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Abstract: In this work, an energetic composite fiber, in which 2,6-diamino-3,5-dinitropyrazine-1-oxide
(LLM-105) nanoparticles intimately incorporated with a nitrocellulose/glycidyl azide polymer
(NC/GAP) fiber, was prepared by the electrospinning method. The morphology and structure of the
nanofiber was characterized by scanning electron microscopy (SEM), energy dispersive X-Ray (EDX),
fourier transform infrared spectroscopy (IR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy
(XPS), and Brunauer–Emmett–Teller (BET). The nanofibers possessed a three-dimensional (3D)
net structure and a large specific surface area. Thermal analysis, energetic performance, and
sensitivities were investigated, and they were compared with NC/GAP and LLM-105 nanoparticles.
The NC/GAP/nano-LLM-105 nanofibers show higher decomposition rates and lower decomposition
temperatures. The NC/GAP/nano-LLM-105 decomposed to CO2, CO, H2O, N2O, and a few NO,
-CH2O-, and -CH- fragments, in the thermal-infrared spectrometry online (TG-IR) measurement. The
NC/GAP/nano-LLM-105 nanofibers demonstrated a higher standard specific impulse (Isp), a higher
combustion chamber temperature (Tc), and a higher specialty height (H50). The introduction of
nano-LLM-105 in the NC/GAP matrix results in an improvement in energetic performance and safety.
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1. Introduction

2,6-Diamino-3,5-dinitropyrazine-1-oxide (LLM-105) is an essential ingredient in many propellant
and explosive formulas for its low sensitivity, high energy, high density, and excellent thermal
stability [1,2]. The properties of low sensitivity and excellent thermal stability are attributed to
the π-conjugated system. Due to the intense intramolecular hydrogen bonding, the LLM-105
possesses good compatibility with the common components of propellant and explosives, such
as hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), nitrocellulose (NC), etc. [3–6]. Nanoscale LLM-105 has
a superior energy release rate and a higher reaction rate, compared with conventional LLM-105 [7–10].
However, the agglomeration of nano-LLM-105 causes a decrease in performance and limits its
application [11,12]. It is feasible that energetic matrix is utilized to support LLM-105 nanoparticles,
which can effectively avoid agglomerating.

Electrospinning is a universal technology that is used to obtain multifarious nanocomposite [13–16].
The as-spun 3D nanofibers, with high specific surface areas and porosities are desired carrier for
supporting nanoparticles [17–19]. However, the application of electrospinning technology in composite
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energetic materials is rarely performed [20]. For instance, nitrocellulose/aluminum-cupric oxide
(NC/Al-CuO) and nitrocellulose/2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (NC/CL-20)
nanofibers with high burning rates were obtained via electrospinning [21,22]. Li also fabricated
nanoboron/nitrocellulose (B/NC) electrospun nanofibers with excellent thermostability [23]. Similarly,
researchers selected single NC as electrospinning matrix. However, simplex NC has a relatively
large viscosity, which affects the morphology of the nanofiber, and results in low loading of the
nano-explosive. In addition, a high spinning voltage could generate electric sparks and bring great
safety risks. The composite energetic matrix can compensate these deficiencies. GAP is a high-energy
prepolymer with low viscosity and high density. Moreover, it has more flexible segments, a lower glass
transition temperature (Tg), and higher mechanical properties than NC. Currently, there is no report
on using GAP as a matrix to load explosives with electrospinning [24–26]. In this work, ball milling
nano-LLM-105 is assembled onto a NC/GAP composite matrix by electrospun technology, to create a
new type of energetic 3D nanocomposite. In fact, it is not dangerous to prepare explosive materials by
electrospinning and ball milling. This is because that the energetic material is very stable at a normal
temperature and pressure, and under the protection of solvent. At this time, they are no different
from inert materials. Further experiments suggest that the NC/GAP/nano-LLM-105 nanofibers possess
lower sensitivity and remarkable thermal decomposition and energy performance, which makes the
nanofibers have application potentials in the field of solid propellants.

2. Materials and Methods

2.1. Materials

2,6-Diamino-3,5-dinitropyrazine-1-oxide (LLM-105) was provided by Gansu Yinguang Chemical
Co., Ltd. (Baiyin city, Gansu province, P.R. China). Glycidyl azide polymer (GAP, Mn = 4000, hydroxyl
value of 0.49 mmol·g−1) was obtained from the 42nd Institute of the Fourth Academy of China Aerosce
Science and Technology Corporation. Nitrocellulose (NC, 12.6% N, industrial grade) was provided by
Foshan Junyuan Chemical Co., Ltd. (Foshan city, Guangdong province, P.R. China). Ethanol (EtOH)
and acetone were purchased from Tianjin Guangfu Chemical Co., Ltd. (Tianjin city, China).

2.2. Fabrication of Nanofibers

Firstly, nano-LLM-105 was prepared by the high-energy ball milling method. The ingredients,
including 200 g balls, 6 g LLM-105, 60 mL deionized water, and 60 mL ethanol, are added into a mill
jar. The four jars are sealed and immobilized on the ball mill. The mill rotates at 300 rpm for 6 hr. Then
0.3 g nano-LLM-105 is dissolved in 4.4 g acetone to get nano-LLM-105 suspension. Exactly 0.45 g NC
and 0.45 g GAP were added into 4.4 g acetone to obtain a NC/GAP solution. The above-prepared
nano-LLM-105 suspension and NC/GAP solutions were blended to obtain a NC/GAP/nano-LLM-105
precursor (12 wt %). The mass ratio of NC, GAP, and nano-LLM-105, respectively was set to 3:3:2. As a
contrast, the NC/GAP precursor solution (12 wt %) was obtained by dissolving 0.6 g NC and 0.6 g
GAP into 8.8 g acetone. The mass ratio of NC and GAP is set to 1:1. For the electrospinning process of
these two nanofibers, the inner diameter of the stainless steel needle is 0.8 mm. The ambient humidity
was controlled at 40–50%. The applied voltage was maintained at 12–18 kV. Additionally, the flow rate
was fixed at 3–5 mL·hr−1. Aluminum foil was used to collect the fibers, which were placed 12 cm away
from the needle. The preparation scheme is described in Figure 1.
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Figure 1. Sketch for the synthesis of the nitrocellulose/glycidyl azide polymer/nano 2,6-diamino-3,5-
dinitropyrazine-1-oxide (NC/GAP/nano-LLM-105) composite nanofiber.

2.3. Characterization

The analyses of SEM, EDS, IR, XRD, and XPS were performed in order to investigate the
morphology and structure of NC/GAP, nano-LLM-105, and NC/GAP/nano-LLM-105. Scanning electron
microscopy (SEM) was performed on a Hitachi SU8010. The diameters of particles and fibers were
measured by Nano Measurer 1.2 software. X-ray diffraction (XRD) analysis was performed on a
DX-2700 X-ray diffractometer (Hao yuan) with Cu Kα radiation. The IR spectrum was obtained
on an infrared spectrometer (American Thermo Fisher Scientific Nicolet 6700). XPS was conducted
with X-ray photoelectron spectroscopy (XPS) and a PHI5000 Versa-Probe (ULVAC-PHI). The BET
measurements of NC/GAP and NC/GAP/nano-LLM-105 were performed, utilizing nitrogen adsorption
with a Micromeritics ASAP 2010 instrument. Thermal analyses for NC/GAP, nano-LLM-105, and
NC/GAP/nano-LLM-105 were conducted on a differential scanning calorimeter (DSC, TA Model Q600)
at heating rates of 5, 10, 15, and 20 ◦C/min. thermal-infrared spectrometry online (TG-IR) analyses
of NC/GAP and NC/GAP/nano-LLM-105 were performed on a thermal analyzer system (TG/DSC,
Mettler Toledo) coupled with a Fourier transform infrared spectrometer in a nitrogen atmosphere.
The temperature range that we considered was 50 ◦C to 400 ◦C. The impact sensitivity was tested by
using HGZ-1 impact equipment. In each test, 25 drop tests were carried out to calculate the H50, and
each portion was performed three times to obtain a mean value and a standard deviation.

3. Results and Discussion

3.1. Morphology and Structure

Figure 2a,b reveals that there are some weaker agglomerates rather than hard agglomerates for
LLM-105 nanoparticles, and there are no bridge between the particles. The particle diameter distribution
is obtained by measuring a diameter of ~100 particles, and the results are displayed in Figure 2c–d.
We acquired the volume curve by integrating the frequency curve. The mean diameter calculated from
the frequency curve is 152 nm, which is same as the median diameter (d50 = 152 nm) calculated from
the volume curve. For the SEM images of NC/GAP and NC/GAP/nano-LLM-105 (Figure 3a,b), it is
clearly observed that both of the two nanofibers reveal 3D reticulate structures. The surface of the
NC/GAP nanofiber is smooth and uniform. On the contrary, the surface of the NC/GAP/nano-LLM-105
nanofiber is rough and uneven. The difference in morphology is primarily caused by two factors. The
addition of LLM-105 nanoparticles results in an inhomogeneity of precursor solution. Furthermore,
partial LLM-105 nanoparticles are agglomerated during the electrospinning process. From Figure 3c–f,
for NC/GAP nanofibers, the mean diameter and median diameter are 469 nm and 478 nm, respectively.
By comparison, the mean diameter and median diameter of NC/GAP/nano-LLM-105 are 758 nm and
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764 nm, respectively. It is apparent that the diameter of NC/GAP/nano-LLM-105 is larger than that of
the NC/GAP nanofibers. The difference in mean diameter of these two nanofibers is due to the fact that
the LLM-105 nanoparticles are loaded onto the surface of NC/GAP.
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Figure 2. (a,b) SEM image of LLM-105 nanoparticles; (c,d) diameter distribution of the
LLM-105 nanoparticles.
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(c–f) the diameter distribution.

EDS analyses were performed to probe the surface elements of the nanofibers; the results are
exhibited in Figure 4. From Figure 4a,b, the peaks at about 2 Kv belonged to the gold element
sprayed during the test. There were only O, C, and N elements that were presented on the surfaces of
those two fibers, illustrating that impurities were not introduced in the process of ball milling and
electrospinning. The theoretical elemental contents are tabulated in Table 1. After the addition of the
LLM-105 nanoparticles, the O content hardly varied, the N content appreciably increased, and the C
content declined.
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Table 1. Theoretical elemental contents from EDS analyses.

Sample C Content (%) N Content (%) O Content (%)

NC/GAP 31.45 27.5 37.2
NC/GAP/nano-LLM-105 29.14 30.20 37.16

The IR spectra of NC/GAP, NC/GAP/nano-LLM-105, and nano-LLM-105 are contrasted in Figure 5a.
For NC/GAP/nano-LLM-105, the peaks at 3437, 3405, 3285 3233, and 1648 cm−1 respectively indicated
symmetric, anti-symmetric stretching vibrations and deformation vibrations of –NH2 in nano-LLM-105;
two strong absorption peaks located at 1480 and 1448 cm−1 corresponded to the stretching vibrations
of the C=C skeleton in the ring of nano-LLM-105; the peak at 1577 cm−1 indicated anti-symmetric
stretching vibrations of –NO2 in nano-LLM-105; the peaks at 1351 cm−1 and 1383 cm−1 corresponded
to symmetric stretching vibrations of –NO2 in nano-LLM-105 [27]; the peak at 2101 cm−1 was ascribed
to the stretching vibrations of –N3 from the GAP that was present [28]; the peaks at 1280 and 1648 cm−1

reflected the symmetric and anti-symmetric stretching vibrations of -ONO2 in NC, respectively [29]; the
peak at 1075 cm−1 corresponded to the out-of-plane bending vibrations of C–H. Hence, the functional
groups for NC/GAP/nano-LLM-105 were in accord with nano-LLM-105 and NC/GAP, indicating that
the LLM-105 nanoparticles were well-combined with NC/GAP. These peaks were the same as the
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published report. Overall, the molecular structures of the nano-LLM-105 and NC/GAP do not alter in
the process of electrospinning. There were no new groups generated, indicating that NC, GAP, and
nano-LLM-105 do not react with each other. Figure 5b shows the XRD patterns of samples. There were
two main peaks at 28.4 and 33.2◦ in pattern of nano-LLM-105 [10]. Also, there were no diffraction peaks
in the pattern of NC/GAP. This is because LLM-105 is a type of crystal, and NC/GAP is a type of polymer.
The peak positions of the LLM-105 nanoparticles were in line with those of the NC/GAP/nano-LLM-105
nanofibers, which means that the crystal phase of the LLM-105 nanoparticles does not transform by
electrospinning. This is a superior feature of the electrospinning compared with recrystallization to
prepare energetic materials. For the recrystallization method, if the solvent is not properly selected,
the crystal phase is liable to transform. Song prepared 1,3,5,7-Tetranittro-1,3,5,7-tetrazocane (HMX)
by solvent/non-solvent method, and the crystal phase of HMX changed from β-HMX to γ-HMX [30].
In this work, acetone is chosen as the solvent, and the LLM-105 nanoparticles are suspended in it,
which avoids the recrystallization of the LLM-105.

Nanomaterials 2019, 9, x FOR PEER REVIEW 6 of 15 

 

groups generated, indicating that NC, GAP, and nano-LLM-105 do not react with each other. Figure 
5b shows the XRD patterns of samples. There were two main peaks at 28.4 and 33.2° in pattern of 
nano-LLM-105 [10]. Also, there were no diffraction peaks in the pattern of NC/GAP. This is because 
LLM-105 is a type of crystal, and NC/GAP is a type of polymer. The peak positions of the LLM-105 
nanoparticles were in line with those of the NC/GAP/nano-LLM-105 nanofibers, which means that 
the crystal phase of the LLM-105 nanoparticles does not transform by electrospinning. This is a 
superior feature of the electrospinning compared with recrystallization to prepare energetic 
materials. For the recrystallization method, if the solvent is not properly selected, the crystal phase 
is liable to transform. Song prepared 1,3,5,7-Tetranittro-1,3,5,7-tetrazocane (HMX) by 
solvent/non-solvent method, and the crystal phase of HMX changed from β-HMX to γ-HMX [30]. 
In this work, acetone is chosen as the solvent, and the LLM-105 nanoparticles are suspended in it, 
which avoids the recrystallization of the LLM-105.  

4000 3500 3000 2500 2000 1500 1000 500
-60

-40

-20

0

20

40

60

80

100

120
(a)

-ONO2

C-H-NH2

-NO2

ring

-NO2

C-NO2

-ONO2

-NH2

-N3

 

 

Ab
s

Wavenumber (cm-1)

 NC/GAP
 NC/GAP/nano-LLM-105
 nano-LLM-105

 
10 15 20 25 30 35 40 45

0

200

40010 15 20 25 30 35 40 45
0

100

200 10 15 20 25 30 35 40 45

0

100

200

nano LLM-105

  

2θ (degree)

NC/GAP/nano-LLM-105

 

 

In
te

ns
ity

(a
.u

.)

(b)
NC/GAP

 

  

 

 
Figure 5. IR spectra (a) and XRD patterns (b) of NC/GAP, nano-LLM-105 and NC/GAP/nano-LLM-105. 

The XPS spectra of NC/GAP, nano-LLM-105, and NC/GAP/nano-LLM-105 are displayed in Figure 6. 
From Figure 6a–c, typical signals of C, N, and O were clearly detected. For NC/GAP/nano-LLM-105, 
the O1s spectra presented five features with binding energies of 531.3 eV, 532.3 eV, 533.1 eV, 534.2 
eV, and 534.8 eV; the peaks at 532.3 eV and 534.8 eV were ascribed to -NO2 and N-O in the ring of 
LLM-105; the peaks at 533.1 eV and 534.2 eV belonged to -O*-NO2 and -O-NO*2 in NC; the peak at 
531.3 eV was related to the -C-O-C group of NC and GAP [31]. For the C1s spectrum of 
NC/GAP/nano-LLM-105, the peak was fitted to six peaks. The peaks located at 284.5 eV, 286.3 eV, 
and 288.2 eV were assigned to -C-C, C-N3, and -C-ONO2 of GAP and NC. The peaks at 284.7 eV, 
286.8 eV, and 287.6 eV corresponded to -C-C, -C-NH2, and -C-NO2 in nano-LLM-105 [32]. The XPS 
spectrum of N1s consisted of seven peaks at 400.4 eV, 401.1 eV, 404.1 eV, 404.2 eV, 406.9 eV, 407.7 
eV, and 408.2 eV, which corresponded respectively to –N=N=N, –NH2, –N=N=N, C-N in ring, -NO2, 
–ONO2, and N-O in the ring [28]. The -N3 and –ONO2 groups were ascribed to NC and GAP, 
respectively. Finally, the groups of C-N in ring, N-O in ring, –NH2 and -NO2 belong to LLM-105. 
Hence, we infer the existence of LLM-105 nanoparticles on the surface of NC/GAP, and there are no 
new chemical bonds being produced on the surface of the nanofibers. 
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Figure 5. IR spectra (a) and XRD patterns (b) of NC/GAP, nano-LLM-105 and NC/GAP/nano-LLM-105.

The XPS spectra of NC/GAP, nano-LLM-105, and NC/GAP/nano-LLM-105 are displayed in Figure 6.
From Figure 6a–c, typical signals of C, N, and O were clearly detected. For NC/GAP/nano-LLM-105,
the O1s spectra presented five features with binding energies of 531.3 eV, 532.3 eV, 533.1 eV, 534.2 eV,
and 534.8 eV; the peaks at 532.3 eV and 534.8 eV were ascribed to -NO2 and N-O in the ring of LLM-105;
the peaks at 533.1 eV and 534.2 eV belonged to -O*-NO2 and -O-NO*2 in NC; the peak at 531.3 eV was
related to the -C-O-C group of NC and GAP [31]. For the C1s spectrum of NC/GAP/nano-LLM-105,
the peak was fitted to six peaks. The peaks located at 284.5 eV, 286.3 eV, and 288.2 eV were assigned to
-C-C, C-N3, and -C-ONO2 of GAP and NC. The peaks at 284.7 eV, 286.8 eV, and 287.6 eV corresponded
to -C-C, -C-NH2, and -C-NO2 in nano-LLM-105 [32]. The XPS spectrum of N1s consisted of seven
peaks at 400.4 eV, 401.1 eV, 404.1 eV, 404.2 eV, 406.9 eV, 407.7 eV, and 408.2 eV, which corresponded
respectively to –N=N=N, –NH2, –N=N=N, C-N in ring, -NO2, –ONO2, and N-O in the ring [28].
The -N3 and –ONO2 groups were ascribed to NC and GAP, respectively. Finally, the groups of C-N
in ring, N-O in ring, –NH2 and -NO2 belong to LLM-105. Hence, we infer the existence of LLM-105
nanoparticles on the surface of NC/GAP, and there are no new chemical bonds being produced on the
surface of the nanofibers.
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The XPS spectra of NC/GAP, nano-LLM-105, and NC/GAP/nano-LLM-105 are displayed in Figure 6. 
From Figure 6a–c, typical signals of C, N, and O were clearly detected. For NC/GAP/nano-LLM-105, 
the O1s spectra presented five features with binding energies of 531.3 eV, 532.3 eV, 533.1 eV, 534.2 
eV, and 534.8 eV; the peaks at 532.3 eV and 534.8 eV were ascribed to -NO2 and N-O in the ring of 
LLM-105; the peaks at 533.1 eV and 534.2 eV belonged to -O*-NO2 and -O-NO*2 in NC; the peak at 
531.3 eV was related to the -C-O-C group of NC and GAP [31]. For the C1s spectrum of 
NC/GAP/nano-LLM-105, the peak was fitted to six peaks. The peaks located at 284.5 eV, 286.3 eV, 
and 288.2 eV were assigned to -C-C, C-N3, and -C-ONO2 of GAP and NC. The peaks at 284.7 eV, 
286.8 eV, and 287.6 eV corresponded to -C-C, -C-NH2, and -C-NO2 in nano-LLM-105 [32]. The XPS 
spectrum of N1s consisted of seven peaks at 400.4 eV, 401.1 eV, 404.1 eV, 404.2 eV, 406.9 eV, 407.7 
eV, and 408.2 eV, which corresponded respectively to –N=N=N, –NH2, –N=N=N, C-N in ring, -NO2, 
–ONO2, and N-O in the ring [28]. The -N3 and –ONO2 groups were ascribed to NC and GAP, 
respectively. Finally, the groups of C-N in ring, N-O in ring, –NH2 and -NO2 belong to LLM-105. 
Hence, we infer the existence of LLM-105 nanoparticles on the surface of NC/GAP, and there are no 
new chemical bonds being produced on the surface of the nanofibers. 
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Figure 6. (a–c) XPS spectra of NC/GAP, nano-LLM-105 and NC/GAP/nano-LLM-105; high resolution 
XPS spectra (d–f) for C 1s of samples; for (g–i) N 1s of samples and for (j–l) O 1s of samples. 

The nitrogen adsorption–desorption isotherms of NC/GAP and NC/GAP/nano-LLM-105 are 
displayed in Figure 7. The specific surface areas, pore volumes, and pore sizes of the samples are 
shown in Table 2. The isotherms are considered as class IV (H3-type hysteresis loop), indicating that 
the prepared nanofibers were mesoporous materials. At a low p/po, there is the first steep portion of 
the isotherm, as the p/po increases, adsorption of multiple layers begins. In the multi-layer 
adsorption process, capillary condensation a common accompaniment (IV isotherms). Capillary 
condensation and capillary evaporation generally do not occur at identical p/po, resulting in the 
generation of hysteresis loops. The specific surface areas of the NC/GAP/nano-LLM-105 and 
NC/GAP nanofibers were 6.0545 and 4.3573, respectively. The higher surface area value of 
NC/GAP/nano-LLM-105 is ascribed it having a rough surface. Compared to the energetic composite 
prepared by other methods, energetic nanofibers have a larger specific surface area. For example, 
the specific surface area of NC/GAP/CL-20 when prepared by a sol-gel-supercritical method, is 2.7 
[33]. 
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Figure 6. (a–c) XPS spectra of NC/GAP, nano-LLM-105 and NC/GAP/nano-LLM-105; high resolution
XPS spectra (d–f) for C 1s of samples; for (g–i) N 1s of samples and for (j–l) O 1s of samples.

The nitrogen adsorption–desorption isotherms of NC/GAP and NC/GAP/nano-LLM-105 are
displayed in Figure 7. The specific surface areas, pore volumes, and pore sizes of the samples are
shown in Table 2. The isotherms are considered as class IV (H3-type hysteresis loop), indicating that
the prepared nanofibers were mesoporous materials. At a low p/po, there is the first steep portion of
the isotherm, as the p/po increases, adsorption of multiple layers begins. In the multi-layer adsorption
process, capillary condensation a common accompaniment (IV isotherms). Capillary condensation and
capillary evaporation generally do not occur at identical p/po, resulting in the generation of hysteresis
loops. The specific surface areas of the NC/GAP/nano-LLM-105 and NC/GAP nanofibers were 6.0545
and 4.3573, respectively. The higher surface area value of NC/GAP/nano-LLM-105 is ascribed it having
a rough surface. Compared to the energetic composite prepared by other methods, energetic nanofibers
have a larger specific surface area. For example, the specific surface area of NC/GAP/CL-20 when
prepared by a sol-gel-supercritical method, is 2.7 [33].

Table 2. BET surface area and the pore structure parameters of the nanofibers.

Samples BET Surface Area (m2
·g−1) Pore Volume (cm3

·g−1) Pore Size (nm)

NC/GAP 4.3573 0.004422 4.05911
NC/GAP/nano-LLM-105 6.0545 0.007664 5.06352



Nanomaterials 2019, 9, 854 8 of 15

Nanomaterials 2019, 9, x FOR PEER REVIEW 7 of 15 

 

296 294 292 290 288 286 284 282 280 278

0

2000

4000

6000

8000

10000

12000

14000
(d)

NC/GAP C1s
    -C-C 
284.5 eV -C-N3

286.3 eV

-C-ONO2
288.2 eV

 

 

C
PS

Binding energy (eV)
296 294 292 290 288 286 284 282 280

0

2000

4000

6000

8000

10000

12000(e)
nano-LLM-105 C1s

 -C-C 
284.7 eV

-C-NH2
286.8 eV

-C-NO2
287.6

 

 

C
PS

Binding energy (eV)
292 290 288 286 284 282 280

0

10000

20000

30000

40000

50000

60000
(f)

NC/GAP/nano-LLM-105 C1s

-C-ONO2
288.2 eV

-C-NO2
287.6

-C-NH2
286.8 eV

 -C-N3
286.3 eV

C-C in LLM-105
   284.7 eV

C-C in NC/GAP
   284.5 eV

 

 

C
PS

Binding energy (eV)  

412 410 408 406 404 402 400 398
1500

2000

2500

3000

3500

4000

4500

5000

5500
(g)

NC/GAP N1s-N=N=N
400.4 eV

-N=N=N
404.1 eV

-ONO2
407.7 eV

 

 

C
PS

Binding energy (eV)
414 412 410 408 406 404 402 400 398 396

0

5000

10000

15000

20000

25000
(h)

nano-LLM-105 N1s-NH2
401.1 eV

C-N in ring
404.2 eV

    -NO2
406.9 eV

N-O 
in ring
408.2eV

 

 

C
PS

Binding energy (eV)  
410 408 406 404 402 400 398

4000

5000

6000

7000

8000

9000

(i) N1sNC/GAP/nano-LLM-105

 

 

    -NO2
406.9 eV

-N=N=N
404.1 eV

C-N in ring
404.2 eV

-ONO2
407.7 eV

N-O 
in ring
408.2 eV

-N=N=N
400.4 eV

-NH2
401.1 eV

C
PS

Binding energy (eV)  

540 538 536 534 532 530 528 526

5000

10000

15000

20000

25000(j)
NC/GAP O1s

-C-O-C
531.3 eV

 -O*-NΟ2
533.1 eV

-O-NΟ*2
534.2 eV

 

 

C
PS

Binding energy (eV)
540 538 536 534 532 530 528 526

0

5000

10000

15000

20000

25000

30000

35000

40000
(k)

nano-LLM-105 O1s
 -NO2
532.3 eV

N-O in ring
534.8 eV

 

 

C
PS

Binding energy (eV)
540 538 536 534 532 530 528 526

5000

10000

15000

20000

25000

30000
(l)

NC/GAP/nano-LLM-105 O1s

-C-O-C
531.3 eV

 -NO2
532.3 eV

 -O*-NΟ2
533.1 eV

-O-NΟ*2
534.2 eV

N-O in ring
534.8 eV

 

 

C
PS

Binding energy (eV)  

Figure 6. (a–c) XPS spectra of NC/GAP, nano-LLM-105 and NC/GAP/nano-LLM-105; high resolution 
XPS spectra (d–f) for C 1s of samples; for (g–i) N 1s of samples and for (j–l) O 1s of samples. 
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displayed in Figure 7. The specific surface areas, pore volumes, and pore sizes of the samples are 
shown in Table 2. The isotherms are considered as class IV (H3-type hysteresis loop), indicating that 
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the isotherm, as the p/po increases, adsorption of multiple layers begins. In the multi-layer 
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Figure 7. The BET data of samples: (a) NC/GAP and (b) NC/GAP/nano-LLM-105 nanofiber.

3.2. Thermal Analysis

The DSC thermograms of samples collected at different heating rates are displayed in Figure 8a–c.
The kinetic and thermodynamic parameters for thermal decomposition are calculated with the DSC
data; the results are displayed in Table 3. For all samples, the exothermic peak temperature increases
with the increase of heating rate. For NC/GAP/nano-LLM-105, there was only one exothermic
peak, demonstrating that NC, GAP, and nano-LLM-105 decompose synchronously. In addition, the
exothermic peak temperature of NC/GAP/nano-LLM-105 is slightly lower than that of NC/GAP, and it
is markedly lower than those of the LLM-105 nanoparticles. This manifests that the thermolysis of NC,
LLM-105 nanoparticles, and GAP cooperate with each other.

The activation energy (EK), pre-exponential factor (AK), and rate constant (k), are calculated by
the Kissinger equation (Equation (1)) [29] and the Arrhenius equation (Equation (2)) [34]. The EK of
NC/GAP/nano-LLM-105 (185.139 kJ·mol−1) is lower than that of the LLM-105 nanoparticles and is
higher than that of NC/GAP. The k of NC/GAP/nano-LLM-105 is higher than the k of the NC/GAP and
LLM-105 nanoparticles, implying that NC/GAP/nano-LLM-105 has a higher decomposition rate.

ln
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2 = ln

R ·AK

EK
−

EK

R
·

1
Tp

(1)

k = AK · Exp
(
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Tp ·R

)
(2)

AK exp
(
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EK

RTP

)
=

KBTP

h
exp

(
−

∆G,

RTP

)
(3)

∆H, = EK −RTP (4)

∆G, = ∆H, − TP∆S, (5)

where Tp is the peak temperature in the DSC trace, with a heating rate of 15 ◦C·min−1; KB and h are the
Boltzmann (KB = 1.381 × 10−23 J/K) and Planck constants (h = 6.626 × 10−34 J/s), respectively; β is the
heating rate.

The thermal decomposition of the energetic molecules originates from the activation and rupture
of the weakest bond, which is quite significant for the decomposition process. As the temperature of the
explosive increases, the molecular thermal motion is enhanced. When the temperature attains a critical
point, the weakest bond will be stretched. Subsequently, a rupture occurs. This activation process
could be described by the parameters of activation enthalpy (∆H,), activation free energy (∆G,), and
activation entropy (∆S,), as calculated by Equations (3)–(5) [27]. ∆H, is the energy that the molecules
absorb to transform from a common state to an activated state. Compared with nano-LLM-105,
NC/GAP/nano-LLM-105 needs a lower level of energy to be activated. ∆G, is the chemical potential of
the activation course. For all of these samples, the values of ∆G, are positive numbers, indicating that
none of the activation courses proceed spontaneously [28]. Figure 8e shows a kinetic compensation effect
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during the thermolysis of NC/GAP, nano-LLM-105, and NC/GAP/nano-LLM-105. The three points do
not present a linear relationship, which means that the three samples have disparate kinetic mechanisms
of decomposition. In addition, Wang prepared 1,3,5,7-tetranittro-1,3,5,7-tetrazocane/nitrocellulose
(HMX/NC) and NC/GAP/CL-20 by the sol-gel method. Similarly, the samples do not have just one
exothermic peak, indicating that thermal decomposition for them is carried out in multiple steps.
Moreover, EK of HMX/NC iii and NC/GAP/CL-20 i are 277.68 kJ·mol−1 and 296 kJ·mol−1, respectively,
which are significantly higher than the EK of NC/GAP/nano-LLM-105 [29,33]. This is because, compared
with the nanofibers that are prepared by electrospinning, the components of an energetic composite
prepared by the sol-gel method cannot be tightly combined with each other, and there is a lower
mutual promotion of the components for thermal decomposition.
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Table 3. Thermodynamics and kinetics deduced from DSC traces.

Samples Tp (K)
Thermodynamics Kinetics

∆H,
(kJ·mol−1)

∆G,
(kJ·mol−1)

∆S,
(J·mol−1·K−1)

EK
(kJ·mol−1)

lnAK k (s−1)

Nano-LLM-105 606 188 152 59 193 38 1.0
NC/GAP 468 176 115 130 180 47 1.4

NC/GAP/Nano-LLM-105 456 181 111 153 185 49 1.7

The products for the thermal decomposition of NC/GAP/nano-LLM-105 and NC/GAP were
investigated by TG-IR. The TG and DTG curves are displayed in Figure 9a,b, and the IR spectra at
different temperatures are shown in Figure 9c,d. For NC/GAP, the decomposition began at 177 ◦C,
and the decomposition rate reached its maximum at 193.11 ◦C. The decomposition almost finished
at 196.6 ◦C. For NC/GAP/nano-LLM-105, the initial decomposition temperature rose to 188.65 ◦C.
Composite nanofibers decomposed at the fastest rate at 195.07 ◦C. Also, the decomposition was
generally accomplished at 201.04 ◦C. This means that the decomposition of NC/GAP/nano-LLM-105 is
more concentrated. The IR spectrum, indicated that the main products were diverse. The main peaks
and attributions are listed in Table 4. For clarity, the curves are vertically offset in Figure 9c,d. The strong
peaks at 2309–2360 cm−1 indicated the presence of much CO2 gas. The peaks in 2113–2199 cm−1

represented the appearance of CO. The weak peak located at 2239 cm−1 manifested the existence
of a very low amount of N2O gas. The existence of NO explicates the peaks that were located
at 1901–1924 cm−1. Moreover, the peaks in 3271–3379 cm−1 and 1691–1788 cm−1 corresponded to
the fragments of -CH and -CH2O, respectively. The –N3 is the energetic group of GAP, which is
decomposed to N2. In reality, N2 is a nonpolar molecule, and it cannot be probed by IR. For those
two nanofibers, the positions of the main peaks are mainly identical. The only difference is the
generation of -C-O-C- fragments for NC/GAP nanofibers. However, there are no -C-O-C- fragments
for NC/GAP/nano-LLM-105. In addition, compared with NC/GAP, the peak intensities of the-CH2O
fragments decreased significantly. This indicates that for NC/GAP/nano-LLM-105, the fragments of
-CH2O and -C-O-C- further reacted to generate CO2, CO, and H2O. This is because the interposition of
the LLM-105 nanoparticles in NC/GAP improved the oxygen balance.

Table 4. Peaks and attributions.

Samples
Peaks and Attribution (cm−1)

3739–3560 2309–2360 2339 2113–2199 1901–1924 3271–3379 1691–1788 1077–1130

NC/GAP H2O CO2 N2O CO NO -C-H -CH2O C-O-C
NC/GAP/nano-LLM-105 H2O CO2 N2O CO NO -C-H -CH2O no
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Figure 9. TG-IR analysis of samples: (a,b) TG and DTG curves; (c,d) IR spectra of the decomposition 
products at different temperatures. 
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3.3. Energetic Performance and Sensitivities

To further explore the energy properties of NC/GAP/nano-LLM-105, their energy performances
and impact sensitivities were evaluated. The standard specific impulse (Isp), characteristic velocity
(C*), combustion chamber temperature (Tc), and average molecular weight (Mc) were calculated,
the results are listed in Table 5. The functional relationships between the energy performances
of NC/GAP/LLM-105 nanofibers and the weight percentage of LLM-105 are shown in Figure 10.
For nano-LLM-105, NC/GAP, and NC/GAP/nano-LLM-105, the standard deviations of H50 were 4.5, 4.0
and 4.4, respectively. The impact sensitivities of the samples were tested, and the results are displayed
in Table 4. Furthermore, the combustion products and their mass molar ratios were calculated, and the
results are shown in Figure 11. The feature height (H50) for NC/GAP/nano-LLM-105 was significantly
higher than H50 for NC/GAP, and it was a little lower than nano-LLM-105. This indicates that the
impact sensitivity of NC/GAP/nano-LLM-105 was distinctly lower than that of NC/GAP, and slightly
higher than that of nano-LLM-105. For energy performance, the standard specific impulse (Isp) of
NC/GAP was 2013.8 N·s·kg−1. For NC/GAP/nano-LLM-105, the Isp value increased to 2032.4 N·s·kg−1.
This was not attributed to the high energy of LLM-105, but it was rather due to the higher formation
enthalpy (∆Hf) and C/H values of LLM-105, in contrast to those of NC/GAP. The formation enthalpy
of LLM-105 (−13 kJ·mol−1) was observably larger than that of NC/GAP (−294.6 kJ·mol−1). Therefore,
after LLM-105 was introduced into NC/GAP, the energy performance was dramatically improved. The
value of oxygen balance (OBCO2) was a crucial element for assessing the energy performance. As the
OBCO2 increased, the energy performance is enhanced. The OBCO2 of LLM-105 (−37.03) is higher
than that of NC/GAP (−76.1). Hence, the introduction of LLM-105 is in favor of improvement for the
energy performance. Additionally, the C/H mass ratios of nano-LLM-105 and NC/GAP are 12 and 8.24,
respectively. We infer that the higher OBCO2 and C/H are beneficial to enhancement under combustion
temperature (Tc) [33,35]. Tc represents the chemical energy storage of an energetic formulation, which
is proportional to the explosive heat of propellants. Figure 10c shows that the value of Tc increases as
the weight percentage of LLM-105 increases. The energy performance is mainly determined by the heat
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released from combustion, and the energy conversion efficiency. The latter is related to the hydrogen
content in the molecules. The decrease of hydrogen content leads to a decrease of H2 content. Therefore,
the average molecular weight (Mc) increases, which is disadvantageous to energy conversion efficiency.
From Figure 11, for NC/GAP, H2 accounts for 28% in combustion products, and the H2 proportion
of LLM-105 is 19%. Hence, the Mc of LLM-105 is higher than that of NC/GAP in Table 4. Figure 10d
shows that the value of Mc increases as the weight percent of LLM-105 increases. In this case, although
Mc of LLM-105 is higher than that of NC/GAP, the Isp of LLM-105 is still significantly higher than Isp of
NC/GAP. This is because the negative effect of low energy conversion efficiency is offset by the high
storage of chemical energy. The higher chemical energy storage of LLM-105 is attributed to its higher
C/H mass ratio, OBCO2, and the formation enthalpy. Therefore, the interposition of LLM-105 improves
the energy performance of NC/GAP.

Table 5. Impact sensitivity and energy performance of the samples.

Samples
Impact Sensitivity Energy Performance

H50 (cm) Isp (N·s·kg−1) C* (m·s−1) Tc (K) Mc (g·mol−1)

NC(50%)/GAP(50%) 60 2014 1240 1556 22
LLM-105(100%) 113 2171 1393 2453 24

NC(37.5%)/GAP(37.5%)/LLM-105(25%) 78 2027 1253 1640 23

Isp is the standard specific impulse; C* is the characteristic speed; Tc is the combustion chamber temperature; Mc is
the average molecular weight of the combustion products. All of the parameters were calculated by the means of
software ProPep 3.0 at condition of Pc/Pe = 70/1 (Pe = 0.1 MPa) and T0 = 298 K.

Nanomaterials 2019, 9, x FOR PEER REVIEW 12 of 15 

 

-10 0 10 20 30 40 50 60 70 80 90 100110
2000

2020

2040

2060

2080

2100

2120

2140

2160

2180

NC/GAP/LLM-105
(a)

I sp
 (N

·s
·k

g-1
)

Weight of LLM-105 (%)
-10 0 10 20 30 40 50 60 70 80 90 100110

1220

1240

1260

1280

1300

1320

1340

1360

1380

1400(b) NC/GAP/LLM-105

C
* (

m
·s

-1
)

Weight of LLM-105 (%)  

-10 0 10 20 30 40 50 60 70 80 90 100110
1500
1600
1700
1800
1900
2000
2100
2200
2300
2400
2500

NC/GAP/LLM-105(c)

T c
 (K

)

Weight of LLM-105 (%)
-10 0 10 20 30 40 50 60 70 80 90 100110

22.0

22.5

23.0

23.5

24.0

24.5
(d) NC/GAP/LLM-105

M
c (

g·
m

ol
-1
)

Weight of LLM-105 (%)  
Figure 10. Energy performances of NC/GAP/LLM-105 nanofibers as a function of the weight 
percentage of LLM-105: (a) for Isp; (b) for C*; (c) for Tc and (d) for Mc. 

18%

(a) NC(50%)/GAP(50%)

7.4%
28%

18%

23%

5.5%
 H2O
 CO
 N2
 H2
 CO2
 C

0.4%

(b) LLM-105(100%)

8.6%

19%
34%

36%

3%
 H2O
 CO
 N2
 H2
 CO2
 C

 

14%

(c) NC(37.5%)/GAP(37.5%)/LLM-105(25%)

7.4%

27%

21%

26%

4.7%
 H2O
 CO
 N2
 H2
 CO2
 C

 
Figure 11. (a–c) Combustion products and their molar ratios for NC/GAP/LLM-105 nanofibers. The 
results in Figure 11 were calculated by the means of the ProPep 3.0 software under conditions of Pc/Pe 
= 70/1 (Pe = 0.1 MPa) and T0 = 298 K. 

4. Conclusions 

Figure 10. Energy performances of NC/GAP/LLM-105 nanofibers as a function of the weight percentage
of LLM-105: (a) for Isp; (b) for C*; (c) for Tc and (d) for Mc.



Nanomaterials 2019, 9, 854 13 of 15

Nanomaterials 2019, 9, x FOR PEER REVIEW 12 of 15 

 

-10 0 10 20 30 40 50 60 70 80 90 100110
2000

2020

2040

2060

2080

2100

2120

2140

2160

2180

NC/GAP/LLM-105
(a)

I sp
 (N

·s
·k

g-1
)

Weight of LLM-105 (%)
-10 0 10 20 30 40 50 60 70 80 90 100110

1220

1240

1260

1280

1300

1320

1340

1360

1380

1400(b) NC/GAP/LLM-105

C
* (

m
·s

-1
)

Weight of LLM-105 (%)  

-10 0 10 20 30 40 50 60 70 80 90 100110
1500
1600
1700
1800
1900
2000
2100
2200
2300
2400
2500

NC/GAP/LLM-105(c)

T c
 (K

)

Weight of LLM-105 (%)
-10 0 10 20 30 40 50 60 70 80 90 100110

22.0

22.5

23.0

23.5

24.0

24.5
(d) NC/GAP/LLM-105

M
c (

g·
m

ol
-1
)

Weight of LLM-105 (%)  
Figure 10. Energy performances of NC/GAP/LLM-105 nanofibers as a function of the weight 
percentage of LLM-105: (a) for Isp; (b) for C*; (c) for Tc and (d) for Mc. 

18%

(a) NC(50%)/GAP(50%)

7.4%
28%

18%

23%

5.5%
 H2O
 CO
 N2
 H2
 CO2
 C

0.4%

(b) LLM-105(100%)

8.6%

19%
34%

36%

3%
 H2O
 CO
 N2
 H2
 CO2
 C

 

14%

(c) NC(37.5%)/GAP(37.5%)/LLM-105(25%)

7.4%

27%

21%

26%

4.7%
 H2O
 CO
 N2
 H2
 CO2
 C

 
Figure 11. (a–c) Combustion products and their molar ratios for NC/GAP/LLM-105 nanofibers. The 
results in Figure 11 were calculated by the means of the ProPep 3.0 software under conditions of Pc/Pe 
= 70/1 (Pe = 0.1 MPa) and T0 = 298 K. 

4. Conclusions 

Figure 11. (a–c) Combustion products and their molar ratios for NC/GAP/LLM-105 nanofibers. The results
in Figure 11 were calculated by the means of the ProPep 3.0 software under conditions of Pc/Pe = 70/1
(Pe = 0.1 MPa) and T0 = 298 K.

4. Conclusions

The NC/GAP/nano-LLM-105 composite nanofiber with a large specific surface area was
prepared by an electrospinning technique. Compared with NC/GAP and LLM-105 nanoparticles,
NC/GAP/nano-LLM-105 nanofibers have lower decomposition temperature and distinctly higher
decomposition rate. The activation energy of NC/GAP/nano-LLM-105 for thermolysis is lower than
that of LLM-105 nanoparticles. These indicate that NC/GAP/nano-LLM-105 decompose relatively
easily and violently. If it is used in solid rocket propellant systems, it will decompose first, and then
induce the decomposition of other components.

The Isp and Tc of NC/GAP/nano-LLM-105 are higher than those of NC/GAP, which means that
NC/GAP/nano-LLM-105 possesses a distinguished energy performance. In addition to the energy
performance, safety is another rather crucial factor for energetic materials. The impact sensitivity of
NC/GAP/nano-LLM-105 is signally lower than that of NC/GAP. Hence, it has a good safety performance
rating. NC/GAP/nano-LLM-105 possess both energy performance and low impact sensitivity. Therefore,
this composite nanofiber has enormous potential in the field of solid rocket-propellant systems. This
versatile preparation method may provide a concept for synthesizing energetic nanocomposites.
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