Supporting Information

Hafnium Doped Mesoporous Silica as Efficient Lewis Acidic Catalyst for Friedel-Crafts Alkylation Reactions

Yao-Bing Huang ^{1,2,3,*}, Yu-Jia Luo ², Fei Wang ^{1,*}

¹ Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China

² College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China

³ Department of Chemical and Biomolecular Engineering, University of California-Berkeley, Berkeley 94706, California, USA

- 1. Table S1. FC benzylation of aromatics over different catalysts.
- 2. Table S2. Reaction evolution over Hf/SBA-15(20) catalyst at different time.
- 3. Table S3. Reaction evolution over Zr/SBA-15(20) catalyst at different time.
- 4. Table S4. Influence of catalyst loading on the reaction over Hf/SBA-15(20).
- 5. Table S5. Influence of reaction temperature on the reaction over Hf/SBA-15(20).
- 6. Table S6. Influence of aromatic loading on the reaction efficiency.
- Scheme S1. Catalytic condensation of furfural with 2-methylfuran over Hf/SBA-15(20) and Zr/SBA-15(20) catalyst.
- 8. Figure S1. Reaction evolution over a) Zr/SBA-15 catalyst and b) Hf/SBA-15.
- 9. Figure S2. Pyridine-IR characterization of Hf/SBA-15 and Zr/SBA-15 catalysts.
- 10. Figure S3. The influence of molecular sieve on reaction.
- 11. Figure S4. Catalyst recycling test with 60mg loading of Hf/SBA-15 catalyst under optimized condition.
- 12. NMR spectra of the benzylated products.

Catalyst	Acid type	Temp.	Time	BA yield	o:p:m	Ref.
	(B or L)	(°C)	(h)	(%)		
Al/SBA-15	L	110	24	>95	52:48:0	[1]
Triphenylphosphine ditriflate	В	25	0.5	84	42:58:0	[2]
$M-ZrO_2/SO_4^{2-}$	В	150	2	77	37:40:0	[3]
MoO ₃ /M-ZrPO	B-L	110	2	45.9	33:28:0	[4]
$Hf_{0.5}[TEAPS]PW_{12}O_{40}$	B-L	140	2	91.7	47:53:0	Ref 5
TPA-PANI	В	80	4	98	-	Ref 9
Au/SiO ₂ IL	L	65	2	77.5	-	Ref 12
Sn ₁ TPA	В	120	1	99	-	Ref 13
Sc(OTf) ₃ (25)/MCM-41	В	80	1.5	95	1:1:0	Ref 14
SiO ₂ -ZrO ₂	L	110	15	32	-	Ref 15
Fe-TUD-1	В	110	1	90	-	Ref 21
Hf/SBA-15(20)	L	120	6	99.1		This work

Table S1. FC benzylation of aromatics over different catalysts.

Table S2. Reaction evolution over Hf/SBA-15(20) catalyst at different time.

Entry	Time (h)	Conv (%)	BA yield(%)	o:p:m	DBE yield(%)
1	1	36.3	19.9	11.5:7.6:0.8	5.9
2	2	66.9	47.5	27.6:18:1.9	10.4
3	3	100	86.5	50.2:32.9:3.5	3.6
4	4	100	90.3	52.4:34.3:3.6	/
5	5	100	93.3	54.1:35.5:3.7	/
6	6	100	99.1	57.5:37.6:4	/

Reaction conditions: 0.5 mmol benzyl alcohol, 3 mL toluene, 80 mg Hf/SBA-15(20), 11.5% Zr loading, 120 °C.

 Table S3. Reaction evolution over Zr/SBA-15(20) catalyst at different time.

 Entry
 Time (h)
 Conv (%)
 BA viold (%)
 output

Entry	Time (h)	Conv (%)	BA yield (%)	o:p:m	DBE yield (%)
1	1	28.3	8.9	5.2:3.4:0.4	4.8
2	2	38.7	17.1	9.9:6.5:0.7	7.9
3	3	60.2	44	25.5:16.7:1.8	10
4	4	88.1	73.9	42.9:28.1:3	3.1
5	5	93.5	80.2	46.5:30.5:3.2	-
6	6	100	89.3	51.8:33.9:3.6	-

Reaction conditions: 0.5 mmol benzyl alcohol, 3 ml toluene, 11.5 mol% Zr loading, 120 °C.

	5	υ			
Entry	Catalyst amount (mg)	Conv (%)	BA yield (%)	o:p:m	DBE yield (%)
1	20	41.6	22	12.8:8.4:0.9	8.3
2	40	100	73.6	42.7:28:2.9	11.3
3	60	100	91.1	52.8:34.6:3.6	/
4	80	100	99.1	57.5:37.6:4	/
5	100	100	97.9	56.8:37.2:3.9	/

Table S4. Influence of catalyst loading on the reaction over Hf/SBA-15(20).

Reaction conditions: 0.5 mmol benzyl alcohol, 3 mL toluene, 6 h, 120 °C.

Table S5. Influence of reaction temperature on the reaction over Hf/SBA-15(20).

Entry	Temperature (°C)	Conv (%)	BA yield(%)	o:p:m	DBE yield(%)
1	90	25.4	5.3	3.1:2:0.2	/
2	100	100	76.2	44.2:28.9:3	9.2
3	110	100	83	48.1:31.5:3.3	2.8
4	120	100	99.1	57.5:37.6:4	/
5	130	100	99.2	57.5:37.7:4	/

Reaction conditions: 0.5 mmol benzyl alcohol, 3 mL toluene, 80 mg Hf/SBA-15(20), 6 h.

Table S6.	Influence	of aromatic	loading on	the reaction	efficiency.
			2)		-

Entry	toluene (mL)	Time (h)	Conv (%)	BA yield (%)	DBE yield (%)
1	1	6	100	63.9	-
2	1	14	100	83.9	-
3	1.5	6	100	78.6	-
4	1.5	14	100	91.6	-

Reaction conditions: 0.5 mmol benzyl alcohol, 80 mg Hf/SBA-15(20), 120 °C.

Catalytic test

Figure S1. Reaction evolution over a) Zr/SBA-15 catalyst and b) Hf/SBA-15. Conditions: 0.5 mmol benzyl alcohol, 3 ml toluene, 120 °C, 11.5 mol% metal loading.

Figure S2. Pyridine-IR characterization of Hf/SBA-15 and Zr/SBA-15 catalysts.

Figure S3. The influence of molecular sieve on reaction. Reaction conditions: 0.5 mmol benzyl alcohol, 3 ml toluene, Hf/SBA-15 80 mg, 4A molecular sieve 100 mg, 120 °C, 6 h.

Figure S4. Catalyst recycling test with 60mg loading of Hf/SBA-15 catalyst under optimized condition. Reaction conditions: 0.5 mmol benzyl alcohol, 3 ml toluene, Hf/SBA-15 60 mg, 120 °C, 6 h.

Reference

[1] Gracia, M.J.; Losada, E.; Luque, R.; Campelo, J.M.; Luna, D.; Marinas, J.M.; Romero, A.A. Activity of Gallium and Aluminum SBA-15 materials in the Friedel–Crafts alkylation of toluene with benzyl chloride and benzyl alcohol. Applied Catalysis A: General, 2008, 349, 148–155.

[2] Khodaei, M.M.; Nazari, E. Synthesis of diarylmethanes via a Friedel–Crafts benzylation using arenes and benzyl alcohols in the presence of triphenylphosphine ditriflate. Tetrahedron Letters, 2012, 53, 5131–5135.

[3] Miao, Z.; Zhou, J.; Zhao, J.; Liu, D.; Bi, X.; Chou, L.; Zhuo, S. A novel mesoporous sulfated zirconium solid acid catalyst for Friedel-Crafts benzylation reaction. Applied Surface Science, 2017, 411, 419–430.

[4] Miao, Z.; Li, Z.; Zhao, J.; Si, W.; Zhou, J.; Zhuo, S. MoO3 supported on ordered mesoporous zirconium oxophosphate: An efficient and reusability solid acid catalyst for alkylation and esterification. Molecular Catalysis, 2018, 444, 10–21.

NMR spectra of the benzylated products

