. Considering the rotation symmetry of the Brillouin zone,
these linear crosses will form the Dirac rings and induce a more intensive nonlinear electromagnetic
response than that induced by other materials containing a single Dirac cone. Moreover, a higher
efficiency of carrier transport will exist at the Fermi level via the multiple crosses.

As shown in Figure 2, we computed the spin-resolved total density of states (TDOS) and partial
density of states (PDOS) spectra. From the TDOS, a valley can be seen at the Fermi level in the spin-up
channel, and the major distribution of spin-down states is below −0.7 eV and above 0.2 eV, thus

forming a semiconducting gap. The spin-polarization rate [19] can be obtained by P =
|ρ↑−ρ↓|

|ρ↑+ρ↓|
, where

ρ↑/↓ represents the states of the spin-up or spin-down channels near the Fermi level. Here, P is 100%.
In PDOS, the electronic structures near the Fermi level are dominated by the p-d hybridization between
Pd and F atoms.
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Figure 2. (a) Total and (b) projected density of states of rhombohedral-type PdF3 bulk. The Fermi level
was set to zero. TDOS = total density of states.

To calculate the effect of spin-orbit coupling, we examined the band structures (Supplementary
Figure S5). As shown in this figure, the impact of SOC on these linear band crosses of PdF3 was very
weak. Meanwhile, we considered the uniform strain effect to examine the band structural stability
of PdF3 (Supplementary Figure S6). It was apparent that as stress is applied, some linear crossings
(such as the gapless crossings along I–I1 under 8 GPa) are opened. In general, the characteristics
of the spin-gapless behaviors in the spin-up channel still exist for PdF3 based on our calculated
band structures.

Due to the large band gap, Ga2O3 is one of the materials that have received significant attention in
recent years [20]. Further, the lattice mismatch between PdF3 and Ga2O3 is less than 5%, and therefore,
in this work, we built a PdF3/Ga2O3/PdF3 magnetic tunnel junction (MTJ) to conduct the corresponding
spin-transport calculation (Supplementary Figure S2). Figure 3 presents the calculated current–voltage
curves of the MTJ in the parallel magnetization configuration (PC) and the antiparallel magnetization
configuration (APC) between two electrodes. For PC, only the spin-up current contributes to the total
spin-current in the range of considered bias voltage (from 0.0 to 0.1 V), and the spin-down current
is strongly inhibited. In summary, the spin-up current increased rapidly when accompanied by an
increase in bias voltage, while the turning decreased after the bias voltage increased up to 0.09 V.
For APC, it does not matter if the spin-up and spin-down currents are both blocked.
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From the results of the spin-dependent current for PC and APC, the bias-voltage-dependent

spin-injection efficiency (SIE) [21] can be obtained by SIE =
∣∣∣∣ Iup
−Idown

Iup+Idown

∣∣∣∣× 100%, as shown in Figure 4a.
In PC, SIE maintains 100% consistently. This can be attributed to the electronic structures of the two
electrodes; the spin-down gap blocks the leap of carriers, thus making Idown vanishingly small. In APC,
SIE at an equilibrium state is about 10% rather than 0% due to the broken mirror symmetry of this MTJ.
When the bias voltage is applied, SIE increases to nearly 90%. Moreover, the fluctuation of Iup/down

notably causes a decrease in SIE at the range of bias voltage from 0.4 V to 0.5 V.
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Figure 4. (a) Spin-injection efficiency (SIE) and (b) tunnel magnetoresistance (TMR) as a function of
bias voltage for a PdF3 based MTJ.

In our study, a tunnel magnetoresistance (TMR) ratio [21] under finite bias is defined as TMR =∣∣∣∣∣ Itot
PC−Itot

APC
min(Itot

PC,Itot
APC)

∣∣∣∣∣ × 100%. Figure 4b exhibits the TMR ratio versus bias voltage under equilibrium and

nonequilibrium states. Here, for a PdF3/Ga2O3/PdF3 MTJ, the obtained equilibrium state TMR is about
5.04 × 107%, while the nonequilibrium state TMR is in the order of magnitudes of 1011%. Also shown
in Figure 4b is the calculated TMR of about 4.11 × 1011% at a bias of 0.01 V. Most importantly, the high
TMR in this MTJ is very stable in the range of bias voltage variation from 0.01 V to 0.1 V.

To further understand the equilibrium state of the TMR, the transmission coefficient as a function
of electron energy at a finite bias voltage range is shown in Supplementary Figure S7. In PC, results
reveal that the transmission coefficient of spin-up electrons at the Fermi level is much higher than
that of spin-down electrons, showing that the major contribution of current comes from the spin-up
electrons. In APC, the transmission coefficients of both spin-up and spin-down electrons are almost
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equal and vanishingly small, inducing an imperceptible current compared with that in PC. In summary,
the transmission coefficient in APC is much smaller than that in PC, so an extremely high TMR can
be obtained.

Furthermore, we calculated the nonequilibrium transmission spectrum T(E, V). It is worth
noting that the aforementioned spin-polarized current is obtained according to integral transmission
coefficients at the bias voltage window of −eV/2 ≤ E ≤ eV/2 which is to say, I ∼

∫
T(E, V)dE

Supplementary Figure S8 shows the nonequilibrium transmission spectrum under the bias voltage
value of 20 mV, 40 mV, 60 mV, and 80 mV, respectively. One can see that the PC transmission curves
within the bias window have not changed much. Also, the APC is still much lower than the PC within
the bias window; therefore, an ultra-high TMR ratio can be maintained under a broad range of bias.
Meanwhile, due to the enhancement of the broken geometric symmetry of this MTJ, the increased
bias voltage will intensify the division of transmission curves in APC. Moreover, there is an obvious
decrease in the spin-up curve in APC within the bias voltage window, while the spin-down curve is
not affected. This induces a rapid increase in spin-injection efficiency, with bias voltage increasing.

Finally, as shown in Figure 5, the local density of states (LDOS) of this MTJ was calculated and
summed up along the z-axis. The insulating gap of Ga2O3 results in a central barrier without density
of states. Figure 5a demonstrates that in PC, the spin-up direction is free, and several spin-up electrons
are able to tunnel in the central scattering zone from the left electrode and into the right electrode,
indicating the formation of a transport channel. Therefore, the spin-up channel is in a majority spin
state. As shown in Figure 5b, there are few densities of states in the two electrodes in the spin-down
channel. In other words, the spin-down channel is suppressed (minority spin state), and the spin-down
electrons are difficult to transmit via the magnetic electrode by tunneling through the Ga2O3 barrier.
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Finally, as shown in Figure 5, the local density of states (LDOS) of this MTJ was calculated and 
summed up along the z-axis. The insulating gap of Ga2O3 results in a central barrier without density 
of states. Figure 5a demonstrates that in PC, the spin-up direction is free, and several spin-up 
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electrode, indicating the formation of a transport channel. Therefore, the spin-up channel is in a 
majority spin state. As shown in Figure 5b, there are few densities of states in the two electrodes in 
the spin-down channel. In other words, the spin-down channel is suppressed (minority spin state), 
and the spin-down electrons are difficult to transmit via the magnetic electrode by tunneling 
through the Ga2O3 barrier. 
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(d) APC spin-down configurations for a PdF3 based MTJ.

Figure 5c shows that in the APC spin-up channel, the density of states is mainly localized in the
left electrode, while almost no density of states can be found in the right electrode. An explanation
for this is that although the left electrode can generate spin-up electrons, there are few states in the
right electrode that can accommodate these electrons; therefore, spin electrons cannot flow into the
right electrode. On the contrary, in the APC spin-down channel (Figure 5d), the density of states is
concentrated on the right electrode, while there is little density of states in the left electrode. This shows
that although the right electrode can accept a large number of electrons, the left electrode does not
provide many electrons in the spin-down channel. Therefore, when this MTJ is in the APC state, both
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the spin-up and spin-down channels are blocked and the spin-polarized current cannot be detected;
this resulted in a high resistance state.

To summarize, we theoretically proposed a new spintronic material, rhombohedral-type PdF3,
which has fully spin-polarized and multiple linear spin-gapless semiconducting features. The
computed results reveal the robustness of its innovative electronic structures and a long spin-coherence
length. These excellent features show great promise for future experimental study and realistic
application. We further built the PdF3/Ga2O3/PdF3 MTJ to deeply investigate the spin-transport
feature by first-principles combined with the nonequilibrium Green’s function method. The ultrahigh
equilibrium and nonequilibrium states of TMR are obtained at about 5.04 × 107% and 4.11 × 1011%
(at 0.01 V), respectively. Additionally, the calculation of spin-injection efficiency exhibited the perfect
spin-filtering performance of this MTJ. We also utilized the current–voltage curve, transmission
spectrum, and local density of states to gain a deep understanding of the physical mechanism of its
spin-transport properties. In conclusion, such an MTJ is a promising candidate for realistic spintronic
applications. We hope this work can provide guidance for future experimental studies.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-4991/9/9/1342/s1,
Figure S1: (a) Front and (b) side views of lattice structure of rhombohedral-type PdF3 bulk, Figure S2: Geometric
structure of PdF3-Ga2O3-PdF3 magnetic tunnel junction (MTJ), Figure S3: Band structures of PdF3 bulk calculated
based on the PBE+U method. Here, we assessed the influence brought by Hubbard U from 1 eV to 4 eV for
Pd-4d orbits, Figure S4: Band structure of PdF3 bulk under MBJGGA calculation within VASP software, Figure
S5: Band structure of PdF3 bulk calculated based on the PBE functional with consideration of the SOC effect,
Figure S6: Band structures of PdF3 bulk under different pressures. These results were calculated based on the
PBE functional, Figure S7: Equilibrium-state transmission spectrum in parallel configuration for PdF3-based
MTJ. (b) Equilibrium-state transmission spectrum in anti-parallel configuration for PdF3-based MTJ, Figure S8:
Non-equilibrium transmission spectrum versus electron energy at a fixed bias voltage for PdF3-based MTJ.
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