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Abstract: In this paper, we propose a broadband absorption-controllable absorber based on nested
nanostructure graphene and a narrowband frequency-tunable absorber utilizing gold-graphene
hybrid structure in the terahertz regime. The numerical simulation results showed that the absorption
of the broadband absorber can be changed from 27% to more than 90% over 0.75 to 1.7 THz by
regulating the chemical potential of graphene. With the same regulation mechanism, the absorbing
peak of the narrowband absorber can be moved from 2.29 to 2.48 THz continuously with absorption of
90%. Furthermore, via the cascade of the two types of absorbers, an independently tunable dual-band
absorber is constituted. Its absorption spectrum is the superposition of absorption-controllable
absorber and frequency-tunable absorber. The absorptivity and operating frequency of the two
absorbing bands can be tuned independently without mutual inference. Moreover, it is insensitive
to the polarization and it maintains high absorption over a wide range of incident angle. For the
flexibility, tunability as well as the independence of polarization and angle, this design has wide
prospects in various applications.
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1. Introduction

In recent years, terahertz (THz) wave, lying between the microwaves and infrared light in the
electromagnetic spectrum, has attracted great attention of researchers for its potential applications
in communication, imaging, sensing, spectroscopy, etc. [1–4]. With the rapid development of THz
technology, the demand for THz functional devices, such as filter, rotator, absorber, has become
increasingly urgent [5–7]. Among these devices, THz absorber has drawn special concern due to its
versatile utilization. However, the characteristics of absorber are determined once processed, thus
limiting the scope of application. Traditional methods to realize tunability, such as diodes, varactors
and liquid crystal, are no longer applicable in THz band [8]. Graphene, a monolayer of carbon atoms
arranged in a honeycomb lattice, is an ideal candidate to design absorbers due to its remarkable
mechanical properties, high carrier mobility, flexibility, and the ability to support localized surface
plasmon resonance [9–11]. Moreover, the surface conductivity of graphene can be continuously tuned
by regulating the chemical potential via electrostatic doping [12,13].

Hence, the research on development of tunable THz absorbers based on graphene has been
expanding fast recently. To enhance the absorption and tunability, THz absorbers usually take advantage
of patterned graphene, graphene-gold hybrid structure, and gold patches along with monolayer
graphene [14–17]. However, the absorbers mentioned above generally have a single operating band
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or narrow absorption bandwidth. To overcome the mentioned drawbacks, different approaches have
been proposed to achieve multiband or broadband function. The multiple bands can be realized either
by integrating several resonators within a unit cell or stacking multiple layers of the resonators with
different size separated by dielectric layers [18–20]. The broad bandwidth is implemented by adopting
gradient structural elements, combining multilayer resonators, or nesting concentric resonators [21–25].
All of the mentioned absorbers can only regulate a single parameter in a specific design. Tuning both the
absorption level and the frequency of different absorbing bands independently remains a challenging
task for THz absorbers.

In this paper, we propose a dual-band THz graphene absorber with a broad absorption-controllable
band and a narrow frequency-tunable band using the cascade method. Firstly, a broadband absorption-
controllable absorber is designed. This absorber consists of periodic nanostructure graphene layer
placed over dielectric layers backed on a reflector. The nested square ring and patch of graphene
sheet achieves a high switching intensity of absorption over a wide band when adjusting the chemical
potential via external gate voltage. Secondly, a narrowband frequency-tunable absorber is proposed.
It is composed of a graphene-gold hybrid layer, a substrate spacer, and a gold grid, exhibiting a typical
sandwich structure. The graphene strips deposited on the top layer dissipate the resonant power of
gold structure, thus forming an absorption band. Besides, via controlling the external gate voltage, the
resonant frequency can be regulated for the perturbation caused by the regulation of chemical potential
in graphene strips. Finally, replacing the gold reflector of absorption-controllable absorber with the
frequency-tunable absorber of the sandwiched structure, an independent tunable dual-band absorber
is constructed.

2. Materials and Methods

Graphene is considered as an infinitesimally thin material, which can be modeled as a
two-dimensional sheet [26,27]. The surface conductivity of graphene is contributed by inter-band and
intra-band transitions according to the Kubo formula [28,29]:

σg = σintra
g + σinter

g (1)

σintra
g =

2kBTe2

π}2 ln
[
2 cosh

( EF

2kBT

)] i
ω+ iτ−1

(2)

σinter
g =

e2

4}

[
H(ω/2) + i

4ω
π

∫
∞

0

H(Ω) −H(ω/2)
ω2 − 4Ω2 dΩ

]
(3)

where kB is the Boltzmann’s constant, e is the charge of an electron, and } = h/2πis the reduced Planck’s
constant, EF is the chemical potential (Fermi energy), τis the relaxation time set as 0.1 ps, which is typical
for experimentally studied graphene [30], T is room temperature set as 300 K, H(Ω) is defined as:

H(Ω) =
sinh(}Ω/kBT)

cosh(EF/kBT) + cosh(}Ω/kBT)
(4)

According to the Pauli exclusion principle, the inter-band contribution of graphene conductivity
can be safely neglected in low THz region [31]. Then, the surface impedance of a graphene monolayer
is calculated by Zg = 1/σg. The real and imaginary parts of the surface impedance as a function of
chemical potential is illustrated in Figure 1a,b respectively. In low THz region, the real part of the
surface impedance almost remains constant, but the imaginary part grows linearly as the frequency
rises. Using circuit equivalence analysis, graphene sheet behaves like the series of inductance and
resistance (LR). With the increase of EF, the surface impedance decreases gradually. Therefore, the
surface impedance of graphene can be effectively regulated by changing the chemical potential.

To manipulate the chemical potential of graphene via electrostatic doping, an external gate voltage
is applied between the graphene layer and underneath layer. The relation between chemical potential
and gate voltage can be approximately expressed by the equation [32,33]:
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EF = }νF

√
πε0εrVg/eds (5)

where vF is the Fermi velocity, ε0 and εr are the permittivity of free space and the substrate between
electrodes, separately. Vg is the gate voltage, e is the electron charge, and ds is the thickness of the
spacer between electrodes. Therefore, by regulating the surface impedance of graphene through the
gate voltage, the intensity of surface plasmon resonance can be tuned effectively, thus controlling the
absorption of THz absorber based on graphene.Nanomaterials 2019, 9, x FOR PEER REVIEW 3 of 12 
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Figure 1. Surface impedance of graphene with different chemical potential (a) Real part (b) Imaginary part.

Firstly, a broadband absorption-controllable absorber is proposed. Figure 2 gives the detailed
structure of the broadband absorption-controllable absorber, which consists of a nanostructure graphene
layer, a SiO2-doped Si-SiO2 sandwich structure, a gold ground. The nested square ring and patch of
graphene can form resonance and excite localized surface plasmon resonances, which are hybridized
with each other leading to a broadband absorption band [24]. The diagonals connect discrete units so
that the electrostatic doping of periodic graphene array becomes much easier. The SiO2 layers function
as spacers to separate the graphene, doped Si, and gold. It is a normal substrate and doesn’t have effects
on the absorption. Doped Si plays the role of another electrode gate to realize the dynamical control of
chemical potential of graphene [34–36]. The gold ground, whose thickness is much larger than typical
skin depth in THz, reflects the incident wave like a mirror. The detailed structural parameters are listed
in the caption of Figure 2. To take dispersion property of metal into consideration, the permittivity
of gold is derived from Drude Model εAu = 1−ωp

2/ω(ω+iγ0), where bulk plasmon frequency of gold
is ωAu = 1.37 × 1016 S−1 and the collision frequency is γ0 = 4.08 × 1013 S−1 [37,38]. The structural
dimensions and thicknesses of different layers are shown in the caption of Figure 2.
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Figure 2. Schematic of the broadband absorption-controllable absorber. The values of the dimension
parameters: p1 = 70, l1 = 60, l2 = 49, g = 1, w = 2, tSiO2 = 0.3, tSi = 1, ts1 = 30, tAu = 0.5, unit: µm.
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Secondly, a narrowband frequency-tunable absorber is designed. Figure 3 depicts the schematic
of the THz frequency-tunable absorber, which consists of a hybrid-SiO2-gold sandwich structure.
The front layer is a square gold patch array surrounded by the gold grid, and graphene strips are
evenly deposited at the bottom of the slot. The patch-grid periodic metal structure generates a parallel
capacitance and inductance (LC) resonance [39,40], whose power is dissipated by the graphene strips.
The SiO2 acts as a spacer and also as a support layer. The back gold grid in staggered arrangement plays
the role of electrode gate. As mentioned above, graphene sheet behaves like the series of inductance
and resistance. By increasing the voltage between front and back layer, the inductance of graphene
drops gradually, the total paralleled inductance of the resonance decreases as well, thus moving the
absorbing frequency. The detailed structural parameters are shown in the caption of Figure 3.
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Finally, an independently tunable dual-band absorber is constituted by substituting the
frequency-tunable absorber for the gold ground of the broadband absorption-controllable absorber.
The absorption of the first operating band f1 is controlled by the voltage between nanostructure
graphene and doped Si layer V1 and the frequency of the second operating band f2 is tuned via the
voltage between the gold-graphene hybrid layer and back grid layer V2. Since the nanostructure
graphene is almost transparent to incident wave of f2 and the frequency-tunable absorber reflects all of
the transmitted wave of f1, two absorbing bands can be controlled individually without impacting
each other. In theory, the doped Si can play electorate for both two different absorbers, but the distance
between doped Si and gold-graphene hybrid structure is quite long, which may lead to an extremely
high bias voltage. The introduction of cross feed network can solve this problem effectively. Besides,
as shown in Figure 4, the periodicity of the patterned graphene layer is twice as large as that of the
hybrid structure, so the unit cell of the integrated structure contains one unit of the top layer and four
units of the bottom layer in the simulation.
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3. Results

3.1. Simulations of the Broadband Absorption-Controllable Absorber

The full-wave simulation is conducted in the Computer Simulation Technology (CST) Microwave
Studio (2015). It is a high-performance 3D EM analysis software package for designing, analyzing and
optimizing electromagnetic (EM) components and systems [41]. The reflection and transmission are
calculated using these equations: R = |S11|2 and T = |S21|2. Then, absorption can be obtained through
A = 1−R−T. The influence of the chemical potential on the absorption spectrum of the broadband
absorption-controllable absorber is given in Figure 5a,b. Under normal incidence, the absorption over
90% ranges from 0.75 to 1.7 THz when EF = 0.7 eV. As EF decreases from 0.7 to 0 eV, the surface impedance
of graphene drops rapidly, the absorption changes continuously from 90% to 27% corresponding the
intense of resonances weakened. In the process of chemical potential decline, the rate of change in
absorption is gradually accelerated, consistent with that of surface impedance shown in Figure 1.
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The absorption spectrum of the broadband absorption-controllable absorber with different thick
spacer thickness (ts1) is shown in the Figure 5c. With the increase of ts1, the absorption curves appear a
red shift. Besides, the absorptivity drops down gradually at the upper frequency while grows slowly
at the lower frequency. In ground backed absorber, the thickness of substrate between patterned
graphene and ground has a negative relation with the resonant frequency. Hence, the high-frequency
resonance is weakened while the high-frequency one is enhanced. As a result, the operating band of
the broadband absorber shifts to lower frequency with the increase of ts1.

In order to further understand the broadband absorption mechanism, the electric field distribution
and power flow of the absorber with EF = 0.7 eV are investigated. Figure 6a illustrates the electric
field distribution of absorber in absorbing band (0.75 and 1.5 THz) and out of absorbing band (0.1 and
2.2 THz). Obviously, the electric field at 0.1 and 2.2 THz is rather weak corresponding to low absorption.
Within the absorbing band, strong electric field is concentrated on the narrow gap and adjacent units at
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0.75 THz and appears in the central square patch at 1.5 THz. It means that the resonance between
the ring and the patch contributes to the low-frequency absorption while localized surface plasmon
resonance caused by the square graphene patch leads to the high-frequency absorption [24]. It can be
further investigated by the power flow distribution displayed in Figure 6b. Since the absorption is
more than 90% in the operating band, the power flow on the top layer can show the resonant intensity
and power dissipation in every position. When the frequency increases from 0.75 to 1.5 THz, the
power flow is gradually weakened in the gap while greatly enhanced in the central graphene patch,
which agrees well with analysis of electric field. The hybridization of resonances forms the broadband
absorption. And the absorption band is decided by the dimensions of the patterned graphene layer
and distance between graphene and gold ground.
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3.2. Simulations of The Narrowband Frequency-Tunable Absorber

The spectrum response of the frequency-tunable absorber with EF = 0.3 eV is indicated in Figure 7.
There is an absorbing point peaking at 2.7 THz. The frequency-tunable absorber is utilized to replace the
gold reflector of absorption-controllable absorber when constructing the dual-band absorber. Therefore,
the substrates of absorption-controllable absorber are placed on the front layer of frequency-tunable
absorber to simulate together. The resonant frequency drops to 2.48 THz with absorption more than
90%. It agrees well with the conclusion of Ref. [42], that attaching substrate slab with finite length to
the one side of periodic resonant structure will decrease the resonant frequency. When EF varies from
0.3 to 0 eV, the resonant position appears red shift, peaking at 2.29 THz. The parallel capacitance and
inductance resonance of hybrid structure has a negative correlation between the resonant frequency and
total paralleled inductance. The decrease of EF increases the inductance of graphene, which improves
the total paralleled inductance of the structure thus moving the absorbing peak to lower frequency.

The distributions of electric field and surface current on the front layer and back layer are
investigated to further explain the absorption mechanism. The absorption peaks at 2.48 THz when
EF = 0.3 eV. As shown in Figure 8a, the electric field focuses on the gap between outer patch and outer
grid on the top layer while it gathers in the oblique grid just below the position of square patch on the
back layer. The absorption can be attributed to these factors: the stronger resonance between the square
patch and the outer grid (on the top layer), the weaker resonance between the square patch and oblique
grid (between two layers). The graphene strips in the gap mainly regulate the first factor. In other
words, the capacitance of square patch along with the inductance of the outer grid, the oblique grid
and the graphene forms the parallel resonance, whose power is dissipated by the graphene and gold.
This principle of operation can be further verified by the current distribution displayed in Figure 8b.
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The current on square patch of the front layer flows from top to bottom while it is inversed on the
outer grid and back layer. The anti-parallel currents are triggered by the magnetic resonance between
the patches and the grids, consistent with previous research results [43].Nanomaterials 2019, 9, x FOR PEER REVIEW 7 of 12 
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Figure 8. (a) The electric field distribution of the narrowband frequency-tunable absorber at 2.48 THz
with EF = 0.3 eV (b) The current distribution of the narrowband frequency-tunable absorber at 2.48 THz
with EF = 0.3 eV (c) Absorption spectrum of the narrowband frequency-tunable absorber with different
ts2 when EF = 0.3 eV.

In the narrowband frequency-tunable absorber, the absorption spectrum with different spacer
thickness ts2 is indicated in Figure 8c. It can be seen that the absorptivity decreases gradually with
the increase of ts2. The decrease of spacer thickness enhances the weak resonance between layers.
Therefore, the intense of the top-layer resonance is weakened. As a result, the energy absorbed by
graphene reduces as well, thus leading to the drop of absorption.

Furthermore, the distributions of power loss are indicated in Figure 9a. It can be seen that most of
the energy is dissipated within graphene strips in accordance with the strong resonance on the front
layer while a small portion of the energy is consumed in of gold-graphene should be dominant so that
the performance of absorber can be tuned by the gate voltage. As shown in Figure 9b, at 2.49 THz, the
energy dissipated by graphene reaches 80% and the gold also makes a small partial contribution to
the loss of energy. Therefore, the frequency of absorber can be effectively regulated by the change of
chemical potential of graphene.
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3.3. Simulations of Independently Tunable Dual-Band Absorber

Figure 10a gives the absorption spectrum of the dual-band tunable absorber as a function of
the frequency and chemical potential EF1. When EF1 increases from 0 to 0.7 eV with EF2 = 0 eV, the
maximum absorption of f1 (0.72 to 1.6 THz) sustains a continuous growth from 30% to more than 90%.
At the same time, the second absorbing peak located at f2 = 2.3 THz maintains the absorption over
90% without frequency shift due to the fixed EF2. However, as shown in Figure 5a, the absorption
of nanostructure graphene improves from 0 to 10% at 2.3 THz with the increase of EF1, which leads
to the gradual expansion of effective operating bandwidth (over 90%) of the second absorbing peak.
Figure 10b illustrates the relation between the absorption, frequency and EF2 with EF1 fixed at 0.7 eV.
The effective absorbing band from 0.72 to 1.6 THz remains unchanged while the operating frequency
of the second peak f2 moves from 2.3 to 2.5 THz, as EF2 grows from 0 to 0.3 eV. During the blue shift
of f2, the effective bandwidth of the absorbing peak becomes narrow slowly, which is attributed to
the decreased absorption of nanostructure graphene from 2.3 to 2.5 THz. In brief, the dual-band
absorber combines the characteristics of broadband absorption-controllable absorber and narrowband
frequency-tunable absorber. The absorption at f1 and the position of f2 can be tuned independently
and freely.
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The independence of absorption with respect to angle and polarization is essential in practical
applications. Therefore, the absorption under different incident angles and polarized wave is
investigated. Here, the chemical potentials EF1 and EF2 are fixed at 0.7 and 0 eV. Figure 11a depicts the
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absorption spectra with different polarization angle φ of incident wave. As φ varies from 0◦ to 90◦, the
absorption spectrum has no change since the C4 symmetry of the structure ensures the robustness.
For TE (Transverse electric) and TM (Transverse magnetic) polarized wave under oblique incident
angle θ, the absorption spectrums are shown in Figure 11b,c, respectively. The absorption at both f1
and f2 remains over 90% up to 50◦ for TE polarized wave. However, as θ continues to rise, there is
a decline tendency for the absorption at narrow absorbing peak f2 and the low frequency portion of
the broad absorbing band f1. The absorptions at these regions is triggered by the magnetic resonance
on the same layer. With the increase of incident angle for TE waves, the transverse magnetic field
decreases gradually, so does the intensity of magnetic resonance, resulting in a drop in absorption.
As for TM polarized wave, the magnetic resonance and localized surface plasmon resonance are not
affected by the incident angle so that the absorption remains more than 90% over a wide range of
incidence angles up to 60◦. Besides, the broad absorbing band is expanded to higher frequency when
θ = 50◦, because some parasitic resonances occur and become stronger at large incident angle [13,18].
The incident angle and polarization insensitivity make the proposed absorber a suitable candidate for
various applications such as THz detection, sensing and telecommunication.

Nanomaterials 2019, 9, x FOR PEER REVIEW 9 of 12 

 

 

Figure 10. Absorption spectrum of the independently tunable dual-band absorber as a function of 

frequency and chemical potential (a) EF1: 0–0.7 eV, EF2 = 0 eV (b) EF1 = 0.7 eV, EF2: 0–0.3 eV. 

The independence of absorption with respect to angle and polarization is essential in practical 

applications. Therefore, the absorption under different incident angles and polarized wave is 

investigated. Here, the chemical potentials EF1 and EF2 are fixed at 0.7 and 0 eV. Figure 11a depicts 

the absorption spectra with different polarization angle ϕ of incident wave. As ϕ varies from 0° to 

90°, the absorption spectrum has no change since the C4 symmetry of the structure ensures the 

robustness. For TE (Transverse electric) and TM (Transverse magnetic) polarized wave under 

oblique incident angle θ, the absorption spectrums are shown in Figure 11b,c, respectively. The 

absorption at both f1 and f2 remains over 90% up to 50° for TE polarized wave. However, as θ 

continues to rise, there is a decline tendency for the absorption at narrow absorbing peak f2 and the 

low frequency portion of the broad absorbing band f1. The absorptions at these regions is triggered 

by the magnetic resonance on the same layer. With the increase of incident angle for TE waves, the 

transverse magnetic field decreases gradually, so does the intensity of magnetic resonance, resulting 

in a drop in absorption. As for TM polarized wave, the magnetic resonance and localized surface 

plasmon resonance are not affected by the incident angle so that the absorption remains more than 

90% over a wide range of incidence angles up to 60°. Besides, the broad absorbing band is expanded 

to higher frequency when θ = 50°, because some parasitic resonances occur and become stronger at 

large incident angle [13,18]. The incident angle and polarization insensitivity make the proposed 

absorber a suitable candidate for various applications such as THz detection, sensing and 

telecommunication. 

 

Figure 11. Absorption spectrum of the independently tunable dual-band absorber as a function of 

frequency and polarization angles/incident angles (a) polarization angle ϕ: 0°–90°; (b) TE, incident 

angle θ: 0°–60° (c) TM, incident angle θ: 0°–60°. 

4. Conclusions 

A dual-band tunable absorber has been designed and demonstrated theoretically, by cascading 

two different types of absorber. The first broad absorbing band is produced by the hybridization of 

Figure 11. Absorption spectrum of the independently tunable dual-band absorber as a function of
frequency and polarization angles/incident angles (a) polarization angle φ: 0◦–90◦; (b) TE, incident
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4. Conclusions

A dual-band tunable absorber has been designed and demonstrated theoretically, by cascading two
different types of absorber. The first broad absorbing band is produced by the hybridization of different
resonances in the nanostructure graphene. By changing the voltage between the graphene and doped Si
to control the resonance intensity, the absorption can be continuously tuned from 30% to 90% over 0.72
to 1.6 THz. The second narrow absorbing band is formed by the magnetic resonance of gold-graphene
hybrid structure. The absorbing peak with 90% absorptivity can be varied between 2.3 to 2.5 THz via
controlling the voltage between hybrid layer and back grid layer. The two operating bands are controlled
with different electrode gates and can be independently regulated without interference, thus greatly
expanding the scope of its applications. This paper presents the general method of designing broadband
absorption-controllable absorber and frequency-tunable absorber. In addition, the integration technique
for combining the mentioned reconfiguration capabilities is elaborated, which is also available in other
frequency for the scalability.
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