SUPPLEMENTARY INFORMATION

Facile Interfacial Engineering of Mesoporous TiO₂ for Low-Temperature Processed Perovskite Solar Cells

Jiyoon Nam¹, Inje Nam¹, Eun-Jin Song², Jung-Dae Kwon², Jongbok Kim³, Chang Su Kim², and Sungjin Jo^{1,*}

 ¹School of Architectural, Civil, Environmental and Energy Engineering, Kyungpook National University, Daegu 41566, Republic of Korea
²Surface Technology Division, Korea Institute of Materials Science, 797 Changwondaero, Sungsan-Gu, Changwon, Gyeongnam 51508, Republic of Korea
³Department of Materials Science and Engineering, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea

Figure S1. Current–voltage curves of perovskite solar cells based on the surface modification process (SMP) with various rinsing solvents.

Figure S2. Scanning electron microscopy images of the surfaces of (a) TiO_2 sintered at a low temperature and the (b) first, (c) second, and (d) third layers of multilayer TiO_2 .

Figure S3. (a) Current–voltage curves and (b) current density (J_{sc}) , open-circuit voltage (V_{oc}) , and fill factor (FF) values of perovskite solar cells based on single layer (SL) and multilayer (ML) TiO₂ sintered at a low temperature.